
Master Thesis in Statistics and Machine Learning

Defining and predicting fast-selling
clothing options

Sara Jesperson

Division of Statistics and Machine Learning
Department of Computer and Information Science

Linköping University



Supervisor
Oleg Sysoev

Examiner
Linda Wänström



Abstract

This thesis aims to find a definition of fast-selling clothing options and to find a way
to predict them using only a few weeks of sale data as input. The data used for this
project contain daily sales and intake quantity for seasonal options, with sale start
2016-2018, provided by the department store chain Åhléns.
A definition is found to describe fast-selling clothing options as those having sold
a certain percentage of their intake after a fixed number of days. An alternative
definition based on cluster affiliation is proven less effective.
Two predictive models are tested, the first one being a probabilistic classifier and
the second one being a k-nearest neighbor classifier, using the Euclidean distance.
The probabilistic model is divided into three steps: transformation, clustering, and
classification. The time series are transformed with B-splines to reduce dimension-
ality, where each time series is represented by a vector with its length and B-spline
coefficients. As a tool to improve the quality of the predictions, the B-spline vec-
tors are clustered with a Gaussian mixture model where every cluster is assigned
one of the two labels fast-selling or ordinary, thus dividing the clusters into disjoint
sets: one containing fast-selling clusters and the other containing ordinary clusters.
Lastly, the time series to be predicted are assumed to be Laplace distributed around
a B-spline and using the probability distributions provided by the clustering, the
posterior probability for each class is used to classify the new observations.
In the transformation step, the number of knots for the B-splines are evaluated with
cross-validation and the Gaussian mixture models, from the clustering step, are
evaluated with the Bayesian information criterion, BIC. The predictive performance
of both classifiers is evaluated with accuracy, precision, and recall. The probabilistic
model outperforms the k-nearest neighbor model with considerably higher values of
accuracy, precision, and recall. The performance of each model is improved by using
more data to make the predictions, most prominently with the probabilistic model.
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Glossary

Hierarchy of apparel:

1. Division - e.g. Women’s fashion
2. Group – e.g. Women’s clothes
3. Department – e.g. Women’s clothes private label
4. Class - Broadly grouping the garments according to use e.g. shirts
5. Subclass – A more specific grouping of the garments e.g. short-sleeved shirts
6. Article - A specific model of a garment
7. Option - Different options for the article concerning e.g. color
8. SKU - Stock Keeping Unit, the different sizes available for the option

Phase: A more specific time period than season, where each season consists of
several phases, and each phase introducing a new range of clothing
Season: In fashion, each year is divided into two time periods called seasons:
Spring/Summer and Autumn/Winter





1 Introduction

This chapter gives an overview of the previous research in the fields of apparel retail
prediction and time series clustering while also presenting the objective of the thesis.

1.1 Background

Predicting sales in fashion retail offers a number of complications. As Thomassey
(2014) explains, customer demand for fashion apparel is influenced by several factors
that are out of the retailer’s hands. Weather and the economic cycle are two of those
factors affecting the consumers’ buying behavior. Apparel retail is also impacted
by the current fashion trends which are ever-changing, leading to new items every
season and the number of products is vast since items are often offered in different
colors, patterns, and materials. The lifespan of a fashion item is another obstacle
since the time from designing and placing an order to sale start is long compared to
the life of a product in-store, which is usually only a season. Apparel is sensitive to
the season and items are selling at different rates throughout the year. Forecasting
is often of interest in apparel retail since it predicts future sales based on previous
sales, but because of the lack of historical sales data on the item level and the
unusual lifespan of clothing items, traditional forecasting methods such as ARMA
or exponential smoothing have proven to be less effective.
Over- or underestimating sales leads to a monetary loss in unsold items and lost sales
caused by running out of stock too early. A stockout, where the retailer has run
out of items, may also evoke negative emotions of the customer according to Kim
and Lennon (2011). These emotions are stronger for apparel compared to grocery
stockout. In the case of online apparel stores, the out-of-stock situation is different
compared to in-store stockout since items are often shown as available even though
they are sold out. When consumers experience stockouts, the perception of the store
image is negatively affected and future interactions with the store might be reduced.
Most previous research in the field of fashion retail prediction has focused on fore-
casting the exact sales. Several studies have dealt with the lack of historical data
on SKU level by basing their forecasts on class level. Using four years of sales data
from an American apparel company, Frank et al. (2003) examined the results of
forecasting sales for classes of apparel using both exponential smoothing and Arti-
ficial Neural Network, ANN. The results showed better predictions using the ANN
but also suggest that the model might be overfitted. Sun et al. (2008) suggest using
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Chapter 1 Introduction

extreme learning machines, ELM, to forecast sales for families of items, instead of
ANNs. Many ANNs tune the parameters with algorithms where the gradient is
used in the search for the optimal values, such as backpropagation. This is time-
consuming and tends to lead to overfitted models. ELM is a neural network with
a single hidden layer where the input weights and hidden biases are not tuned but
instead generated randomly and thus computation time is reduced and over-tuning
is prevented. Using data from a Hong Kong fashion retailer, color, size, and price
were used as input to the model and the results showed improved forecasts compared
to models based on backpropagation.

Some research has been done in forecasting on SKU level. Thomassey (2014) sug-
gests a two-step approach to forecast sales in apparel on the stock keeping unit level.
Historical data is used to cluster items with similar sale patterns together within a
family of items. Based on the created clusters, a classification model is trained to
assign cluster labels to new items based on descriptive variables. The forecast for
the new item is the sales pattern of its assigned cluster adapted to its lifespan. This
have been tested with k-means clustering and a decision tree for the classification
(Thomassey and Fiordaliso, 2006) and a two-step clustering using self-organizing
map (SOM), a type of neural network, to produce a 2D map of the input which is
then clustered with k-means and classification performed by a probabilistic neural
network (Thomassey and Happiette, 2007). Kumar and Patel (2010) propose an-
other method to forecast on the item level. Using forecasts from historical data,
items are clustered, and each cluster is represented by a combination of its items’
forecasts weighted by their inverse variance. New items are assigned to a cluster
based on a similarity measure and the forecast of the cluster is adopted by the new
item. Hierarchical clustering with a 4-week moving average forecasting model pro-
duced the lowest forecasting error. A study by Goldfisher and Chan (1994) showed
that by the third week of sale, successful products could be distinguished from failing
products by looking at a weekly sales index. Successful products showed a higher
sales index during the third week compared to the second week and failing products
showed a lower sales index during the third week compared to the second week. This
conclusion was reached by examining prelabeled data.

Clustering is a method for dividing data into separate clusters where the observations
within a cluster are similar to each other and observations from different clusters
are different from each other. The prediction of a cluster can be used as a tool in
securing more robust results when the predictions of the individual observations are
uncertain (Kumar and Patel, 2010). By clustering historical data, predictions of new
products can be based on similar products from the past (Thomassey, 2014). Much
research has been made in the field of clustering time series as stated by Aghabozorgi
et al. (2015). Time series are naturally not in a format to successfully cluster with
traditional algorithms and distance measures. To handle this, either the data or
the algorithms must be modified, often specifically to the project at hand. The
main applications within time series clustering have been to find distance measures
that effectively compares the raw data representation of the time series or to find
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1.2 Objective

new ways to represent the time series to reduce dimensionality. These applications
are then often used with traditional clustering algorithms such as k-means and
hierarchical clustering. In a study concerning time series clustering, Abraham et al.
(2003) used B-splines to represent time series describing the pH evolution in different
cheeses. Each time series was represented by its spline coefficients and using k-means
clustering, each cluster represented a different pH evolution pattern.

