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Abstract

Multi-Object Tracking (MOT) is the task in which many objects of interest in a scene are
identified and tracked through video frames. A main problem in this task is to estimate the
number of elements of interest, their position and identity in real-time. A high perform-
ing multi-object tracking method in the context of advanced driver-assistance systems is
an important step in reaching autonomous vehicle technology. Bayesian filters are a prime
candidate to solve this problem as they can express uncertainties on the number of states,
the states themselves and the association between detected objects and tracks. This the-
sis provides empirical evidence of the performance of the Poisson Multi-Bernoulli Mixture
(PMBM) filter for multi-object tracking in automotive systems. Objects such as cars and
pedestrians are tracked through 150 video scenarios of 20 seconds of varying road scenar-
ios on the NuScenes dataset. The aim of this thesis is to evaluate the performance of the
PMBM filter compared to other MOT methods and whether the PMBM filter is competitive
against state-of-the-art tracking algorithms. The performance of the PMBM tracking filter
is compared against A Baseline for 3D Multi-Object Tracking (AB3DMOT) and 3 state-of-
the-art trackers on the NuScenes open dataset. 3 different LiDAR based object detection
methods are used as measurement inputs. These are publicly available to be used as an
input for the tracking task. The PMBM tracking filter is shown to outperform the baseline
on all performance measures and is competitive against state-of-the-art trackers. For the
PMBM tracking filter the best Average Multi-Object Tracking Accuracy (AMOTA) is 65.3
and the best Average Multi-Object Tracking Precision (AMOTP) is 68.1 on the validation
set of NuScenes using CenterPoint detector.
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1 Introduction

Autonomous vehicles have become a subject of interest in the last decade for the general
public in terms of improving road safety and new developments in technology . In order to
obtain viable autonomous vehicle technology, high-performing detection of the surrounding
environment objects, tracking their dynamic motion and estimating their future position is
needed. Detection algorithms have come a long way in the past years thanks to high perfor-
mance computational resources. Deep learning in real-time and the use of monocular, stereo
cameras and LiDAR sensors have also contributed to the increase in detector performance.
In the pursuit of full automation of vehicles, one issue to tackle is the tracking of relevant
objects in the traffic around the vehicle. These elements are numerous (other vehicles, pedes-
trians, traffic signs), diverse and changing in number as the autonomous vehicle, also called
point-of-view vehicle or ego-vehicle, experiences traffic. Tracking solutions must be able to
overcome uncertainties about the number of targets present, their states (trajectories, posi-
tion) and the uncertainty of associating the correct detected measurement to the appropriate
representing object in our tracking scheme [27].

The online multi-object tracking problem is presented broadly in figure 1.1. At each time
step, visual data is collected either as RADAR, LiDAR or video information and fed to a de-
tector. This detection model is usually based on deep learning (see section 1.2.1). The detector
outputs an application specific state representation of the tracked objects of interest. These
can be bounding boxes, information about the position, orientation or appearance (similarity
features) of the objects [30]. The represented state of the object can then be evolved or used
immediately for data association depending on the tracking approach. During the data as-
sociation step, each detected state is associated with a previously tracked state. Approaches
vary from nearest neighbor matching, cost reduction (Hungarian algorithm or Murty’s al-
gorithm) or by similarity score. Once this operation is performed, the state is updated and
the information carried by the state is updated to the associated track. Each updated track
information is the output of the online multi-object tracking algorithm for that iteration of
information collected since the first step.

1.1 Motivation

Multiple Object Tracking (MOT) deals with determining the number and state of objects of
interest on the scene after their detection and keeping track of them over consecutive video

1



1.2. Prior work

Figure 1.1: Online multi-object tracking problem flow diagram. The listed elements are com-
mon approaches used in the field of multi-object tracking and are not an exhaustive list.

frames. Early implementations of trackers to automotive systems have used propagation of
detected objects as measurements applied to bayesian filtering methods. More recent ap-
proaches using deep learning have combined deep learning for computer vision algorithms
for detection feeding into a deep learning tracking network. The latter approach is called
end-to-end tracking as it combines both detection and tracking using deep learning. From
the perspective of bayesian filters, one of the recently developed approaches in this field for
automotive solutions is the Poisson Multi-Bernoulli Mixture (PMBM) filter. This tracking al-
gorithm is based on Bayesian filtering wherein the next state of the object is predicted and
then updated as detections are performed successively at each video frame. This filtering
method is promising in that it presents good performance at reduced computational costs
with no training required in a probabilistic framework. In its framework, the PMBM distri-
butions models both the objects that are detected (false detections and objects of interest de-
tected) as well as the set of undetected objects (occluded, missdetected). The PMBM tracking
filter is the first to propose a probabilistic model for these undetected objects and to perform
tracking of occluded objects. The PMBM filter is a method that belongs to the category of
detection based tracking as it uses processed detector outputs to infer the state of targets; it is
online as it updates at each time step and deterministic as the association between measure-
ment and probability distribution yields the same result at each step given that we use the
same parameters. [27]

There is a gap in knowledge with regards to the performance of the PMBM filter in real
world situations as opposed to simulated data. There is also missing comparisons between
the PMBM performance against other tracking methods. Arriver is a Swedish company that
specializes in detection, tracking and driving policies for driver assistance systems. Arriver
is currently interested in developing knowledge about different tracking algorithms and is
the commissioner of this thesis. The thesis aims to investigate the performance of the PMBM
tracking filter algorithm in a real life environment.

1.2 Prior work

Multi-object tracking (MOT) is the task that combines detection of targets of interest in a video
frame and keep track of identified targets and their trajectories in subsequent frames. MOT
is used in different fields like vehicle traffic monitoring for autonomous vehicle technology,
crowd monitoring to understand group behavior and interactions or cell movement detection
in biology for cell migration and reaction to medication. MOT is composed of two main
components: detection of targets on a frame and updating the target tracks [28].

2
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1.2.1 Detection

Although object detection is not the main focus of this thesis, it is an important component
of any MOT solution. The stated goal of detection is to identify and discriminate the bounds
of objects of interest in a video frame. These targets can be singular objects (vehicles, indi-
vidual cells) or a cluster of objects (a group of pedestrians walking together, LiDAR point
cloud representing an object). State of the art detection approaches rely on neural network
architectures and in particular deep convolutional networks for computer vision. They were
first applied successfully to real-time applications with high accuracy using so-called "two
stage detectors". One of the most popular is called Faster R-CNN [37]. Two stage detectors
propose one model to extract regions of objects that are present on a 2D image and another
model that classifies and refines the localization of the object on the video frame. These de-
tectors usually come at a greater computational cost than one stage detectors, although some
recent advances have shown an improvement in detection using shared features to enable
the gradient training to learn more complex features efficiently. More recently, accuracy has
improved for one-stage detectors as well as speed in [35] and [36] that cite YOLO9000 and
YOLOv3 as one stage detector models. Both of these approaches relied on resolving 2D im-
age data from cameras by processing them only once. Bounding boxes are first assigned as
a prior in gradually less fine grid and then refined and classified in an optimization step in
a single pass through the network. The difference and speed up compared to multi-stage
detection network come from the omission of proposal boxes to be used as a starting point
for the regression and classification part of the network.

