
Meeting 11:

The value of information



Two-stage decision problem

Suppose we have the following (general) decision matrix for  decision problem with 

𝑟 actions and 𝑠 states:

Actions

States

𝜃1 𝜃2 ⋯ 𝜃𝑠

𝑎1 𝑈11 𝑈12 ⋯ 𝑈1𝑛

𝑎2 𝑈21 𝑈22 ⋯ 𝑈2𝑛

⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑟 𝑈𝑚1 𝑈𝑚2 ⋯ 𝑈𝑚𝑛

Using the EU-criterion, the optimal action 𝑎∗ is the action that maximises the 

expected utility, i.e.

𝑎∗ = arg max
𝑖

෍
𝑗=1

𝑠

𝑈𝑖𝑗 ∙ 𝑃 𝜃𝑗



The probabilities 𝑃 𝑠𝑗 are general, but we know that they are prior probabilities 

when assigned on background information only and posterior probabilities when 

new data is taken into account.

Hence, we could rather consider…

Optimal action in prior sense: 𝑎′ = arg max
𝑖

෍
𝑗=1

𝑠

𝑈𝑖𝑗 ∙ 𝑓′ 𝜃𝑗

Optimal action in posterior sense: 𝑎′′ = 𝑎′′|𝒚𝑛 = arg max
𝑖

෍
𝑗=1

𝑠

𝑈𝑖𝑗 ∙ 𝑓′′ 𝜃𝑗 𝒚𝑛

where 𝒚𝑛 = 𝑦1, … , 𝑦𝑛 are the values in a sample from the population characterised 

by the state 𝜃.  

When the set of states, Θ is continuous the corresponding formulas are

𝑎′ = arg max
𝑖

න
Θ

𝑈𝑖 𝜃 𝑓′ 𝜃 𝑑𝜃 𝑎′′|𝒚𝑛 = arg max
𝑖

න
Θ

𝑈𝑖 𝜃 𝑓′′ 𝜃 𝒚𝑛 𝑑𝜃

where 𝑈𝑖 𝜃 = 𝑈 𝑎𝑖 , 𝜃 is the utility function associated with action 𝑎𝑖.



We can therefore say that when the decision maker has the possibility to acquire 

new data to inform their decision, they are faced to 

i. Choose an action based on the current information.

ii. Await the choice of action until new data has possibly been acquired.

which is referred to as a two-stage decision problem.

A better formulation is however

1. Decide whether new data should be acquired.

2. Choose an action based on the information available after 1.

The decision in stage 1 will be based on the value of the information that may be 

obtained from acquiring new data and the cost of obtaining these data.

The decision in stage 2 will be based on the expected utilities of the different 

actions under the distribution of the states assigned upon having conducted stage 1.



Focusing on Stage 1

Once a probability distribution of the states have been (terminally) assigned, choosing an 

action according to the EU-criterion is as previously taken up in the course. 

The value of (new) information

Example

Suppose we choose between selling ice cream on the beach “tomorrow” (a Saturday 

in July).

If the proportion of beach “guests” buying ice cream is at least 30% you deem your 

minimum payoff to be 50. If  lower than 30% your deemed minimum payoff is –200.

Using your deemed minimum payoff as utilities, your decision matrix is

Actions

Proportion of beach guests buying

≥ 30% < 30%

Sell 50 −200

Do not sell 0 0



Being ignorant about the proportion, 𝑞, of beach guests buying you would probably 

assign a uniform distribution to this proportion.

Actions

Proportion of beach guests buying

≥ 30% < 30%

Sell 50 −200

Do not sell 0 0

This means that 𝑃 𝑞 ≥ 30% = 0.7

⇒ 𝐸 𝑈 "Sell" = 50 ∙ 0.7 − 200 ∙ 0.3 = −25 and 𝐸 𝑈 "Do not sell" = 0

 𝑎′ = "Do not sell"

Now, what would it be worth to you to learn that among 10 beach guests today, 6 

bought ice cream?