1.2 Objective

There is a perceived problem at Åhléns that their biggest sales units are selling out
too quickly and are often out of stock. A solution to that problem would be to alert
the supply planners of predicted fast-selling options, and for them to temporary
lock the restocking quantity for the smaller sales units and prioritizing restocking of
fast-selling options for the bigger sales units in order to reach as many customers as
possible. Thus, the objective of the thesis is to answer the following questions:

• How can a fast-selling option be defined using information from sales data?
• How can options be predicted as fast selling or not, based on a few weeks of

data?
• How does the quality of the predictions change when more data is available?

This thesis will focus on fast-selling options among the seasonal options from the
women’s clothes department and only considers options from Åhléns’ private labels.
Data is also limited to only contain options with sales start from 2016 through 2018.

1.3 Outline

In chapter 2, the data source and raw data are presented and described as well as the
preprocessing steps and the resulting data set. The methods used for the analysis,
both for training models and evaluating them, are described in chapter 3 and the
results from the analysis are presented in chapter 4. In chapter 5 the data, methods,
and results are discussed and chapter 6 presents the conclusions of the thesis.
Figure 1.1 presents the process of the thesis in defining and predicting fast-selling
clothing options. The flowchart broadly presents in which steps the data has been
handled and how the definition of fast-selling options is reached. Two predictive
classifiers are also shown: a probabilistic model, with three steps, and k-nearest
neighbor, with only one step. The process starts with collecting and preprocess-
ing data. From the resulting data set, a histogram based definition of fast-selling
options is found and presented in section 4.1. The unlabeled data is passed to
the probabilistic model where the first two steps are performed. This provides an
alternative definition of fast-selling options based on the clustering, which can be
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Chapter 1 Introduction

found in subsection 4.3.2. The preferred definition is chosen and the data is labeled
according to it. The labeled data is then used for the last step of the probabilistic
model as well as for the k-nearest neighbor classifier.

Preprocessing

Data
Collection

Histogram-
based

definition

Cluster-
based

definition
Choose

Definition 

Label Data

Probabilistic model

K-nearest neighbors

Transformation

Clustering

Classification Classification

Definition of 
fast-selling options

Figure 1.1: Flowchart describing the process of the analysis executed in the thesis
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2 Data

This chapter introduces the data available from the commissioner, presents the
different steps of the preprocessing, and describes the final data used for the analysis.

2.1 Data Sources

The data is collected from the commissioner Åhléns’ database. Åhléns is a depart-
ment store chain with locations all over Sweden as well as online. Among their
products are seasonal options that are only for sale during a limited time period.
For these options, a one-time order is placed since the production time is long and
the life span in the store is relatively short. This means that no additional orders are
placed and that the ordered quantity needs to be distributed wisely to the different
sales units. The options are received at the warehouse and originally distributed
according to a start distribution which is already defined. A quantity is left at the
warehouse for restocking and later distributed to the different stores according to
actual sales. Occasionally, popular seasonal items return during more than one sea-
son and additional orders are placed for the new seasons. While the option coding
remains the same, the season coding is changed for both the sales and the order.
Because of this, option and season are together used to identify unique observations.

2.2 Raw Data

Two data sets are extracted from the database: one containing the daily sales and the
other containing the intake quantity to warehouse. The data sets are already cleaned
to only contain seasonal options from the private labels in the women’s clothes
department and were retrieved 2019-04-01. All sales where the item is unknown
were also removed before retrieval.

Table 2.1 shows the variables of the daily sales data set and a short description of
them. This data set contains the sales for each option and season in the form of
time series. The sales have also been grouped based on the sale type. Returns are
represented by negative values which means that the variable Quantity can have
both positive and negative values.
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Chapter 2 Data

Table 2.1: Description of variables in daily sales

Variable Description

Option Id identifying the different clothing options
Season Id identifying during which season the option was active
Phase start Start date of the phase the option was active under
Date The date of the sale
Sales type Indicator of the type of sale: Regular, Clearance, Promotional

or Personal Promotional
Quantity The total quantity sold in all stores for the given date, option,

season and sales type

Table 2.2 shows the variables for the intake quantity to warehouse data set and a
short description of them. This data set contains information about how many units
of each option and season were received at the warehouse. Since all seasonal options
from the private labels are passing through the warehouse, the intake quantity to
warehouse is used instead of the order quantity.

Table 2.2: Description of variables in intake to warehouse

Variable Description

Option Id identifying the different clothing options
Season Id identifying during which season the option was active
Class The garment class the option belongs to
Quantity The total quantity received at the warehouse for each given op-

tion and season

2.3 Secondary Data

In accordance with the limits set for this thesis, the data is cleared from any options
that have a sales start before 2016 or after 2018. The options with no recorded
intake quantity to warehouse are also removed, as well as options with less than 50
days of regular sales or more than 350 days of regular sales.
For each unique combination of option and season, a series of preprocessing steps
are performed. All dates after the first sale of type clearance are removed as well as
dates more than one week before the phase start. For defining fast-selling options,
the clearance is not of interest since it marks the very end of an options life in store
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2.4 Description of the Resulting Data Set

and sales more than a week before phase start are rare and most likely the result of
a sale that has been registered incorrectly. For the remaining dates, the sales type
is disregarded and the quantity sold is calculated as the sum of all sales types. The
time series contain missing values, due to only sales being reported, and these days
are given a quantity of sold units of zero.
Four new variables are created from the cleaned data, starting with combining option
and season to into one variable Option, uniquely identifying each time series. From
this point on, any references to option in the thesis will be to this variable combining
both season and option. Day is created by counting the days from the first date of
sales. A variable Relative sale describes the proportion of sold units relative to the
intake quantity to warehouse of the option and by calculating the cumulative sum
of the relative sale, the variable Cumulative relative sale is produced. After creating
the new variables, options with negative cumulative sales or cumulative sales over
one are removed since these values indicate mistakes in the data. An extract from
the resulting data set is seen in table 2.3, showing the first five points of the time
series for an option.

Table 2.3: Extract from the final data set

Option Day Relative sale Cumulative relative sale

88127151190509-TCX537 1 0.00093 0.00093
88127151190509-TCX537 2 0.00278 0.00371
88127151190509-TCX537 3 0.00464 0.00835
88127151190509-TCX537 4 0.00093 0.00928
88127151190509-TCX537 5 0.00093 0.01020

The data is divided into two sets, where one is used to train the models and the
other is used for testing the predictive performance of the models. All options with
sales start before June 2018 are part of the training set and all options with sales
start from June 2018 are part of the test set. This yields a training set containing
81 percent of the options and a test set containing 19 percent of the options.