More recently, some approaches have been proposed to produce bounding boxes for 3D
objects using LiDAR and stereo camera data input. They allow for the identification of bound-
ing boxes on 2D or 3D image data after training on pre-processed data [9]. The encoded grid
regions are used as inputs for convolutional neural networks (CNN) used for computer vi-
sion. The most popular approaches can make use of projections of point clouds onto bird’s
eye view coordinates [21] in a model called Aggregate View Object Detection (AVOD) model.
Depth is encoded in this way as well. The 3D encoding can then be reduced to 2D imaging
with a certain amount of feature channels (height, intensity and density)[6][46]. The encoding
of 3D point cloud allow the creation of output features about the position of centers, angle of
objects with respect to the detector. We thus have a transformation to bird’s eye-view output
feature set.

One of the most promising approaches encodes the features into point cloud pillars (in-
tensity or density readings) that are then processed by a convolutional neural network and
then the data is outputted by a single-shot detection head for the network [22]. This method
is called PointPillars. This detection method is used as the baseline to generate the features
for the tracking task evaluation on the NuScenes dataset [5]. Another even more successful
approach is based on using a 3D feature extractor to reduce the problem to a small number of
features for point cloud detection using LiDAR. The features are extracted through a sparse
3D convolution. These features are then used to perform the final predictions in a multi-head
network to perform detection. This last method has shown to be the best performing to gen-
erate detection dataset to be used for other tasks on NuScenes. This method represents the
state-of-the-art in terms of detection to date. [48].

1.2.2 Tracking

Tracking in the sense of MOT deals with trying to answer 3 questions: How many objects
of interest are there in view? What is the state of these objects (speed, location, acceleration,
angle, type, ...)? To what tracked object does a detector reading belong to? Most of the target
tracking approaches have been historically based on probabilistic models applied to filtering.
Using a statistical model to explain the probabilistic distribution of states given the measure-
ments collected, one should be able to describe the next state of the target. More recently

3
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another class of popular trackers have come to light in the use of deep learning for tracking
[24].

Deep learning approaches use tracking by detection. They combine a neural network for
detection and another deep learning network for tracking. The architectures of the tracking
networks rely on the use of Recurrent Neural Networks (RNN) and Long-Short Term Mem-
ory (LSTM) networks in particular for tracking and data associations [30]. RNNs are able to
learn different motion models for the objects detected on a scene and are able to learn one-
to-one assignments between frames. When first introduced, this approach was lacking in
incorporating robust association strategies such as leveraging appearance (or similarity) as
an additional feature [30]. Although this approach was shown to be fast (300 Hz) in its imple-
mentation, RNNs require large datasets of various annotated scenarios in order to properly
generalize networks after training. In deep learning for tracking two general approaches are
used: affinity measures and prediction based approaches. Affinity measures between objects
are now used to match appearance, motion or interactions [49] [39]. Here, identities are being
kept track of by assigning object identities encoded through either appearance [40] or their
motion [8]. Matching patterns between images, motion of objects and other spatio-temporal
features can also be used to associate different objects found on different video frames [23].Fi-
nally this approach also allows for end-to-end tracking where the network predicts a certain
number of steps ahead based on detections made a certain number of previous steps through
inference [29].

An issue of approaching tracking from the perspective of neural networks is that these
models often fail in term of explainability and in terms of estimating the uncertainties linked
to tracking. They provide point estimates to the uncertainties. However, neural networks
(NNs) have recently performed very well on a new dataset (NuScenes) and its bi-annual
competitions. The best 10 entries rely on NNs according to the tracked metrics [32]. Neural
Network training also require an abundance of annotated data in order for training to gen-
eralize. The great number of scenarios and updates to the model as new data is generated
also require retraining of the model and additional computational resources. The need for all
these resources pose the question of the feasibility of integrating this approach in integrated
technologies on-board vehicles.

Bayesian filtering is another popular approach that keeps in mind the main uncertainties
in tracking tasks. These are namely uncertainties regarding the number of states, the un-
certainty around the states of the objects themselves and the uncertainty linked to the data
association (identity uncertainty) [41]. Bayesian filters are composed of two steps: prediction
and update. At the first step of the filtering algorithm, the probability density of the state of
an object is estimated. Then, using a transition density (or motion model), the state density
of the object at the next time step is estimated. We observe the state and update the predicted
density using the new measurement. This updated density then becomes the prior estimate
of the state for the next prediction step. The details of bayesian filters are explained in the
theory and background section of this work.

The most popular approaches to MOT using bayesian filtering for tracking in vehicle ap-
plications fall under the following categories: Joint Probabilistic Data Assosciation (JPDA)
filters, Multi-Hypothesis Tracking (MHT) and Random Finite Set (RFS) tracking[18].

JPDA relies on the association of all track hypothesis of association between measurement
and state probability densities and marginal probability distributions calculated under one
joint distribution. In this method, all hypothesis for object tracks are considered together
under the same joint distribution. This allows for fast computation of a joint probability score
to perform tracking. This approach is most popular and efficient in applications where the
number of targets is known [38]. In the context of automotive application this approach fails
in that the number of objects present in any scenario can be changing. Furthermore, the errors
in accuracy are considered as joint which may be sensitive to outliers.

MHT is an approach that relies on reducing the data association problem such that only
a limited number of association hypothesis between detected objects and state densities are
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considered in the posterior estimation. The true posterior density is approximated by con-
sidering only the largest contributors [20]. This approach is heavy computationally as we
keep track of all track hypothesis for a few frames before low probability hypothesis are
pruned. This can become computationally demanding with more objects on frame. This
approach could become intractable in densely populated areas with several different kinds
and amount of targets present unless reduction steps are taken to reduce the space of data
association combination that are possible.

RFS is a novel approach that relies on RFS theory. This approach has gained traction in
the past 10 years and has proven to offer explainable algorithms that perform well in the
tasks of tracking [18]. RFS tracking makes use of randomly sized sets of objects whose states
are also random variables. The most popular approaches use conjugate prior distributions to
find closed form solutions to the filtering prediction and update steps. Techniques such as
Multi-Bernoulli Mixture (MBM) filter and δ-Generalized Labelled Multi-Bernoulli (δ-GLMB)
are popular under the RFS umbrella and offer a way of modeling detected and clutter (false
detections) objects under Multi-Bernoulli distributions. These techniques are said to not mea-
surement driven in that they give rise to distributions that can be described as "phantom"
distributions before a newly detected object enter from measurements. The newly born po-
tential targets on scene are generated randomly. In other words, there exists a probability for
an object to exist before it has been measured and it does not rise from a potential location
from which an object could come into view (detection edges, occluded objects). Both these
methods allow us to compute closed form solutions for the filtering problem with slightly
different approaches to data association [12].