This information (6 out of 10) can be  used to obtain a posterior distribution of 𝑞.

The likelihood of 𝑞 in light of this information is 

𝑓 6 𝑞, (10) =
10
6

𝑞6 1 − 𝑞 4

The prior distribution of 𝑞 is a Beta(1,1)-distribution and updating with the 

likelihood we obtain a Beta(1+6,1+4) = Beta(7,5) posterior distribution.

Hence, 𝑃 𝑞 ≥ 30% 6 out of 10 = 0.3׬

1 𝑞6 1−𝑞 4

𝐵 7,5
𝑑𝑞 ≈ 0.978

⇒ 𝐸 𝑈 "Sell"|6 out of 10  6 out of 10 = 50 ∙ 0.978 − 200 ∙ 0.022 = 44.5 
      and 𝐸 𝑈 "Do not sell" 6 out of 10 = 0

 𝑎′′|6 out of 10 = "Sell"

The difference in posterior expected utility between 𝑎′′|6 out of 10 and 𝑎′ is 

44.5 – 0 =44.5, which is then the value (in utility) of the information (VOI) . 



Now, assume instead that the information you obtained was that of the 10 beach 

guests, 4 bought ice cream.

That would give a Beta(5,7) posterior distribution of 𝑞. 

Hence, 𝑃 𝑞 ≥ 30% 6 out of 10 = 0.3׬

1 𝑞6 1−𝑞 4

𝐵 7,5
𝑑𝑞 ≈ 0.790

⇒ 𝐸 𝑈 "Sell"|4 out of 10 4 out of 10 = 50 ∙ 0.79 − 200 ∙ 0.21 = −2.5 
      and 𝐸 𝑈 "Do not sell" 4 out of 10 = 0

 𝑎′′|4 out of 10 = "Do not sell"

The difference in posterior expected utility between 𝑎′′|4 out of 10 and 𝑎′ is here

0 – 0 = 0, so the value (in utility) of the information is 0. 



In general...

The value of  new information, 𝐼𝑁 is defined as 

VOI 𝐼𝑁 = 𝐸 𝑈 𝑎′′|𝐼𝑁 𝐼𝑁 − 𝐸 𝑈 𝑎′ 𝐼𝑁

Alternatively, it can be defined in terms of expected loss:

VOI 𝐼𝑁 = 𝐸 𝐿 𝑎′ 𝐼𝑁 − 𝐸 𝐿 𝑎′′|𝐼𝑁 𝐼𝑁



Different kinds of new information

Perfect information: Information that will remove all uncertainty – the true state 

(PI) is known

Sample information: Information that to some extent will reduce the uncertainty 

(SI) about which state is true –also referred to as partial 

information

In any case, at the outset we don’t have this information. The question is: Should we 

endeavour to obtain it? – depends on the value of the information and the cost of 

acquiring it.

But since we don’t know on forehand what the information outcome (data) will be, 

we don’t know its value on forehand. 

We must however know which the different outcomes are and with which probability 

distribution.  

 We should be able to calculate the expected value of information (EVOI)

• EVSI, EVPI



Expected value of sample information (EVSI)

Assume there is a possibility to obtain a sample of size 𝑛 from a population for 

which the true state of nature/world is 𝜃.

Let 𝒚𝑛 = 𝑦1, … , 𝑦𝑛 be the values in such a potential sample with probability 

density/mass function 𝑓 𝑦𝑘 𝜃 .  