2.4 Description of the Resulting Data Set

The complete resulting data set, including both training and test, contains 2 721
article options, each represented by a time series. Figure 2.1 shows the distribution
of the length of the time series with the shortest being 51 days and the longest
being 301 days. The distribution of length is right-skewed with the mean 131 and
the median 125. Most time series have a length shorter than 200 days and the most
common length of the time series is between 120 to 140 days.
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Chapter 2 Data

Figure 2.1: Distribution of the sales period before clearance for seasonal options 2016-2018

Figure 2.2: Relative sales over time for three options

Figure 2.2 presents the relative sales over time for three options. The three options
show three different sales patterns and also different lengths of the time series They
all exhibit a non-smooth behavior and show decreasing sales towards the end of
their time periods. The top plot in figure 2.2 shows an option with slightly higher
sales during the first 15 days but overall low sales during a long time. The middle
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plot shows an option with the most sales around the middle of its sales period. The
plot at the bottom shows the option, out of the three, with the highest peaks in
sales and higher sales during the first half of its time period. The sales patterns
are more easily distinguished in figure 2.3 where the cumulative sales over time for
these options are presented.

Figure 2.3: Cumulative relative sales over time for three options

Figure 2.3 shows that the option in the top plot has a slow growth throughout its
lifetime and only sell just above 50 percent of its intake before clearance. The middle
plot shows that the option starts out with a slower sale, only to be increased before
leveling out, selling roughly 80 percent of its intake before clearance. Compared to
the middle plot, the option on the bottom of figure 2.3 shows a faster pattern in
the first 25 days, selling more than 50 percent of its intake in that period. The sales
slow down after that resulting in the option selling just over 75 percent of its intake
before clearance.

9





3 Methods

This chapter is aimed to present the methods used in the thesis and explain how they
are applied in the analysis. Two different methods of classification are presented in
this chapter. First, a probabilistic method is explained followed by the k-nearest
neighbors method and lastly the evaluation methods used are presented.

3.1 Probabilistic Classification

The probabilistic method proposed in this thesis consists of three steps: transforma-
tion, clustering, and classification. The time series are transformed by B-splines to
reduce dimensionality, and the B-spline coefficients and length of a time series form
a new representation of that time series. The time series, in their new form, are used
in a Gaussian mixture model to cluster the observations. This step is performed to
increase the stability of the results of the classification, where each cluster is assigned
a class label and the posterior probabilities of the different classes, given the non-
transformed time series of a new observation, are used for prediction. These posterior
probabilities are found by utilizing the probability distributions from the mixture
model which in turn uses the simplified representation achieved with B-splines. This
method is a modified and extended version of the time series clustering suggested
by Abraham et al. (2003).

3.1.1 B-Splines

To transform time series, and thus simplify the input space, B-splines or basis splines
are used. A time series can be represented by the coefficients of the B-splines and
the position of the knots. Hastie et al. (2009) explain that a regression spline is a
function f(x) defined by piecewise polynomials, used to describe complex functions
in a simpler way. x is one dimensional and divided by a set of knots ξ1, ..., ξR into
contiguous intervals where each interval is represented by its own polynomial and
written as

f(x) =
P∑
i=1

βihi,m(x) (3.1)
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Chapter 3 Methods

where βi is the ith basis coefficient, hi,m(x) is the ith basis function for a spline of
order m and P is the number of basis functions, decided by the order of the spline
and the number of knots R. The basis functions of traditional regression splines can
result in serious rounding problems when x is large. Instead of the basis functions
hi,m(x) in equation 3.1, B-splines Bi,m (x) can be used.
B-spines, or basis splines, use an alternative and more computationally stable basis
representation for regression splines (Hastie et al., 2009). When working with B-
splines, additional knots are chosen outside of the two boundary knots ξ0 and ξR+1.
These additional knots are arbitrary and often chosen to have the same values as
the boundary knots, which are usually the boundaries of the domain of x. The new
knot sequence τ is thus:

• τ1 ≤ τ2 ≤ . . . ≤ τM ≤ ξ0

• τr+M = ξr, r = 1 . . . .R
• ξR+1 ≤ τR+M+1 ≤ τR+M+2 ≤ . . . ≤ τR+2M

The B-spline basis functions are found recursively as shown in equations 3.2 and 3.3.
Bi,m (x) is the ith B-spline basis function of order m for τ where m ≤ M (Hastie
et al., 2009).

Bi,1(x) =

1 if τi ≤ x < τi+1

0 otherwise
, for i = 1, ..., R + 2M − 1 (3.2)

Bi,m (x) = x− τi
τi+m−1 − τi

Bi,m−1 (x) + τi+m − x
τi+m − τi+1

Bi+1,m−1 (x) ,

for i = 1, ..., R + 2M −m
(3.3)

Smoother functions are often preferred which is achieved by increasing the order of
the B-splines. For an order-4 B-spline, also known as a cubic B-spline, the human
eye can no longer notice any discontinuity at the knots (Hastie et al., 2009).
Using B-splines and a fixed number of knots, equally spaced throughout the time
series, an alternative representation of the time series is found for clustering. A
time series can thus be represented by a vector consisting of the spline coefficients
β1, . . . , βR+m and the length of the time series s.

3.1.2 Gaussian Mixture Model

As stated earlier, the prediction of a cluster can be used to strengthen the predic-
tion of observations where the individual predictions are uncertain. The Gaussian
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3.1 Probabilistic Classification

mixture model has the advantage of producing clusters described as probability dis-
tributions which can be used in finding posterior probabilities, used for predictions.
The assumption behind a mixture model is that the data is a set of objects from a
mixture of different probability distributions: the clusters. Usually, these distribu-
tions are of the same type but with different parameters. Let C1, . . . , CK be the
probabilistic clusters and (β, s) be the representation of the time series to cluster,
then the mixture model can be expressed as

p ((β, s)) =
K∑
k=1

p(Ck)p((β, s) |Ck) (3.4)

where p (Ck), usually denoted πk, are the mixing coefficients and p ((β, s)|Ck) are
the mixture components. The generative process of a mixture model has two steps:
first, choosing the cluster based on the cluster probabilities and second, generating
an object according to the density function of the cluster (Bishop, 2006; Tan et al.,
2014). The most popular mixture model is a mixture of Gaussians where each cluster
is described in terms of a Gaussian density. The clusters have the form of ellipsoids,
centered around a mean vector and the shape, volume and orientation are decided
by the covariance matrix of the cluster (Han et al., 2012; Scrucca et al., 2016). The
K clusters follow the multinomial distribution where πk is the mixing coefficient of
cluster Ck.

C ∼Multinomial (π1, . . . , πK) (3.5)

The time series have been given an alternative representation with B-splines as
explained in subsection 3.1.1. If β is a vector containing the spline coefficients of a
time series and s is the length of that time series, cluster Ck is defined as

(β, s) |Ck ∼ N (µk,Σk ) (3.6)

where µk and Σk are the mean vector and the covariance matrix of the kth cluster.
The expectation maximization algorithm, described in subsection 3.1.2.1, is used to
find the maximum likelihood estimations of the model parameters.

3.1.2.1 EM Algorithm for Gaussian Mixture Models

The Expectation Maximization (EM) algorithm is a popular alternative for solving
maximum likelihood problems for models depending on latent variables, such as
mixture models where the nth data observation (β, s)n does not contain information
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from which cluster it comes. A new K-dimensional binary latent variable zn is
introduced where all elements of zn are 0 except for the kth element which has the
value 1 and thus linking the observation n to cluster k (Bishop, 2006; Hastie et al.,
2009).
The EM algorithm is an iterative process comprised of two steps: Expectation (E)
and Maximization (M). In the expectation step, the expected log-likelihood function
for the complete data set is found, based on the posterior probabilities of the latent
variables with the current parameter estimations. In the maximization step, the
parameters are re-estimated to maximize the expected log-likelihood from the E-
step. For each iteration of the EM algorithm, the log-likelihood is increased and
the algorithm is usually stopped when the change in log-likelihood or parameters is
below a threshold (Bishop, 2006).