1.2.3 Poisson Multi-Bernoulli Mixture filter

One recent approach to conjugate prior based filtering algorithms in the field of Random
Finite Sets (RFS) is the Poisson Muli-Bernoulli Mixture (PMBM) filter. This filter models de-
tected and undetected objects after measurements using conjugate priors for all distributions
involved. This approach has been extensively studied and derived in a seminal paper [12]
after its introduction in 2012 [44]. The PMBM filter has now been applied to extended objects
(objects that are composed of aggregated detection points such as a point cloud from LiDAR)
[45], different approaches to the data association (sets of trajectories)[11] [33] [13] as well as
different birth models [4] all on simulated data. Furthermore, the output of this algorithm
has been proven to be good in terms of performance and computational time compared to
other RFS techniques on simulated data [25] [16].

This algorithm has been applied to a real world scenario for autonomous vehicle tracking
in a master’s thesis in 2019 [3]. Although the method was fully implemented in the thesis and
the work was successful in terms of computational complexity and efficiency on the KITTI
dataset [14] [15], the result did not allow for direct empirical comparison between models
(namely PMBM filter and NN approaches) due to the small size of the dataset preventing any
meaningful training and generalization[3]. Furthermore, the PMBM tracking filter presents
some challenges in its implementation in that its parameters are set a priori and usually using
some heuristics to cover most cases. Furthermore, the reliance on hypothesis formulation
might be detrimental to the speed of execution of this filtering approach compare to more
greedy data association algorithms.

This filter presents advantages compared to other Bayesian filters as it models detected
and undetected objects in a measurement driven framework while incorporating an evalua-
tion of the uncertainties linked to tracking algorithms. Furthermore, literature related to this
filter hint at good performance compared to deep learning approaches with the added bene-
fit of requiring no training. Explainability in conjunction with reduced computational costs,
thanks to the use of deterministic data association, make the PMBM filter a prime candidate
for a high performing tracking algorithm for autonomous vehicle technology applications
[12].
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1.3 Aim

There is a lack of empirical study of the PMBM filter applied to real world data using sys-
tematic approaches to evaluate the PMBM filter performance against other state of the art
solutions to the tracking problem. The aim of this thesis is to evaluate the performance of
the PMBM filter compared to other MOT techniques. We implement the PMBM filter on the
NuScenes dataset for the first time. We evaluate the performance of the PMBM filter on real
world data as well as using different object detection networks. We show that the PMBM is
a competitive solution in terms of multi-object tracking and performs similarly to other state
of the art solutions. The research questions that will be answered in this work are:

• What is the performance of the PMBM on the NuScenes dataset?

• How does the PMBM performance compare to a baseline tracking method and against
other state-of-the-art tracking algorithms?

• How is the performance of the PMBM affected by the quality of the object detector
output?

1.4 Delimitations

We will focus on the implementation of the PMBM tracking filter to the NuScenes dataset us-
ing the tracking datasets provided. These datasets propose ready-to-use outputs from CNN
detection networks. Other open source detector outputs are also used in order to perform
performance comparison with other tracking methods. The performance of the PMBM filter
will only be compared to other approaches related to the NuScenes dataset (vehicle traffic
domain). This work will focus only on the tracking part of the tracker as detector models
would warrant a more in-depth work of its own.

1.5 Report structure

We start with chapter 2 on the theoretical framework needed to implement the PMBM filter.
We then present a chapter on the implementation of the PMBM filter and methodological
considerations to evaluate tracking performance as well as the data that we are using. Results
are shown in chapter 4, discussion of these results are led in chapter 5 and finally this work
is concluded in chapter 6.
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2 Theoretical background

The PMBM filter is a Bayesian filter that relies on probability distributions, Bayesian state
estimates and random finite set (RFS) theory. In order to grasp these concepts, we present
here the theoretical framework used throughout this work.

2.1 Probability theory

This work focuses on Bayesian interpretation of statistics. In this view, the probability is
the degree of belief in an event given certain assumptions (prior belief). This belief is based
on prior knowledge and then updated (posterior) upon retrieving additional measurement
information (likelihood function). When the prior probability density function has the same
functional form than the posterior probability density function, they are said to be conjugate.
[2]. The reference [2] is used until section 2.3.

2.1.1 Gaussian distribution

The Gaussian distribution (also called Normal) is a continuous probability distribution for
a random variable. Its probability density function is defined by its mean value µ and its
variance σ2:

f (x) =
1

σ
?

2π
e�

1
2

(
x�µ

σ

)2

(2.1)

In this thesis, the Gaussian is used to represent the state of the targets. This allows us to
take into account uncertainties about the state of the objects itself. Equation 2.1 generalizes to
the many dimensional case when x is a state vector and σ is the determinant of the covariance
matrix and σ2 is the covariance matrix. This is true if the covariance matrix is positive definite
(a matrix with all positive eigenvalues) [2].

2.1.2 Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses the number of
occurrences of independent events in a time interval. Its probability mass function is defined
by the number of occurrences k and the expected value of occurrences λ:
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2.2. Bayesian filtering

f (k, λ) =
λke�λ

k!
(2.2)

This distribution is discussed further in the context of the distribution of undetected ob-
jects in 2.3.3

2.1.3 Bernoulli distribution

The Bernoulli distribution is a discrete probability distribution of a random variable repre-
senting the probability of a binary outcome. It is defined by a probability p of the event
happening:

f (k; p) =
"

p if k = 1
1� p if k = 0

(2.3)

In the case where there are more than two outcomes, the Bernoulli distribution general-
izes to the categorical (multinoulli) distribution. In this distribution, for n different possible
outcomes, the sum probabilities pn of each event add up to 1. The Bernoulli and multinoulli
distributions are revisited further in 2.3.4. They are used to model a target’s distribution given
that the object is either detected (k = 1) or not detected (k = 0) and to express the probability
of a data association hypothesis .

2.2 Bayesian filtering

Bayesian filtering relies on the use of Bayes theorem for its computations. Given a state x, we
have a prior belief in our knowledge about this state p(x). The likelihood function p(z|x) is
the probability of obtaining the measurement z given the state x. Bayes theorem in terms of
state vector and measurement vector is then:

p(x|z) = p(z|x)p(x)³
p(z|x)p(x)dx

9p(z|x)p(x) (2.4)

Bayesian filtering is composed of two steps: a prediction step and an update step. During
prediction, the state distribution of the target in the next time step is predicted given the
currently available data. During the update step, data is collected and used to update the
predicted distribution. The process of Bayesian filtering is presented in figure 2.1.

