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1 Introduction

Reasoning under uncertainty is ubiquitous in fields like statistics and artificial intelligence.
Decision theory provides a formal framework to compute decision strategies yielding maximum
expected utility for an agent when observations and outcomes of actions are uncertain. In the
beginning, these decision problem were solved by applying dynamic programming to decision
trees. Later, influence diagrams were developed for the task. Influence diagrams can be seen
as an extension of Bayesian networks with decision and utility variables. Influence diagrams
are more compact, intuitive, structured and scalable than decision trees. Solving an influence
diagram (i.e., finding the strategy with maximum expected utility) is typically done via the
Lauritzen-Spiegelhalter algorithm developed for making inference on Bayesian networks. In
this project, we focus on limited memory influence diagrams (LIMIDs). The main advantage
of LIMIDs over influence diagrams is that they can model decision problems where the no-
forgetting assumption does not hold, i.e. LIMIDs do not require that all the previously made
observations and decisions are known when making a new decision. This is particularly suitable
for decision problems involving an agent (e.g., a team or corporation) composed of subagents
(e.g., individuals or robots) which may not be aware of each other’s previous decisions and
observations. However, LIMIDs do not allow for simultaneous and coordinated decisions, e.g.
a doctor may have to decide the dosage of several drugs simultaneously and coordinately to
maximize the effectiveness of a treatment. This project aims to address this problem.

2 LIMIDs and DCGs

Formally, a LIMID consists in a directed and acyclic graph (DAG) G over V ∪D ∪U where

� V = {Vi} is a set of discrete random variables, i.e. controlled by nature

� D = {Di} is a set of discrete decision variables, i.e. controlled by the agent

� U = {Ui} is a set of continuous utility variables, i.e. the agent’s preferences

and such that

� pa(Di) are the random/decision variables to observe/make and take into consideration
before deciding on Di

� pa(Ui) are the variables determining Ui
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Figure 1: Left: LIMID. Right: DCG.

� ch(Ui) = ∅ due to the semantics of utilities.1

See Figure 1 (left) for an example of a LIMID. A policy for Di is a probability distribution of the
form p(Di∣pa(Di)). A policy is typically (but not necessarily) deterministic. A policy prescribes
an agent’s behavior. A strategy is a set of policies, one for each decision variable. Note that
a strategy turns the decision variables into random variables. Therefore, all the strategies are
Markovian with respect to GV ∪D. Therefore, it seems worth considering graphical models more
expressive than DAGs in order to enlarge the set of representable strategies. In this work, we
propose to consider Lauritzen-Wermuth-Frydenberg chain graphs. This gives rise to a new
graphical model for decision making under uncertainty, which we dub decision chain graph
(DCG) and which consists in a graph G over V ∪D ∪U such that

� GV ∪D is a chain graph

� pa(Di) are the random/decision variables to observe/make and take into consideration
before deciding on Di

� ne(Di) are the decisions to make simultaneously and coordinately with Di

� pa(Ui) are the variables determining Ui

� ch(Ui) = ne(Ui) = ∅ due to the semantics of utilities

� ne(Di) ∩ V = ∅ due to unclear semantics otherwise.

See Figure 1 (right) for an example of a DCG.

3 Objective

The goal of this project is to devise, implement and test some simple heuristic technique to
solve DCGs, preferably by adapting the single policy updating or SPU algorithm that exists for
LIMIDs. This is simply a hill-climbing algorithm that finds a locally optimal strategy in terms
of expected utility. SPU starts with the uniform policy for all the decision variables. Then, it
chooses a decision variable and updates its policy so as to maximize the expected utility keeping
the rest of the policies fixed. Finally, it repeats the previous step until no change occurs in
two consecutive iterations. Using Bayesian optimization may be an option too. Implementing
the Lauritzen-Spiegelhalter algorithm may also be an option, albeit one that may require more
programming. For more information, see https://www.dropbox.com/s/sw7kp5iolh6djnx/

DCGs2.pdf?dl=0.

1pa(X) denote the parents of X (i.e. the nodes with a directed edge to X), ch(X) denote the children of
X (i.e. the nodes with a directed edge from X), and ne(X) denote the neighbors of X (i.e. the nodes with an
undirected edge to X).
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