Algorithm 1: EM algorithm for Gaussian mixture model
1. Initial guesses for µ0

k, Σ0
k and π0

k

2. E-step: for iteration j, evaluate the posterior probability that cluster k was
responsible for observation (β, s)n with the current parameter estimations

p
(
znk
∣∣∣(β, s)n , µjk,Σj

k, π
j
k

)
= γ (znk) = πjkp((β, s)n |µ

j
k,Σ

j
k)∑K

i=1 π
j
i p((β, s)n |µ

j
i ,Σ

j
i )

(3.7)

3. M-step: update the parameter estimations with the responsibilities from 3.7

µj+1
k = 1

Nk

N∑
n=1

γ (znk) (β, s)n (3.8)

Σj+1
k = 1

Nk

N∑
n=1

γ (znk) ((β, s)n − µ
j+1
k )((β, s)n − µ

j+1
k )T (3.9)

πj+1
k = Nk

N
(3.10)

where

Nk =
N∑
n=1

γ (znk) (3.11)

4. Iterate step 2 and 3 until convergence is reached
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3.1 Probabilistic Classification

In algorithm 1, the EM algorithm is presented for a Gaussian mixture model using
B-spline coefficients and length to represent the N time series, where (β, s)n is the
representation of the nth time series. The responsibilities in equation 3.7 are part
of the expected log-likelihood of a Gaussian mixture model.

Ez [ln p ((β, s) |π, µ,Σ)] =
N∑
n=1

K∑
k=1

γ(znk) {ln πk + ln p ((β, s)n |µk,Σk)} (3.12)

By keeping the responsibilities fixed and maximizing equation 3.12, the parameter
estimations in equations 3.8, 3.9 and 3.10 are found (Bishop, 2006).

3.1.3 Prediction

The last step of the probabilistic classifier makes it possible to predict the class
of a new time series, without the need of transformation or for it to be complete,
while still utilizing the probability distributions found in the clustering step. A
probabilistic predictive model predicts the class of an observation with the help of
the posterior probability for the classes (Bishop, 2006). A time series classification
application of a probabilistic predictive model assumes that the dependent variable
Y is modeled as a B-spline with the error terms following a suitable parametric
probability distribution, such as the Laplace distribution

Y =
P∑
i=1

βiBi,m (x, s) + ε, ε ∼ Laplace (0, a) (3.13)

where x is the time, βi is the ith B-spline coefficient, Bi,m is the ith basis function,
P is the number of basis functions and a is the scale parameter of the error term
distribution. The splines are assumed to belong to a Gaussian mixture model where
each cluster belongs to a class Lv. The clusters make up disjoint sets where each
set contains the clusters assigned to a specific class and a cluster can only belong to
one class.

To classify a time series of length T , the class Lv which maximizes p (Lv|x,y) is
chosen, where (x,y) are the paired observations of the time series. The first step in
finding the posterior probabilities of the classes is to compute the posterior proba-
bility of each cluster Ck, which is found with Bayes’ theorem

p (Ck|x,y) ∝ p (x,y|Ck) p (Ck) (3.14)
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The likelihood in equation 3.14 can be expressed in an alternative way, using the
distributions of equations 3.6 and 3.13:

p (x,y|Ck) =
T∏

t=1

∫
p (yt|xt, (β, s)) p ((β, s)|Ck) dβ1dβ2 . . . dβPds (3.15)

where (β, s) is a spline vector consisting of B-spline coefficients and length. For the
case where the error terms are Laplace distributed, the integrals of the likelihood in
equation 3.15 are not solvable analytically and must be approximated.
One way to approximate the integrals is by Monte Carlo integration which is an ap-
proximate inference method that uses numerical sampling (Bishop, 2006). Looking
at the integrals in 3.15, they can be seen as the expected likelihood of (β, s) for the
point (xt, yt), where p ((β, s)|Ck) is the probability density function. By looking at
the integrals as expectations, the full likelihood can be approximated by sampling
G times as follows:

For g = 1, ..., G
1. (β, s)(g) is sampled from N (µk,Σk)

2. `(g)
k,t = p

(
yt
∣∣∣xt, (β, s)(g)

)
is computed for the sampled parameters

The likelihood is then computed as the product of the approximated expectations.

p̂ (x,y|Ck) =
T∏
t=1

1
G

G∑
g=1

`
(g)
k,t (3.16)

The posterior probabilities for the clusters are normalized before finally computing
the posterior probability of the class Lv

p (Lv|x,y) =
∑
Ck∈Ll

p (Ck|x,y) (3.17)

3.2 K-Nearest Neighbors Classification

The idea behind the k-nearest neighbor (KNN) method is that observations of the
same class will be more similar to each other than observations of different classes.
Thus, the class of an observation can be determined by looking at the neighbor-
hood of that observation. For an unknown observation x0, the k closest training
observations form its neighborhood Nk(x0). The nearest neighbors are found by
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computing the distance between x0 and all observations in the training data set.
Majority voting is then used to decide the class of x0 as

ŷ0 = argmax
ν

∑
(xi,yi)∈Nk(x0)

I (ν = yi) (3.18)

where ν is a class label, yi is the class label of an observation in the neighborhood
and I(·) is an indicator function returning 1 if the argument is true and 0 otherwise
(Hastie et al. 2009, Tan et al. 2013). KNN is selected as a comparison to the more
complex probabilistic model because of its simplicity and because it is intuitive.

3.3 Evaluation

Each step of the analysis is evaluated to assure the best performance and the differ-
ent evaluation methods used throughout the analysis is presented in the following
subsections.

3.3.1 K-Fold Cross-Validation

To evaluate the performance of the B-splines and decide the optimal number of
knots, K-fold cross-validation is used. Cross-validation is a model selection method
evaluating the fit of a model while at the same time controlling for overfitting. It
allows each observation to be used for training the same number of times and as
validation once (Han et al., 2012).
The data is divided into K folds, roughly equal in size. The model is trained K
times, for k = 1, . . . , K, where for each time the kth fold is used as validation
and the other K − 1 folds are used as training (Hastie et al., 2009). Let κ (i) be a
function indicating the fold k that observation i belongs to. Then the cross-validated
prediction error is

CV
(
f̂
)

= 1
n

n∑
i=1

L
(
yi, f̂

−κ(i) (xi)
)

(3.19)

where f̂−k(x) is the model fitted without the kth fold, L
(
y, f̂ (x)

)
is the prediction

error and n is the number of data points. When tuning parameters, such as the
number of knots in a B-spline, are to be fitted, the cross-validated prediction error
is

CV
(
f̂ , R

)
= 1
n

n∑
i=1

L
(
yi, f̂

−κ(i) (xi, R)
)

(3.20)
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where f̂−k (x,R) is the model trained with the kth fold left out and tuning parameter
R. For a data set consisting of N time series, an overall cross-validated prediction
error is computed from the CV-scores of the individual time series

CV TOT
(
f̂ , R

)
= 1
N

N∑
j=1

CVj
(
f̂ , R

)
(3.21)

and the optimal tuning parameter R̂ is found by minimizing CV TOT
(
f̂ , R

)
.