2.2.1 Prediction

In order to perform the prediction step and obtain the posterior predictive distribution den-
sity, the Chapman-Kolmogorov equation is used:

p(xk|zk�1) =

»
p(xk|xk�1)p(xk�1|zk�1) dxk�1 (2.5)

The predictive distribution is an integral depending on the distribution of the previous
state given data available up to the previous time step and p(xk|xk�1) which is the transi-
tion density. The transition density is also called motion model in the field of Multi-Object
Tracking (MOT) and describes the propagation of the object state from one time step to the
next.

2.2.1.1 Motion models

Motion models are representations of the dynamics involved in the propagation of the object
state in time. They are formally defined as a function applied to a state and some added noise.
The matrix representation of a linear motion model is as follows:
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2.2. Bayesian filtering

Figure 2.1: Bayesian filter presented schematically. We predict the distribution Pk|k�1(x) and
update this distribution using information from measurement Pk(zk|xk). The outputted pos-
terior is the estimate of the state at time step k and used as a prior for the next time step.

xk = Fxk�1 +N (0, Q) (2.6)

Q is the variance of the motion noise. Motion models are categorized in linear and non-
linear motion models. We will present only the linear motion model that is used in this thesis:
the constant velocity motion model.

2.2.1.2 Constant velocity motion model

In this model, the targets are described as having an unchanging velocity between time steps.
The velocity may be updated to a new value when measurements are collected. They have
as a state vector x = [x y γpos ẋ ẏ γvel ]. This state vector is composed of position and
velocity components usually in two dimensions when dealing with MOT as well as rotation
components for both the position and the velocity [7]. The noise is usually taken to be gaus-
sian. The position is updated by performing: ([xk+1 yk+1 γk+1] = ∆t[ẋk ẏk γ̇k]) and the
velocity vector remains unchanged and takes the previous value.

Thus the motion model is defined as:

F =



1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (2.7)

When the matrix F is applied to the state, the state position components are modified with
respect to the velocity components. The predicted velocity components remain unchanged
during the prediction step. The noise matrix QCV for the constant velocity model is:

QCV = σ2
Q



∆t3

3 0 0 ∆t2

2 0 0
0 ∆t3

3 0 0 ∆t2

2 0
0 0 ∆t3

3 0 0 ∆t2

2
∆t2

2 0 0 ∆t 0 0
0 ∆t2

2 0 0 ∆t 0
0 0 ∆t2

2 0 0 ∆t


(2.8)
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where ∆t is the time increment and σ2
Q is a tunable parameter representing the noise in

the motion model.
The constant velocity motion model makes the strong assumption that the velocity re-

mains unchanged between time steps. For large enough time steps, this assumption does not
hold as objects might change direction or speed between time steps.

2.2.2 Update

The update step is performed using Bayes theorem Eq:2.4 using the predictive distribution
Eq:2.5 as a prior:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k�1)³

p(zk|xk)p(xk|z1:k�1) dxk
9 p(zk|xk)p(xk|z1:k�1) (2.9)

Collected measurement information is included and updates our prior predicted distribu-
tion in Eq:2.5. The likelihood function p(zk|xk) that includes the measurement information is
called measurement model.

2.2.3 Measurement model

The measurement model is defined as a function hk applied to the true state of the object xk
to which white noise rk is added to output the detector output measurement zk:

zk = hk(xk) + rk (2.10)

This equation can only be evaluated if we have access to the function hk through estima-
tion. In practice, this function is often set to be a linear transformation and Eq:2.10 becomes:

zk = Hxk +N (0 , R) (2.11)

Where R is the noise of the measurement. In this work, the measurement model represents
the relationship between the true state of the of the object xk and the output of a detector zk.
This linear form allows for straightforward implementation of the update in the Kalman filter.

2.2.4 Kalman filters

The Bayesian filter updates are usually difficult to evaluate due to the normalizing integral
in the denominator of bayes theorem Eq:2.4. The Kalman filter is a filter that minimizes the
mean square error estimation of this calculation in the case of linear models for motion and
measurement [26]. Here we use the motion model transition matrix F, process covariance
P, measurement model H and measurement noise R to implement the Kalman filter. Q is
still the noise of the motion model as defined in 2.6. We use shorthand notation where mea-
surements from the first timestep to the current timestep are simply marked as k. In the
implementation of the Kalman filter, we perform the following operations on state vector x
and measurement vector z.

Using the equations presented in [26], we present the equations needed to use the Kalman
filter in the case of linear models for measurement and motion. For the prediction step of the
state vector:

xk|k�1 = Fxk�1|k�1 (2.12)

The predicted covariance for the process is:

Pk|k�1 = FPk�1|k�1FT + Q (2.13)

The state prior is then updated such that:

xk|k = xk|k�1 + Kkyk (2.14)
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2.3. Random finite sets

The measurement prior is also updated:

Pk|k = (I�KkH)Pk|k�1 (2.15)

with yk being residuals of the measurement and the predicted estimate of the measure-
ment (also called innovation residuals):

yk = zk �Hxk|k�1 (2.16)

The update covariance (also called innovation covariance) is the covariance of the residu-
als of the measurement and the predicted estimate of the measurement:

Sk = R + HPk|k�1HT (2.17)

and the Kalman gain is a factor that minimizes the error covariance:

Kk = Pk|k�1HTS�1
k (2.18)

2.3 Random finite sets

Random finite sets (RFS) are used as a representation of varying number of states and mea-
surements in the field of MOT. They have particularly suited property that allow them to
represent one-to-one relation between a mathematical model and physical reality. RFS are
sets of varying cardinality (number of elements in a set is random) and the elements them-
selves are random variables. Furthermore, the order of elements in a set is not important.
With these properties, a RFS can represent varying number of elements in MOT as well as
uncertainties of the states of those elements.

This poses RFSs as a unified probabilistic framework to model all objects in MOT. Using
conjugacy between distributions, this theory allows for the derivation of metrics and Bayesian
posteriors to account for the fundamental uncertainties in MOT [12]. This section relies on
[12] and [3] as references.

2.3.1 Elements of set theory and random finite sets

The union (Y) of two sets is the set of all elements in the first or in the second set (i.e. all
elements present in both sets). The intersection (X) of 2 sets is the set of elements that are
in the first and the second set (i.e. elements that are shared between the sets). Two sets are
disjoint if their intersection is the empty set. If several sets are disjoint of each other, they are
said to be mutually disjoint (Z is the mutually disjoint union of sets operator). The cardinality
of a set is the number of elements in a set. These definitions are revisited in Fig 2.2. In this
figure, set 3, set 4 and the union of set 1 and 2 are mutually disjoint. The cardinality of the
union of set 1 and set 2 is 3.

RFS are a randomly sized finite set of random variables. All the elements in the set are
unique (no duplicate elements). RFS are invariant to order in the set. Two sets are equal if
both sets have the same elements (can also be the empty set). The cardinality and the elements
of the set may be distributed according to some probabilistic relation.