The value of sample information, VSI, is then defined as

VSI 𝒚𝑛 = 𝐸 𝑈 𝑎′′|𝒚𝑛 𝒚𝑛 − 𝐸 𝑈 𝑎′ 𝒚𝑛

or

VSI 𝒚𝑛 = 𝐸 𝐿 𝑎′ 𝒚𝑛 − 𝐸 𝐿 𝑎′′|𝒚𝑛 𝒚𝑛

The posterior expected loss from 

taking the prior optimal action minus 

the posterior expected loss from 

taking the posterior optimal action 

The posterior expected utility from 

taking the posterior optimal action 

minus the posterior expected utility 

from taking the prior optimal action 

When utility is linear in money, we could also define VSI as

VSI 𝒚𝑛 = 𝐸 𝑅 𝑎′′|𝒚𝑛 𝒚𝑛 − 𝐸 𝑅 𝑎′ 𝒚𝑛



Using the definition of VSI(y) the expected value of sample information (EVSI) is

EVSI = ׬ VSI 𝒚𝑛 ∙ 𝑓 𝒚𝑛 𝑑𝒚𝑛       𝑦𝑘 continuous-valued 

  

EVSI = σ VSI 𝒚𝑛 ∙ 𝑓 𝒚𝑛              𝑦𝑘 discrete-calued

where the integration (or summing) is over the sample space of the 𝑦𝑘s and 𝑓 𝒚𝑛

is the prior-predictive distribution of 𝒚𝑛, i.e.

𝑓 𝒚𝑛 = න 𝑓 𝒚𝑛 𝜃 𝑓′ 𝜃 𝑑𝜃

Most often, however, the sample is a random sample from the same population 

and thus

𝑓 𝒚𝑛 = ෑ

𝑘=1

𝑛

𝑓 𝑦𝑘 = ෑ

𝑘=1

𝑛

න 𝑓 𝑦𝑘 𝜃 𝑓′ 𝜃 𝑑𝜃



Exercise 6.15



𝑎′ = arg max
𝑎

𝐸′𝑅 𝑎

𝐸(𝑅 Stock 100 )     = (–10)  0.2 + (−2)  0.3 + 12  0.3 + 22  0.1 + 40  0.1 = 7.2

𝐸(𝑅 Stock 50 ) = (–4)  0.2 + 6  0.3 + 12  0.3 + 16  0.1 + 16  0.1 = 7.8

𝐸(𝑅 Do not stock ) = 0  0.2 + 0  0.3 + 0  0.3 + 0  0.1 + 0  0.1 = 0

 𝑎′ = Stock 50 

𝜃 𝑃 𝜃

0.10 0.2

0.20 0.3

0.30 0.3

0.40 0.1

0.50 0.1

DECISION

PROPORTION OF CUSTOMERS BUYING (𝜃)

0.10 0.20 0.30 0.40 0.50

Stock 100 –10 –2 12 22 40

Stock 50 –4 6 12 16 16

Do not stock 0 0 0 0 0



Below we have used the word “BUY” instead of “PURCHASE”

𝜃 𝑃 𝜃

0.10 0.2

0.20 0.3

0.30 0.3

0.40 0.1

0.50 0.1

DECISION

PROPORTION OF CUSTOMERS BUYING (𝜃)

0.10 0.20 0.30 0.40 0.50

Stock 100 –10 –2 12 22 40

Stock 50 –4 6 12 16 16

Do not stock 0 0 0 0 0

Exercise 6.16



𝑃 BUY|𝜃 = 𝜃



𝑃 BUY = 0.10 ∙ 0.2 + 0.20 ∙ 0.3 + 0.30 ∙ 0.3 + 0.40 ∙ 0.1 + 0.50 ∙ 0.1 = 0.26

𝑃 0.10|BUY = Τ0.10 ∙ 0.2 0.26 ≈ 0.0769

𝑃 0.20|BUY = Τ0.20 ∙ 0.3 0.26 ≈ 0.2308

𝑃 0.30|BUY = Τ0.30 ∙ 0.3 0.26 ≈ 0.3462

𝑃 0.40|BUY = Τ0.40 ∙ 0.1 0.26 ≈ 0.1538

𝑃 0.50|BUY = Τ0.50 ∙ 0.1 0.26 ≈ 0.1923

since 𝜃 is the proportion of buying customers

(a) Posterior distribution:

𝑃 𝜃|BUY =
𝑃 BUY|𝜃 ∙ 𝑃 𝜃

𝑃 BUY
=

𝑃 BUY|𝜃 ∙ 𝑃 𝜃

σ𝜆 𝑃 BUY|𝜆 ∙ 𝑃 𝜆



VSI BUY = 𝐸(𝑅 𝑎′′|BUY |BUY) − 𝐸(𝑅 𝑎′ |BUY)

𝑎′ = from Exercise 6.15 = Stock 50

𝑎′′|BUY = arg max
𝑎

𝐸(𝑅 𝑎|BUY |BUY)

𝐸(𝑅 𝑎|BUY |BUY) = ෍

𝑎

𝑅 𝑎, 𝜃 ∙ 𝑃 𝜃|BUY



𝐸 𝑅 Stock 100|BUY BUY = −10 ∙ 0.0769 … + −2 ∙ 0.2308 … + 12 ∙ 0.3462 …
                                            +22 ∙ 0.1538 … + 40 ∙ 0.1923 … = 14.00

𝐸(𝑅 Stock 50|BUY |BUY) = −4 ∙ 0.0769 … + 6 ∙ 0.2308 … + 12 ∙ 0.3462 … +
                                         26 ∙ 0.1538 … + 16 ∙ 0.1923 … ≈ 10.77

𝐸(𝑅 Do not stock|BUY |BUY) = 0 ∙ 0.0769 … + 0 ∙ 0.2308 … + 0 ∙ 0.3462 … +
                                                 0 ∙ 0.1538 … + 0 ∙ 0.1923 … = 0

⇒  𝑎′′|BUY = Stock 100

⇒ VSI BUY = 𝐸(𝑅 Stock 100|BUY |BUY) − 𝐸(𝑅 Stock 50 |BUY)

= 14.00 − 10.77 = 3.23



(b) Posterior distribution:

𝑃 𝜃|NOT BUY =
𝑃 NOT BUY|𝜃 ∙ 𝑃 𝜃

𝑃 NOT BUY
=

𝑃 NOT BUY|𝜃 ∙ 𝑃 𝜃

σ𝜆 𝑃 NOT BUY|𝜆 ∙ 𝑃 𝜆

𝑃 NOT BUY|𝜃 = 1 − 𝜃

𝑃 NOT BUY = 0.90 ∙ 0.2 + 0.80 ∙ 0.3 + 0.70 ∙ 0.3 + 0.60 ∙ 0.1 + 0.50 ∙ 0.1 = 0.74

𝑃 0.10|NOT BUY = Τ0.90 ∙ 0.2 0.74 ≈ 0.2432

𝑃 0.20|NOT BUY = Τ0.80 ∙ 0.3 0.74 ≈ 0.3243

𝑃 0.30|NOT BUY = Τ0.70 ∙ 0.3 0.74 ≈ 0.2838

𝑃 0.40|NOT BUY = Τ0.60 ∙ 0.1 0.74 ≈ 0.0811

𝑃 0.50|NOT BUY = Τ0.50 ∙ 0.1 0.74 ≈ 0.0676





VSI NOT BUY = 𝐸(𝑅 𝑎′′|NOT BUY |NOT BUY) − 𝐸(𝑅 𝑎′ |NOT BUY)

𝑎′ = Stock 50 (Same as in a )

𝑎′′|NOT BUY = arg max
𝑎

𝐸(𝑅 𝑎|NOT BUY |NOT BUY)

𝐸(𝑅 𝑎|NOT BUY |NOT BUY) = ෍

𝑎

𝑅 𝑎, 𝜃 ∙ 𝑃 𝜃|NOT BUY



𝐸(𝑅 Stock 100|NOT BUY |NOT BUY) = −10 ∙ 0.2432 … + −2 ∙ 0.3243 … +
 12 ∙ 0.2838 … + 22 ∙ 0.0811 … + 40 ∙ 0.0676 … ≈ 4.81