3.3.2 Bayesian Information Criterion

To determine the number of clusters of the mixture model and the best fit of the
parameters, the Bayesian information criterion, BIC, is used. BIC can be used to
evaluate models where the estimation of parameters is achieved by maximizing the
log-likelihood and is a popular choice when to evaluate Gaussian mixture models.
This criterion is a measure of how well a model fits the data, but it also penalizes
the model for complexity. The general form is

BIC = −2loglik + log (N) ·D (3.22)

where loglik is the log-likelihood of the model, N is the sample size and D is the
number of estimated parameters. BIC favors simpler models and more complex
models tend to be penalized more heavily. The model selected is the one with the
lowest BIC value (Hastie et al., 2009; Scrucca et al., 2016).

3.3.3 Accuracy, Precision, and Recall

To evaluate the performance of the classifiers, three measures will be used: accuracy,
precision, and recall (Han et al., 2012). These three measures will be explained in
this section with the help of a confusion matrix from the binary classification case,
with classes positive and negative, seen in table 3.1.

Accuracy is chosen because it describes how good the model is at recognizing the cor-
rect classes overall. Accuracy is the proportion of accurately classified observations
and is calculated as follows

Accuracy = TP + TN

TP + TN + FP + FN
(3.23)

18



3.4 Technical Aspects

Table 3.1: Confusion matrix of the binary case to explain accuracy, precision, and recall

Predicted Class

Positive Negative

Actual Class
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Accuracy treats the classification of both classes as equally important. That is
why, in addition to accuracy, the two measures precision and recall are used. They
respectively measure the two types of mistakes made in binary classification, false
positives and false negatives, in relation to the correctly classified positive cases.
Precision is a measure of exactness, measuring the proportion of correctly classified
observation among the positive predicted

Precision = TP

TP + FP
(3.24)

Recall is the proportion of correctly classified positive cases. It describes how well
the classifier finds the positive observations by the following formula

Recall = TP

TP + FN
(3.25)

3.4 Technical Aspects

The R-package mclust is used to train and evaluate the Gaussian mixture model
(Scrucca et al., 2016). The function Mclust tries out different numbers of clusters as
well as different structures of the covariance matrices to try different models where
the shape, volume, and orientation can be either equal or vary between the clusters.
All the models are evaluated with BIC. As the package computes BIC differently,
the resulting BIC scored are multiplied with -1 to obtain results on the form of
equation 3.22.
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4 Results
This chapter presents the most important results of the analysis. The result from
choosing a definition of fast-selling options is presented in the first section with an
alternative definition to be found in section 4.3.2. The second, third and fourth sec-
tion presents the results from the different steps of the probabilistic model: B-splines,
Gaussian mixture model, and prediction. The probabilistic model is evaluated at
each step. Lastly, the results from a 1-nearest neighbor classifier are presented.

4.1 Definition of Fast-Selling Options

The data from the commissioner is unlabeled which means that in order to build
and evaluate classification models, a definition of fast-selling options is needed. A
fast-selling option should be selling larger volumes during the beginning of its sales
period and to capture the options with this trait, the cumulative relative sale is of
interest since it captures how much has been sold from the first sale until a given
day. Histograms of the cumulative relative sale of the options are examined where
each histogram presents the cumulative sale at different numbers of days. Figure
4.1 shows the distribution of the proportion of intake sold until the 50th day.

Figure 4.1: Distribution of the proportion of intake sold until the 50th day for seasonal options
2016-2018

The distribution in figure 4.1 is right skewed and unimodal with the majority of
the options having sold less than 25 percent by day 50. From 50 percent of intake
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sold and up, the distribution flattens and these are the options that have sold large
quantities, relative to their intake, during a short period of time and is thus meeting
the requirements of a fast-selling option. Figure 4.2 presents all time series, colored
according to whether they sold at least 50 percent of their intake by the 50th day
or not.

Figure 4.2: Cumulative sale over time for seasonal options 2016-2018, colored by class label

With the definition of a fast-selling option being an option having sold at least 50
percent of its intake by the 50th day, figure 4.2 shows that this definition capture
the time series in the top left corner, the ones selling large percentages of its intake
in the beginning, but there are some overlapping of time series of the two classes.
This partition into fast-selling options and ordinary options results in 9.7 percent of
the options being fast selling.

4.2 B-Splines

Cubic B-splines are fitted to the relative sale, as a function over time, for each option
in the training set in order to transform the time series to reduce dimensionality.
This section first presents the evaluation of the number of knots to be used in the
B-splines and then evaluate the fit of the B-splines by showing the time series of
three options with their fitted B-splines.

4.2.1 Evaluation of Number of Knots

Figure 4.3 presents the CV-scores for different numbers of knots where the absolute
error is chosen as the prediction error. The knots are placed with equal space,
depending on the number of knots and the length of each time series.
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Figure 4.3: Cross-validated errors for the number of knots in B-splines

The average mean absolute error decreases from zero knots to one knot but increases
after that with a growing number of knots, as seen in figure 4.3. The average MAE
is very low for every number of knots and is explained by the relative sale having the
domain [−1, 1] but values over 0.05 or under –0.01 being very rare. The lowest CV-
score is achieved with one knot and the fit of B-splines with one knot is evaluated
in the next subsection.

4.2.2 Evaluation of Fit

Figure 4.4 shows the relative sale over time for three options and the fitted values
of their respective B-splines. The B-splines do not follow the original time series
exactly, disregarding the daily fluctuations, but instead capture the overall sales
trend for each option. The options display different sale patterns with the top one
having a long and slow sale and the other two with shorter and faster sales. The
option on the bottom has a faster pattern in the beginning while the middle option
sells more during the middle of its time series. This can be seen more clearly in
figure 4.5 where the cumulative relative sale over time is presented.

Looking at figure 4.5, the B-splines seem to capture the sales trend with the lighter
line, showing the original time series, and the darker line, showing the fitted values,
never deviating far from each other with constant overlapping. For all three options,
the most obvious deviations from the original data are when a rapid temporary
growth in sales occurs but it is recovered quickly and the fitted lines exhibit patterns
very close to the actual sale trends. Because the fit of the B-splines with one knot
follows the sales trend, the following sections with clustering and classification will
use this number of knots for the B-splines.
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Figure 4.4: Relative sale over time for three options with fitted values from B-splines using one
knot

Figure 4.5: Cumulative relative sale over time for three options with fitted values from B-splines
using one knot
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4.3 Gaussian Mixture Model

As mentioned in section 4.3, the time series are clustered to produce more robust
predictions. Using B-splines with one knot to model the relative sale, the coefficients
and length of the time series form a vector, used to represent the relative sale of
each option from the training data set in a Gaussian mixture model. An evaluation
process of the clustering is performed ten times with different seeds. For every round,
eight to twenty clusters are tested and for each number of clusters, different designs
of the covariance matrices are evaluated. The parameter estimations are found with
the EM algorithm and from all models tested during a run, the one with the lowest
BIC is chosen as a representative and compared to the other runs. The lowest BIC
of each run and the corresponding model’s number of clusters are presented in table
4.1.

Table 4.1: BIC-score and number of clusters for the best model of each seed

Run BIC Number of Clusters

1 -71902 15
2 -71878 9
3 -71800 11
4 -71859 10
5 -71791 10
6 -71838 9
7 -71805 9
8 -71827 15
9 -71771 10
10 -71874 9

The top models, seen in table 4.1, have between 9 and 15 clusters and all BIC values
are rather similar with a difference of 131 between the lowest and the highest score.
The model with the lowest BIC was found with the first seed. This model has 15
clusters and will be further evaluated in the following subsection.