2.3.2 Multi-object probability distribution functions

A multi-object probability distribution function (PDF) is a non-negative function on sets that
integrates to 1. It is both a description over the elements of the set as well as the distribution
of the number of elements of the set (cardinality distribution). They are invariant to order
since they describe RFSs
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Figure 2.2: Four sets S1, S2, S3 and S4 are presented. The union of S1 and S2 is the set
containing points A, B and C. The Intersection of those two set is the set containing B. S3 is
disjoint from all other sets and S4 is the empty set.

In order to compute the multi-object PDF, it is important to first set a formula for calcu-
lating the PDF of a discrete set that can be separated into mutually disjoint sets using convo-
lutions. The convolution formula that allows to calculate the multi-object PDF for a discrete
RFS is:

pX(X) =
¸

X1Z���ZXn=X

n¹
i=1

pXi (Xi) (2.19)

In this work, sets are marked as capital and bold faced letters. The superscript indicates
the index of the set. Equation 2.19 allows, in the case of continuous variables and mutually
disjoint subsets, to be used to formulate a set integral:

»
f (X)δX = f (H) +

8̧

i=1

1
i!

»
f (x1, . . . , xi) dx1 . . . dxi (2.20)

Because the cardinality (size) of the set is unknown, we sum over i where i is the number
of elements in a set X. In order to clearly state that this integral takes a random finite set as
input and outputs a real number, we use δX as integrand as opposed to the usual dX. This
set integral allows us in turn to formulate important quantity such as the expected value for
RFS:

E[ f (X)] =
»

f (X)pX(X)δX =
8̧

i=0

1
i!

»
f (x1, . . . , xi)pX(x1, . . . , xi) dx1 . . . dxi (2.21)

These set integrals are reused to perform the prediction and update steps for Poisson
Multi-Bernoulli Mixture distributions.

2.3.3 Poisson Point Process in RFS

The Poisson Point Process (PPP) is a random process that is defined by its intensity λ. This
quantity is the expected number of events or average density of points occurring in a mathe-
matical space like a time interval or some region of space. The number of points in this region
is Poisson distributed. The PPP is of interest as it can be used to represent newly appearing
(birthed) objects in a region of space that a detector operates in or used to describe the number
of undetected objects. The Poisson point process in RFS is formally defined as:

pX(x1, ..., xn) = exp(�λ)
n¹

i=1

λ(xi) (2.22)

where (�λ) is the integral over the intensity function λ(x). This intensity function is the
Poisson rate.
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We can use the PPP to describe the number of undetected objects in a space (cardinality
of the set). In this work, the intensity function of the PPP is spatially distributed according
to a mixture of Gaussians each representing the state of undetected objects. This allows for
statistical model of the set of occluded objects on the scene with regards to their state.

The PPP is also used to describe the first appearance, also called birth, of new objects in the
field of view. These newly born objects could either come from an occluded area or appear in
the field of view truly for the first time. The birth process in this work also follows a PPP. The
intensity or number of births is Poisson distributed and spatially distributed according to a
mixture of Gaussians. This modelling of the "birth" of objects allows for objects to (re)appear
on screen at this time step.

2.3.4 Multi-Bernoulli Mixture in RFS

For each data association hypothesis associating a set of measurements with a set of distribu-
tions, a weight is assigned to this association hypothesis. These weights wi are normalized
and each hypothesis is thus an outcome of a categorical (multinoulli) distribution. Further-
more, each of the Gaussian components of the set of distributions of states are themselves
Bernoulli distributed with an existence probability ri

j.
In the context of RFS, the Multi-Bernoulli Mixture (MBM) of Gaussians is defined as:

px =
Ḩ

n=1

wh ph
x(x) (2.23)

where wh is the weight of the data association hypothesis and ph
x(x) is the multi-Bernoulli

(MB) probability distribution function for the set of Gaussian mixture components that make
up the spatial distribution of the states of objects. The summation is performed over data
association hypotheses h. This PDF is defined as:

ph
x(x) =

¸
ZN

i=1xi=x

N¹
j=1

ph
xj
(xj) (2.24)

where xj is a set composed of a mixture of Gaussian state vectors and ph
xj
(xj) are Bernoulli

probability distribution functions corresponding to the the Bernoulli RFS Xi.

2.4 Poisson Multi-Bernoulli Mixture filter

The PMBM distribution is composed of two distributions that are conjugate distributions
[12]). This means that during the prediction, update and final state estimation process, the
functional form of the related distributions do not change and remain PMBM distributions.

The PMBM distribution is defined as:

PMBMk|k(X) =
¸

XdZXu=X

Pk|k(X
u)MBMk|k(X

d) (2.25)

As we can see in the previous equation, the PMBM distribution is composed of a PPP
Pk|k(X

u) that describes the distribution over the set of undetected objects and a MBM dis-
tribution MBMk|k(X

d) that describes the distribution over the set of detected objects. The
sub-index k|k represent the indexing of estimation at time step k given all observations up
to time k. The PMBM distribution has the advantage that previous equations such as Eq:2.5
and Eq:2.2 generalize naturally in the case of RFS. The Chapman-Kolmogorov equation 2.5
for RFS PMBM becomes:

PMBMk+1|k(Xk) =

»
p(Xk+1|Xk)PMBMk|k(Xk)δXk (2.26)
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The Bayes update 2.2 for RFS PMBM is:

PMBMk+1|k+1(Xk+1) =
p(Zk+1|Xk+1)PMBMk+1|k(Xk+1)³

p(Zk+1|X1
k+1)PMBMk+1|k(X1

k+1)δX1
k

(2.27)

With these tools, we can perform the prediction and update steps accordingly and apply
it to the Kalman filter. This aspect is explored further in the following sections for the set of
detected objects and the set of undetected objects.

2.4.1 Detected objects in the PMBM filter

To describe the set of detected objects , we use a Gaussian mixture to represent the spatial
distribution of states and the components of the vector. For a particular detected object state
xd, we have:

µj,i(xd) = N (xd; x̄d
j,i, Pd

j,i) (2.28)

where x̄d
j,i is the state estimated mean of xd for the i-th state in the j-th association hypothesis

and Pd
j,i is the covariance matrix of that state

Using the equations 2.12 and 2.13 for the Kalman filter prediction, we get for the predicted
state estimate:

µj,i(xd) = N (xd; Fx̄d
j,i, FPd

j,iF
T + Q) (2.29)

After the prediction step, the existence probability of an object is updated by multiplying
it with the survival probability ps:

rd
j,i = psrd

j,i (2.30)

For the update step, we must consider two different kinds of input in the set of detected
objects: the set newly born objects and misdetection (clutter c(z)) and the set objects that were
previously detected. These two sets of objects are treated differently. We start with the case
of objects that are born onto the scene.