𝐸(𝑅 Stock 50|NOT BUY |NOT BUY) = −4 ∙ 0.2432 … + 6 ∙ 0.3243 … +
                                         12 ∙ 0.2838 + 26 ∙ 0.0811 … + 16 ∙ 0.0676 … ≈ 6.76

𝐸(𝑅 Do not stock|NOT BUY |NOT BUY) = 0 ∙ 0.2432 … + 0 ∙ 0.3243 … +
                                                 0 ∙ 0.2838 + 0 ∙ 0.0811 … + 0 ∙ 0.0676 … = 0

⇒  𝑎′′|NOT BUY = Stock 50

⇒ VSI NOT BUY =
= 𝐸(𝑅 Stock 50|NOT BUY |NOT BUY) − 𝐸(𝑅 Stock 50 |NOT BUY) = 0



(c)

EVSI = ෍

𝑦

VSI 𝑦 ∙ 𝑃 𝑦 = 3.2 ∙ 0.26 + 0 ∙ 0.74 = 0.832



Perfect information means that there is no uncertainty left for the decision maker. 

Hence the true state of the world is known.

The value of perfect information, VPI is what this information is worth to the 

decision maker.

Expected value of perfect information (EVPI)

Recall the general formulas for value of information:

VOI 𝐼𝑁 = 𝐸 𝑈 𝑎′′|𝐼𝑁 𝐼𝑁 − 𝐸 𝑈 𝑎′ 𝐼𝑁

VOI 𝐼𝑁 = 𝐸 𝐿 𝑎′ 𝐼𝑁 − 𝐸 𝐿 𝑎′′|𝐼𝑁 𝐼𝑁

Perfect information means that 𝐼𝑁 ⇔ "𝜃 is known” – it is not about updating the 

probabilities of the states and not about expectations with respect to prior-predictive 

distributions.

The optimal action given 𝜃 can be written 𝑎𝜃 (= arg max
𝑖

𝑈 𝑎𝑖 , 𝜃 )



Using the second form of definition we can deduce a general expression for  the 

expected value of perfect information (EVPI) as

EVPI = න 𝐿 𝑎′, 𝜃 − 𝐿 𝑎𝜃 , 𝜃 𝑓′ 𝜃 𝑑𝜃

= න 𝐿 𝑎′, 𝜃 𝑓′ 𝜃 𝑑𝜃 − න 𝐿 𝑎𝜃 , 𝜃 𝑓′ 𝜃 𝑑𝜃 = 𝐸 𝐿 𝑎′ − න 0 ∙ 𝑓′ 𝜃 𝑑𝜃

= 𝐸 𝐿 𝑎′

Hence the formulas changes into

VPI 𝜃 = 𝑈 𝑎𝜃 , 𝜃 − 𝑈 𝑎′, 𝜃

VPI 𝜃 = 𝐿 𝑎′, 𝜃 − 𝐿 𝑎𝜃 , 𝜃

VPI 𝜃 = 𝑅 𝑎𝜃 , 𝜃 − 𝑅 𝑎′, 𝜃 when utility is linear in money

since the optimal action for each 𝜃 comes with zero loss.

Hence, the expected value of perfect information is equal to the expected loss of 

the optimal action in prior sense.



Exercise 6.15 (again)



DECISION

PROPORTION OF CUSTOMERS BUYING

0.10 0.20 0.30 0.40 0.50

Stock 100 –10 –2 12 22 40

Stock 50 –4 6 12 16 16

Do not stock 0 0 0 0 0

VPI 𝜃 = 𝑅 𝑎𝜃 , 𝜃 − 𝑅 𝑎′, 𝜃

From previously:  𝑎′ = Stock 50

 

VPI(0.10) = 0 − (−4) = 4

VPI(0.20) = 6 − 6 = 0

VPI(0.30) = 12 − 12 = 0

VPI(0.40) = 22 − 16 = 6

VPI(0.50) = 40 − 16 = 24

  EVPI = 4  0.2 + 0  0.3 + 0  0.3 + 6  0.1 + 24  0.1 = 3.8
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