4.3.1 Evaluation of Clusters

For each cluster, a prototype is derived from its mean vector. These prototypes
describe the mean behavior of the cluster and can be found in figure 4.6. The
number after each line shows which cluster the prototype describes.
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Figure 4.6: Cluster prototypes describing mean cumulative sale over time in a cluster

The cluster prototypes in figure 4.6 show that three of the clusters (2, 11 and 15)
have a mean sale profile with a cumulative sale over 50 percent by the 50th day.
These clusters are given the class of fast-selling since their prototypes fulfill the
definition of a fast-selling option found in section 4.1. The clusters with the slowest
prototypes are number 7, 9 and 12 selling less than 20 percent during the first 75
days. Noticeable is that the clusters with the slowest cluster prototypes seem to
have a more constant sale over time while the clusters with the faster prototypes
show a declining pattern towards the end.
Figures 4.7 and 4.8 presents the cumulative sales of the options in the training data
assigned to each cluster and colored by class, as defined in section 4.1; fast-selling
options are colored lighter and ordinary are colored darker. The clusters that were
considered fast selling in figure 4.6 (2, 11 and 15) contain more fast-selling options
than the other clusters with a majority of lighter lines. Clusters 1, 3, 4, 6, 7, 9,
12 and 14 do not contain a single fast-selling option which is supported by their
prototypes, in figure 4.6, showing the slowest patterns. There are some clusters,
not classed as fast selling, containing some fast-selling options. These clusters are
the ones with the prototypes closest to the fast-selling clusters’ prototypes.
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Figure 4.7: Cumulative sales over time for the options in clusters 1-8, colored by class

27



Chapter 4 Results

Figure 4.8: Cumulative sales over time for the options in clusters 9-15, colored by class
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4.3.2 Alternative Definition of Fast-Selling Options

Besides being a part of the probabilistic classification model to improve predictions,
the clustering in the previous subsection is utilized to find an alternative definition
of a fast selling-option. This alternative defines an option as fast selling if it belongs
to a fast-selling cluster, in this case, clusters 2, 11 and 15. All options belonging
to any other cluster are considered as not fast selling by this definition. Figure 4.9
shows the cumulative sales over time for the options, colored by this alternative
definition.

Figure 4.9: Cumulative sale over time for seasonal options 2016-2018, colored by cluster-based
definition

The cluster-based definition of a fast-selling option does capture some of the options
that are selling a lot in the beginning, as seen in figure 4.9. It does, however, miss
some of the options that should clearly be considered as fast selling. Compared to
figure 4.2, colored by the definition in section 4.1, the cluster-based definition show
more overlapping of the time series of the two classes.

Table 4.2: Comparison of cluster-based definition and histogram-based definition

Cluster-based

Fast Ordinary

Histogram-based
Fast 168 64
Ordinary 62 1908

Table 4.2 compares the two definitions. Most of the options are labeled the same
way by both definitions and 126 options are labeled differently. Both definitions
have approximately the same proportion of fast-selling options. The definition in
section 4.1 is used to evaluate the predictions in the following two sections because it
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does not miss any obvious fast-selling patterns and there is less overlapping between
the time series of the different classes. Even though the clustering is not used as a
definition to label the data, it is still used as a part of the probabilistic classifier in
order to secure more reliable predictions.

4.4 Probabilistic Classification

This section evaluates the performance of the probabilistic classifier using the opti-
mal number of knots for the B-splines from section 4.2 and the Gaussian mixture
model with the lowest BIC from section 4.3. In the first subsection, the assump-
tion of Laplace distributed error terms is explored and in the second subsection, the
predictive performance is investigated.

4.4.1 Residual Analysis

Figure 4.10 shows four plots used to evaluate how well the residuals of the B-splines
fit a Laplace distribution. The distribution of the residuals is compared to a Laplace
distribution with location parameter 0 and scale parameter estimated as the mean
absolute deviation from the median.

Figure 4.10: Evaluation of the residual distribution with respect to the Laplace distribution
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The histogram in figure 4.10 suggests that the Laplace distribution is a good fit since
it follows the theoretical PDF rather well, and the same conclusion can be drawn
from the empirical CDF which follows the theoretical CDF very well. The quantile-
quantile plot, as well as the probability-probability plot, disproves this conclusion
by showing too heavy tails, especially the right tail.

4.4.2 Evaluation of Performance

Table 4.3 presents the performance of the probabilistic model on the test data, using
different numbers of days of relative sales to make the predictions.

Table 4.3: Results from the probabilistic classification

Number of Days Accuracy (%) Precision (%) Recall (%)

7 93.6 48.0 37.5
14 94.0 51.2 65.6
21 96.3 68.6 75.0
28 97.5 78.8 81.3
35 98.8 88.2 93.8

Table 4.3 shows that all three measures increase with an increased number of days
used for the prediction. The highest values for the three evaluation measures are
found using the first 35 days of relative sales with accuracy of 98.8 percent, precision
of 88.2 percent and recall of 93.8 percent.
Figure 4.11 presents the time series of the test data colored by the predictions made
with the probabilistic model using different lengths of the test data. As already
seen in table 4.3, the model predicts more accurately and finds more of the fast-
selling options when longer time series are used. The lighter lines, showing options
predicted as fast selling, are more separated from the darker lines of the ordinary
options for 35 days of data than for a smaller time frame, but the probabilistic model
starts to capture the fast-selling options already using only 14 days of relative sales.
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Figure 4.11: Probabilistic classification using different numbers of days for the prediction
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4.5 1-Nearest Neighbor Classification

A 1-nearest neighbor classifier using the Euclidean distance is also used to predict
the classes of the test data. In table 4.4, the three measures of classifications are
presented for five cases, each using a different number of days of the variable relative
sales to make the predictions.

Table 4.4: Results from 1-nearest neighbor classification

Number of Days Accuracy (%) Precision (%) Recall (%)

7 84.0 3.6 6.3
14 83.6 1.8 3.1
21 83.4 1.8 3.1
28 88.1 10.5 12.5
35 83.6 9.2 18.8

The results in table 4.4 show that the model performs the best, according to ac-
curacy and precision, when using 28 days of sales data to make the predictions.
Looking at the recall, the best performance is achieved by using 35 days of data.
The 1-nearest neighbors classifier performs the worst using 14 and 21 days of data
for the predictions with very low precision and recall.
Figure 4.12 presents how the test data is classified by the 1-nearest neighbor model,
using different lengths of data to make the predictions. The model does not capture
the fast-selling options in the test data. For any number of days, the lighter lines
describing options predicted as fast selling can’t be separated at all from the darker
lines showing the other options.
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Figure 4.12: 1-nearest neighbor classification using different numbers of days for the prediction
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5 Discussion

This chapter discusses the data, methods, and results of the analysis followed by
thoughts for future studies and a reflection over the ethical aspects of the study.

5.1 Data

The quality of the data is considered to be good. Sales are automatically registered
from the stores which improves the data quality, but there are still some mistakes
made in the reporting of sales where items are registered as another option. Some of
these mistakes are easily found and removed such as sales marked as unknown item
and reported sales of an option long before phase start. More troubling are the sales
where an option has been registered as another option, with both options being for
sale at the same. Though these mistakes are regarded as unusual and dismissible.