After the update step, the existence probability, if the target has just been born, is updated:

rd
j,i =

pd
°Nu

i=1 wu
j,iN (z; x̂j,i(z), Ŝj,i)

pd
°Nu

i=1 wu
j,iN (z; x̂j,i(z), Ŝj,i) + c(z)

(2.31)

In the context of the Kalman filter, the state distribution for the targets that have been born
is updated such that:

p(xborn|z) =
Nu̧

i=i

ŵj,iN (x; x̂j,i(z), P̂j,i) (2.32)

where the weight ŵj,i is:

ŵj,i 9 wj,iN (z; x̂j,i(z), Ŝj,i) (2.33)

and state estimate x̂j,i(z) is:

x̂j,i(z) = x̄u
j,i + K̂j,iŜ

�1
j,i (z�Hx̄u

j,i) (2.34)

and covariance estimate P̂j,i is:

P̂j,i = Pu
j,i � K̂j,iŜ

�1
j,i K̂T

j,i (2.35)

and Kalman gain:
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K̂j,i = Pu
j,iH

T (2.36)

and innovation

Ŝj,i = HPu
j,iH

T + R (2.37)

In the case that the object state was detected in the previous step, the survival probability
becomes:

rd
j,i =

rd
j,i(1� pd)

1� rj,i + rj,i(1� pd)
(2.38)

where pd is the detection probability of any object on scene. furhermore, the weights are
updated such that:

wd
j,i = wd

j,i(1� rj,i + rj,i(1� pd)) (2.39)

With regards to the Kalman filter predictions and updates, the equations are similar to
the ones presented above but over the set of previously detected objects instead of the set of
objects coming from the PPP.

The existence probability becomes 1 since the object is seen:

rd
j,i = 1 (2.40)

The updated weight estimates is:

wd
j,i = wd

j,irj,i pdN (z; x̄d
j,i, Ŝj,i) (2.41)

2.4.2 Undetected Objects

As discussed in 2.3.3, the PPP is defined by its intensity lambda and the spatial distribution
of the points is a mixture of Gaussian in this work. This mixture is defined as:

λu(xu) =
Nu̧

i=1

wuN (xu; x̄u, Pu) (2.42)

Similarly, for new targets born from the PPP, we have:

λb(xu) =
Nu̧

i=1

wbN (xb; x̄u, Pb) (2.43)

During the prediction step of the PMBM filter, the set of all undetected objects is estimated
using the following equation:

λu
k+1|k(x

u) = λb(xu) + ps

Nu̧

i=1

wuN (xu; Fx̄u
i , FPuFT + Q) (2.44)

where ps is the survival probability of the undetected distribution from one time step to the
next. At the update steps, since the measurements are undetected, we simply update the
probability of the states remaining undetected by the complement of the survival probability:

λu
k+1|k+1(x

u) = (1� pd)λ
u
k+1|k(x

u) (2.45)

When the weights associated to the distribution of an undetected object becomes smaller
than a threshold Γs , the distribution is removed and the target "dies".
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2.4. Poisson Multi-Bernoulli Mixture filter

2.4.3 Hypothesis

At each time step there are 3 ways of associating the measurements: the measurement is a
previously detected target, the measurement is a new target or the measurement is a faulty
detection (clutter). We establish a set of hypothesis in order to take into account all of these
possibilities in the context of MOT and the PMBM tracking filter in particular. This work
focuses on the more computationally efficient approach to hypothesis called track-oriented
hypothesis as opposed to the hypothesis-oriented approach [17].

In figure 2.3 the track-oriented approach to building a data association hypothesis is pre-
sented. At time step 1 two objects are detected and are associated to the track of object x1 or

Figure 2.3: Tree structure of track-oriented hypothesis for single targets [3]. This figure
presents the global hypothesis for associating a set of measurements after 3 time steps. At
time step 3, we may only associate measurement z3 with either of the potential objects x or a
new object x3.

x2. At time step 2, there is no detected object. At time step 3, there are three possible data
association for the single detection z3. The measurement z3 can be associated to the first or
second track or it could be the start of a new track x3. The data association only accepts one of
these outcomes. The collection of probabilities for the data association at time step 3 make up
the single target hypothesis (STH) for an object detected at time 3. The collection of possible
STH at all time step make up a global hypothesis. In this example, at time step 3, there are 3
STH.

To solve the data association problem, we establish a cost matrix for each global hypothe-
sis. Each row of this cost matrix corresponds to a set of measurements at that time step and
each column is a previously detected object or a new track. In order to solve the data associ-
ation, an optimal assignment algorithm solves the cost matrix to find the one with minimal
cost.

Lh =


�l1,1,h �l1,2,h . . . �l1,Nh ,h �l1,0 inf . . . inf
�l2,1,h �l2,2,h . . . �l2,Nh ,h inf �l2,0 . . . inf

...
...

. . .
...

...
...

. . .
...

�lmk ,1,h �lmk ,2,h . . . �lmk ,Nh ,h inf inf . . . �lmk ,0

 (2.46)

where mk is the time index at which measurements are made, Nh are the STH and h is the
hypothesis index for the global hypothesis. The right side of the matrix represents the new
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2.4. Poisson Multi-Bernoulli Mixture filter

track hypothesis. We use log weights in our implementation for computational stability:

l j,i,h = log(wd
j,i)� log(wd

0,i) = log

(
wd

j,i

wd
0,i

)
(2.47)

where we have the difference between the single target hypothesis-measurement pair weight
and the misdetection weight. New detections have weights calculated according to Eq.2.33:

l j,0 = log(wd
j,0) = �log(λj(z)) (2.48)

Murty’s algorithm solves the data association problem by finding the best assignment
between the measurements and targets that minimize the cost of the matrix. We use this
algorithm to create new global hypotheses [31].

2.4.4 Reduction

The previous cost matrix grows exponentially with the number of measurement steps that we
make [10] and we wish to reduce the computational complexity of the association problem.
In order to do so, three techniques are used: pruning, gating and recycling.

We perform pruning of the global hypothesis, Poisson and MBM distributions. We per-
form pruning by discarding elements of these hypothesis or distributions when their asso-
ciated weights are below a threshold Γ. In other words, when w   Γ we set the weight to
0.