The options for sale less than 50 days before clearance are considered too short to
be useful in the analysis with not enough data to determine whether they are fast
selling or not and none of the options with such short time series showed any signs
of fast-selling trends. The decision to dismiss options with time series longer than
350 days, after all clearance has been removed, is motivated by the fact that these
few options display highly unusual patterns and can be seen as outliers that would
negatively affect the analysis. It is also improbable that a seasonal option is for sale
almost a year without clearance.

The data is aggregated to the option level which gives no insight to sales at SKU
level. This hides the fact that the same option very well could be considered as
fast selling for some sizes and ordinary for other sizes. In the thesis, the models are
aimed to find options that in general sell large quantities in all sizes, as requested
by the commissioner, which makes the aggregated data appropriate. Relative sales
are used instead of the quantity sold each day. This decision is made since the
intake quantity to warehouse varies from option to option. By using relative sales,
the percentage sold is explored which makes it possible for options with any intake
quantity to be a fast seller.

In the data set collected from the commissioner, the variable Quantity describes
the difference between the number of units of an item sold and the number of
units returned for a sales type during a specific date. The objective of the thesis
is to be able to predict fast-selling options in order to prevent stockouts at the
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commissioner’s larger sales units since customers react negatively to items being
out of stock according to Kim and Lennon (2011). When a unit of an option is
returned it is offered for sale again, except when it has been returned because of
damage, which means that while a purchase of a unit decreases the stock level of
an option, a return increases the stock level. By including returns as negative sales,
the variable Quantity can be said to describe the change in stock level which is of
interest when planning the distribution of the restocking quantity. Leaving out the
returns might be misleading when looking at how many units that have actually left
the stores. If an option is selling large quantities at the start but there are also many
returns, the option should not be seen as fast selling because the stock levels are not
changed to a degree where special care needs to be taken regarding the distribution
of the restocking quantity. Additionally, returns are usually small with at most only
a few units of an option returned during a day and does not greatly impact the
overall sales trend.
The created variable Day is describing time in the form of the number of days since
the first registered sale and not for how many days an option has been available
for sale. This could affect the definition of a fast-selling option. An option that
does not sell any units during its first weeks for sale but then starts selling very
large quantities will be considered to be a fast seller because the time starts at first
purchase even though it did not sell anything in the beginning. In the data, only
sales are registered and thus, days without any sales before first purchase are not
visible. But, this scenario is deemed rare since an option that has been in store for
several weeks without any sales usually would not start selling at a very high pace.
Thus, Day is not believed to lead to a misrepresentative definition of fast-selling
options.
The partition into training and test sets is not made by random assignment but
instead, a date is used. This partition is chosen because it gives the highest chance
of using the options with complete time series as training data. The options in the
test data have still had a chance of being for sale at least 90 days but might not
have sold out yet, i.e. their time series are not guaranteed to be finished but are
still long enough to establish whether they are fast selling or not.

5.2 Methods

The method for finding a definition of fast-selling options by looking at the per-
centage sold after a set amount of days is simple but rather effective, which is its
strength. By finding this type of threshold, it is guaranteed that all fast-selling op-
tions have sold at least a decent proportion of its intake during a limited time period
from their first sale. A downside is that the cumulative relative sale is considered at
only one point in time. This assumes that the options reaching the threshold will
behave similarly to each other before and after the chosen day. It is also a chal-
lenge to set the day and proportion of intake sold for this definition. An alternative
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definition of fast-selling options is found with the clustering. This definition is not
as simple and presumes that the clusters are coherent and contain exclusively fast
sellers or not. The method eliminates the problems with having to choose a specific
day and percentage of sold units, but with more diverse clusters, this method pro-
vides a less than satisfactory definition as seen by the results of subsection 4.3.2.
The cluster-based definition might also lead to overfitting since the class variable
for both training and test data would be constructed by the model.
In Abraham et al. (2003), B-spline coefficients and k-means clustering were presented
as a way to group similar time series of the same length together. This thesis expands
on that framework to include time series of different lengths by representing a time
series as B-splines coefficients for a fixed number of knots and the length of the time
series. This proves to be a sufficient representation to be used in a Gaussian mixture
model for clustering, of which k-means is a special case. Using a GMM, the clusters
are allowed to vary in size and shape, but they are still limited to ellipsoidal shapes.
Using the B-spline representation and the Gaussian mixture model also makes it
possible to build a probabilistic classifier where posterior probabilities determine the
class of a new option. The error terms of the B-splines are assumed to be Laplace
distributed for the probabilistic classifier in this thesis. The model itself does not rely
on this assumption; any parametric probability distribution could be used as long
as it is a fair assumption according to the problem at hand. Using a parametric
probability distribution simplifies the computations of posterior probabilities and
the likelihood can be approximated with Monte Carlo integration.
Sales are seasonal, and there is also a weekly sales pattern with higher sales during
e.g. Saturdays. Even though these patterns occur, the models chosen in this thesis
do not take that into consideration. This decision is made because the aim of the
analysis is not to make daily predictions and explain these patterns. The overall
sale trend of the options is what is of importance for finding fast-selling patterns,
which motivates the choice of using spline coefficients, and the length of the time
series, to represent an option. This choice also reduces the dimensionality of the data
considerably, where time series of between 50 to 350 points are each represented by
a vector of only six elements when using one knot.
When looking at all the time series plotted together as in figure 4.2, there is no
obvious occurring partition of options into separate groups based on their sale pat-
tern over time. This might suggest that the data should not be clustered, but the
use of clustering is motivated by the clustering itself not being the aim of the thesis
but instead used to strengthen predictions as seen in the studies by Thomassey and
Fiordaliso (2006), Thomassey and Happiette (2007) and Kumar and Patel (2010).
The parameter estimations of the evaluated Gaussian mixture models are found with
the EM algorithm. A problem with this is that the EM algorithm does not always
find the global maximum, it only promises to find a local maximum (Bishop, 2006).
To increase the chances of finding the global maximum, the evaluation process of
the clustering was run ten times, putting forward ten models to be compared with
each other.
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K-nearest neighbors is intuitive since fast-selling options should have a similar rel-
ative sale to each other, but it is a lazy learner and is time-consuming with a large
training set. A problem with using Euclidean distance and KNN on this type of
data is that there is daily fluctuation in sales and a weekly and monthly pattern
that the model does not consider. This might lead to weekday of first sale and
day-of-the-month for the first sale being more important for similarity rather than
overall high or low sales. More sophisticated distance measures might solve this
problem but would also increase the risk of even longer computation times. KNN is
easy to update since more observations can be added to the training set but with a
growing training set, the time to predict one option is increased.
Both methods of classification, probabilistic and KNN, have the advantage of being
flexible with the number of days of relative sale for options to be predicted. The
predictions improve with more data, but the commissioner can themselves decide
how much data they want to use without the need to change the predictive models.
An advantage of the probabilistic model is that it is not as dependent on prelabeled
data as KNN. The transformation and clustering are completely executed without
labels for the options with the class labels being mainly used for evaluating the
clustering and the predictive performance. In deciding the clusters that are to be
considered fast selling, the prototypes can be used without the knowledge if their
clusters contain mainly fast-selling options. This makes the probabilistic method
able to classify time series without class labels by only assigning classes to the
clusters.
Three measures are used together to evaluate the classification where accuracy gives
an overall measure and precision and recall each focus on the two types of mistakes.
Precision and recall can be combined to a single measure, called the F1-score, by
computing the harmonic mean of the two (Tan et al., 2014). For this thesis, the
F1-score was deemed inappropriate because it treats the two measures as equally
important. In this case, the recall is more important than the precision since to
wrongly classifying a fast-selling option is considered worse by the commissioner
than misclassifying an ordinary option. Thus, the two measures are best kept as
they are and not combined. Even though recall is the most important measure
in finding fast selling options, precision is important as well. There needs to be
a balance between the two. In a scenario with a model where the recall is 1 but
the precision is below 50 percent, all fast-selling options have been found but they
are hidden since more ordinary options have been predicted as fast selling. Such a
model would not be helpful in distinguishing the two classes from one another.

5.3 Results

When finding the definition of fast-selling options, as presented in section 4.1, the
cumulative relative sale at different days is explored and for each day different thresh-
olds are tested. The best definition is found by using the cumulative relative sales day
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50 and the threshold 50 percent. This definition is reached by examining histograms
and time series plots of the different definitions, much like the figures presented in
section 4.1. The result is not perfect with the two classes overlapping at times,
but it is still considered good because it captures all of the options that are selling
a lot in the beginning. It is considered better than the cluster-based definition in
subsection 4.3.2, which does not capture all options with fast-selling patterns and
the overlapping of the two classes is more severe.
Both regular regression splines, with truncated power basis functions, and B-splines
are tested to see which alternative gives better results with the clustering. For
the two types of splines, both fixed number of knots and fixed knot positions are
explored. The most cohesive clusters are found with B-splines, using one knot placed
in the middle of each time series. The other spline alternatives produce even more
mixed clusters than those seen in figures 4.7 and 4.8. The number of clusters is
limited to between eight and twenty in the search for the best model in an effort
to speed up the computation time. This choice is based on preliminary tests of the
Mclust function where less than eight clusters were never chosen as the best model
and more than twenty clusters gave a high risk of models with empty clusters i.e.
clusters containing zero options from the training data.
In subsection 4.3.1, a relationship between the cluster prototypes and the percentage
of fast-selling options in a cluster is discovered. This suggests that even though
the clusters are diverse, with time series somewhat different to each other and the
prototype, the prototypes are a useful description of a cluster in terms of being
fast selling or not. Among the prototypes, depicted in figure 4.6, the fast-selling
clusters show a declining growth in sales that is not visible for the clusters with
the prototypes showing the slowest patterns. This difference is likely explained by
the fact that when options reach a certain level of cumulative relative sale, it starts
running out of stock in some sizes and at some locations, reducing the availability
of the option for the customers and resulting in lower sales. For options that are not
selling well, running out of stock is not too much of a problem and the availability
is not affected, which explains the more constant growth of these prototypes. By
being able to predict fast-selling options, the decline in sales, because of options not
being available, might be prevented by distributing the restocking quantity wisely
with this information in mind.
In the analysis of the residuals in subsection 4.4.1, the assumption of Laplace dis-
tributed error terms is questioned. The distribution of the residuals shows a very
heavy right tail which is the main point against the assumption of the model. The
heaviness of the right tail is caused by occasional spikes in sale for the options which
are not matched by dips in sales of the same degree. These spikes can be caused
by campaigns, special occasions or factors out of the commissioner’s hand. More
complex distributions might be able to catch this behavior but for this thesis, the
Laplace distribution is found a good enough fit for the residuals since it is the dis-
tribution, among the most common parametric probability distributions, closest to
the residual distribution.
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The probabilistic classifier outperforms the 1-nearest neighbor classifier for all three
measures. Using only seven days for the prediction with the probabilistic model still
gives higher values for accuracy, precision, and recall, compared to the outcome of
the 1-nearest neighbor model for any number of days, which is seen in tables 4.3 and
4.4. By looking at the results in table 4.3 and figure 4.11, the probabilistic classifier
based on B-splines and a Gaussian mixture model presents a reasonable and quite
effective way to predict fast-selling options. The 1-nearest neighbor classifier has
high accuracy even though both precision and recall are low, at best reaching 10.5
percent and 18.8 percent respectively. This is caused by the fact that the class of
fast-selling options is considerably smaller than the other class, thus the performance
of the model is best explained by precision and recall. The choice of using k = 1
in the nearest neighbors model is motivated by larger k resulting in lower values for
recall and precision. For k higher than one, the KNN does not manage to predict
any of the fast-selling options in the test data correctly when using less than 28 days
of relative sale.

5.4 Future Studies

For future studies, it might be interesting to look at the sales curves for each store.
The sales are dependent on the item being in stock in the sales units where there
is a demand for the product. Thus, the shape of the sales curve is affected by the
stock level of the different sales units. An option with a curve showing a slow growth
might not necessarily mean that the option could not be considered as fast selling
under the right circumstances. The reason could be a situation where the sales units
where the option is in demand have received too little stock while sales units where
the option is not in demand have received too much stock. The sales curve might
have been different if the demand from each sales unit better matched the stock
level. Future studies could explore this complex connection and perhaps find fast-
selling options on the store level. Another way to further improve predictions in the
future could be to use descriptive variables as done in Thomassey (2014) and Sun
et al. (2008) since e.g. different garment classes could show different sales patterns.

5.5 Ethical Aspects

The study does not directly raise any ethical questions. No personal data is used,
only sales data and intake quantities aggregated in a way so that the purchases of
a customer cannot be identified. The only concern would be that the results might
be used to favor restocking of the bigger sales units, leaving customers of smaller
stores with lower availability. This concern can be discarded since the online store is
among the bigger sales units, which makes the products available for all consumers,
regardless of geographical location.
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The objective of the thesis is to find a definition of a fast-selling option and investi-
gate how well these options can be predicted using sales data during a limited time
frame.
How can a fast-selling option be defined using information from sales
data?

Using sales data from options with sale start from 2016 through 2018, a criterion for
fast-selling options is reached by looking at the cumulative relative sale of the 50th
day after the first sale. Options that have sold 50 percent or more of their intake is
considered as fast selling. This definition captures the options that sell the highest
proportions of their intake during the first sales period. An alternative definition
based on clustering the options with a Gaussian mixture model is also investigated
but proves to be worse at finding all of the options with fast-selling patterns.
How can options be predicted as fast selling or not, based on a few weeks
of data?

Two different classification methods are used to predict fast-selling options. The
first one is a probabilistic classification method using B-spline coefficients and the
length of a time series to represent it, and a Gaussian mixture model to cluster the
options. The second method is k-nearest neighbors. The first method, using one
knot for the B-splines and 15 clusters, outperformed the second, using Euclidean
distance and one neighbor, in the three measures accuracy, precision, and recall but
most remarkably in the latter two. Hence the probabilistic model is a more accurate
way to predict whether an option will become fast selling or not based on just the
first weeks of sales data.
How does the quality of the predictions change when more data is avail-
able?

The quality of the predictions for both models is improved when longer sequences
of the test data are used for the predictions. The improvement is the greatest for
the probabilistic model, which predicts more correctly using only seven days of data
than the 1-nearest neighbor classifier does for up to five weeks of data. Recall is
the measure improved the most by more data and it is also the measure used to
evaluate how well the model finds the fast-selling options. It shows that with more
data used, the fast-selling options are found to a higher degree.
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