Measurements that are far from the center of the detected distribution have a very small
probability of being associated together. Considering this fact, we can perform an operation
called gating wherein we consider only measurements within a certain distance from the
distribution. The most common gating procedure is called ellipsoidal gating. In ellipsoidal
gating we consider only measurements that are at a smaller distance than a certain number
of standard deviation G. The distance is computed using the Mahalanobis distance that takes
into account the innovation covariance to encompass uncertainties regarding the predicted
state and the measurement:

d2
M = [ẑi � zj]

TS�1[ẑi � zj] (2.49)

If a measurement is outside of the gate, its data association weight is set to 0.
Some distributions are close to some measurements, but do not end up being associated

with any. We wish to discard them from consideration for the purpose of the data association
step, but retain that information in case the measurement appears again in a future step. To
solve this problem, we use a process called recycling. When recycling, the distributions of de-
tected objects with an existence probability below a threshold Γr are moved to the undetected
distribution. At this step, the undetected density becomes:

λu
k|k(x

u) = λu
k|k(x

u) +
¸

i:ri
k|k Γr

wd
j,ir

i
k|kµj,i(xj,i) (2.50)

Since hypotheses do not need to be unique,we may also merge similar hypothesis without
affecting performance. When merging hypothesis (single target or global), their weights have
to be added so that they still all add up to 1.

2.4.5 State estimation

The state estimation is straightforward in its implementation. We choose the global hypothe-
sis that has the highest weight (lowest loss). For this hypothesis, the mean value of the states
of the MBM are considered to be the output of the filter at this time step and used as a prior
for the next iteration of the filter. The mean value is chosen following the maximum likeli-
hood estimate criterion. States are only considered if they have an existence probability that is
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2.4. Poisson Multi-Bernoulli Mixture filter

greater than a threshold Γ. In the estimation, the survival probability ps, detection probability
pd and the threshold Γ all influence the length of time that an object can remain undetected
and still be linked to a previous track once detected again.

We present the functioning of the PMBM filter schematically in figure 2.4. In this figure,
the PPP and MBM components of the PMBM distribution can be considered mostly as inde-
pendent. The prediction step is performed using a motion model and the update step is per-
formed using the measurement model. The "death" of an object happens when distributions
existence probabilities rj,i fall below a threshold Γs. New targets are birthed according to the
spatial distribution of the PPP and become part of the detected object distribution. The reduc-
tion process allows the data association to remain computationally tractable by performing
pruning, gating and recycling. Distributions that are not associated with any measurements
can be moved to the undetected distribution by recycling.

Figure 2.4: Schematic representation of the PMBM filter. The prediction is performed using a
motion model and the update step incorporates the measurement information. The recycling
process allows to retain information about distributions not associated with any measure-
ments.
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3 Method & Data

In this chapter, the implementation of the PMBM tracking filter, the data used and the evalu-
ation methods are discussed.

3.1 PMBM implementation

The PMBM tracking filter is implemented following the pseudocode 1 first presented in [12].
The code for the tracking filter was implemented in Python (3.8) using basic libraries (Numpy,
Scipy and Pandas) as well as leveraging some previous work. An implementation of Murty’s
algorithm for data association in C++ with a Python wrapper [3] is leveraged and the API of
the NuScenes dataset that is provided as an open source development kit for dataset users
[5] is also used in this implementation. This API allows for easy loading and manipulation of
the data as well as automated evaluation of the saved output of the tracker. The downside of
using the API is that for any use of the dataset, each split has to be fully loaded in memory.
This is memory inefficient but is a requirement of this API and discussed in 4.1.1.

The motion model used is the constant velocity motion model parametrized as in 2.2.1.2.
For matrices that require to be inverted in the Kalman filter, we ensure computational stability
and retaining the positive semi-definite property by using the following procedure for any
matrix S that must be inverted:

S =
1
2
(S + ST) (3.1)

Log-weights are implemented to avoid underflow and are considered throughout for
computational stability. Furthermore rotations are represented as a rotation axis (vector) and
angle. This vector representation of the rotation of an object is transformed and reduced to
[�π, π] angle interval with respect to the point-of-view car (ego vehicle). Tracking boxes at
the next time step are predicted to be of the same dimension than at the current time step.
They then take the average value between the associated measurement detection bounding
box and the predicted bounding box during the update. This incurs bounding box size errors
when objects (in particular vehicles) turn, but does not affect the position of the center of the
object and thus does not affect any performance measure that includes the position of the
center of the object in its computation. The PMBM algorithm state estimation outputs only
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3.1. PMBM implementation

Algorithm 1 PMBM tracking filter pseudocode

Input: Previous state estimate and measurements Z of current time step
Output: Estimate of the PMBM distribution at this time step
- Perform prediction as presented in 2
for z P Z do � newly detected targets update

- Perform gating on z with respect to the poisson spatial distribution
if z is within the gate of at least one component then

- Create a new target in the Multi-Bernoulli Mixture
end if

end for
for i = 1 Ñ n do � all targets update

for ji = 1 Ñ li do � all single target hypotheses of a given target
- Create new misdetection hypothesis
- Perform gating on Z and create new detection hypotheses

end for
end for
- Recycle unassigned distributions
for all j do � all global hypotheses

- Create cost matrix
- Run Murty’s algorithm with the cost matrix as input to select k new global hypotheses

end for
- Estimate the target states
- Prune the Poisson part by discarding components whose weight is below the survival
threshold
- Remove Bernoulli components whose existence probability is below a threshold or do not
appear in the pruned global hypotheses

the center of the tracked objects in its output features. We include the bounding boxes for
ease of evaluation and qualitative analysis.

Each new object is assigned to a unique track ID. This track ID contains the information
about the state of an object (mean value of distribution) and the uncertainty associated (co-
variance matrix associated with the state). The information about the new object is stored in
the single target hypothesis. The association weight, time index of birth, associated measure-
ment index and existence probability is also stored in the single target hypothesis as discussed
in the theory section of this thesis. With a growing number of single target hypothesis, it is
important to assign a single target ID with respect to a track. Each track contains all the sin-
gle target hypothesis, the class of the object and the time of birth. The class parameter in this
track data container can allow us to use different motion model covariances depending on
the class of the object. This organization of track and single target hypothesis allow the use
of a lookup table in the global hypothesis step where only the track information and the sin-
gle target ID are needed to point to the correct information. Furthermore, the memory cost
can be reduced by removing single target hypothesis that are not considered in the global
hypothesis.

For the first iteration of the algorithm, the cost matrix creation is skipped and all new
possible targets associated to a measurement are considered as new tracks. The number of
new global hypothesis is chosen by design (see appendixA). The state estimate is computed
by finding the global hypothesis with the highest weight and choosing all single target hy-
pothesis that have a probability of existence larger than the existence pruning threshold.
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3.2. Parameter tuning

3.2 Parameter tuning

There are two sets of parameters that require tuning. Parameters that concern the Kalman
filter process of prediction and update and the other parameters (such as survival probability,
detection probability existence pruning threshold, etc...) that concern the other steps of the
PMBM tracking algorithm. The Kalman filter process parameters that are tuned are the motion
and the measurement noise matrices. In this implementation, we use the average values for
covariance matrices for each class of object of interest over the training set [7] as initial values
for those noise covariance matrices. This allows for different initial motion parameters for
each class of objects. The other parameters are informed by expert input and tuned further
through heuristics. The set of optimal parameters that are used can be found in the appendix
A. The initial operating parameters that were found to work for this implementation were
heuristically chosen using visual evaluation of a sequence of the training dataset split that
presented sufficient complexity. The sequence chosen is a road crossing with passing vehicles
(cars and a turning bus) as well as a bicycle in good visibility condition.

No sequence of the evaluation set were used for parameter tuning. Both the Kalman filter
parameters and the PMBM algorithm process parameters are tuned on training set sequences.

3.3 Evaluation method

Performance measures must allow the evaluation of the different aspects of multi-object
tracking performance. They must allow to evaluate the performance of the tracking approach
with respect to the the number of objects of interest on the scene that are correctly identified
and tracked, the overlap of the tracking boxes, the correct association between measurement
and predicted box, the length of tracking against the ground truth and the loss of the tracked
object.

For NuScenes, the evaluation method that is used by the tracking community is a set
of performance measures that address the aforementioned requirements called the CLEAR-
MOT suite [1]. The important measures of this suite are the AMOTA and AMOTP based on
MOTA and MOTP [43].

MOTA: Multi-Object Tracking Accuracy is the measure that combines false positives,
missed targets and identity switches at the best recall threshold:

MOTA = 1�
°

t(IDSt + FPt + FNt)°
t TPt

(3.2)

where IDSt are the identity switches, FPt are the falsely tracked objects, FNt are the targets
that are missed and TPt are the ground truth tracked objects at time t. IDS occurs when an
object is wrongfully assigned as a new target or to the wrong estimated state. This measure
gives an indication of the trackers performance in keeping the right track regardless of the
precision in the estimation of the position of the tracking boxes. This measure takes into ac-
count the identity of the tracked objects. The MOTA can then be averaged over the sequences
that are evaluated.

MOTP: Multi Object Tracking Precision is the misalignment errors between the annotated
ground truth and the tracking boxes at the best recall threshold:

MOTP =

°
i,t di,t°
t TPt

(3.3)

where di,t is the displacement error between the tracked object i and its associated ground
truth. Displacement errors are calculated such as the closest distance between the ground
truth bounding box center and the center of the closest tracked object. This measure indi-
cates the performance of the tracker in its estimation of the position of objects of interest
independent of its ability to correctly classify and associate objects of interest with the correct
trajectory.
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3.3. Evaluation method

The main metrics are AMOTA and AMOTP developped in [5]. These are the integrals
over the MOTA and MOTP curves respectively using n-point interpolation (n=40 arbitrarily).
Points with recall smaller than 0.1 are not considered as they are typically noisy and can lead
to negative values of MOTA [5].Furthermore, the recall value thresholds are calculated by
changing the number of ground truth objects that are considered in a sequence in order to
match the desired recall threshold.

AMOTA: Average Multi Object Tracking Accuracy is the average over the MOTA metric
at different recall thresholds over the entire sequences.

AMOTA =
1

n� 1

¸
rPt 1

n�1 , 2
n�1 ,...,1u

max(0, 1 � IDSr + FPr + FNr + (1� r) � TP
r � TP

) (3.4)

In equation 3.4, a recall- normalization term (1� r) � P is included in the numerator, the
factor r in the denominator. This enforces that the values of the AMOTA span the entire [0, 1]
range. TP is the number of true positives for the current class that is evaluated.

AMOTP: Average Multi-Object Tracking Precision is the average over the MOTP metric
defined before at different recall thresholds. Here di,t indicates the position error of a track i
at time t and TPt indicates the number of matches at time t.

AMOTP =
1

n� 1

¸
rPt 1

n�1 , 2
n�1 ,...,1u

°
i,t di,t°
t TPt

(3.5)

A low AMOTP indicates that the center of tracked objects are properly placed with respect
to ground truth annotations. We posit that the diversity of the types of situations and the
number of sequences on the evaluation set is sufficient to be representative of the population
mean behavior when analyzing the metrics of the different trackers. Furthermore, all trackers
do not make available the source code in order to perform the evaluation of the sequences on
truncated samples of the evaluation in order to extract the mean and standard deviation of the
performance measures within the time limits of this thesis. The conclusions of comparison
between methods can be seen as mean behavior indicators when comparing performance.

Other performance measures of interest are:

• MT: Mostly Tracked is the number of tracked trajectories that cover at least 80% of the
total length of the ground truth track of the object.

• ML: Mostly Lost is the number of ground truth trajectories that are covered by the by a
track hypothesis for at most 20% of the length of the track.

• FP: Number of false positives (clutter detections).

• FN: Number of false negatives or targets that are missed and not tracked.

• IDS: Identity Switches is the total number of identity switches. This performance mea-
sure contains identity information.

The IDS, MT and ML performance measures allow us to identify if a particular tracking
approach is tracking the objects of interest for the whole length of sequences. These perfor-
mance measures are best used when comparing between methods. The FP and FN measures
give some indication on the performance of the data association and the filtering of clutter.

Automatic evaluation through the evaluation API outputs these performance measures
as well as recall curves against all performance measures and per object class. MOTA/MOTP
against recall curves represent the trade-off between a class classification threshold and the
performance measure of interest. The discriminating threshold (recall) between one class
and the others may affect how many error terms are considered in the calculation of the
performance measure.
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3.4. Data

All methods that are compared using the same evaluation approach on the same ground
truth. Fair comparison between tracking methods can thus be performed if the detector out-
puts used are the same between methods.

3.4 Data

The dataset used in this work is an open source dataset called NuScenes provided by the
Motional company [5]. This dataset was inspired by the KITTI dataset [14] [15] with the aim
to expand in scope. The KITTI dataset proposes a high sampling rate (30Hz) of 20 sequences
of 20 seconds of annotated video data. NuScenes is composed of 1000 samples of 20 seconds
and data is collected through various detectors. There are 6 cameras sampling at 12Hz, 1
spinning LiDAR sampling at 21 Hz, 5 RADAR sensors collecting data at 13Hz, 1 Intertial
Measurement Unit (IMU) collecting speed and orientation information and GPS sensor.

Data are collected in 4 different locations in Singapore and Boston: Singapore Queen-
stown, Singapore One North, Singapore Holland Village and Boston Seaport, in differ-
ent driving conditions such as dense city, suburb, highway, different visibility conditions,
weather conditions and combination thereof. The dataset data structure is presented in fig-
ure 3.1 with information relevant to the implementation of the PMBM tracking filter.

Figure 3.1: Dataset structure. Units of distance are in real-world coordinates and rotations
with respect to the driving vehicle.

The classes of interest in the tracking task are cars, pedestrians, trucks, trailers, buses, bi-
cycles and motorcycles. The most common classes are cars and pedestrian. The least frequent
class are trucks, trailers and motorcycles. In order to balance class frequency, more scenes in-
cluding rare classes such as bicycles are added to the dataset. The scenes are annotated by
human experts on key frames that are marked as being every 2Hz in frequency. On average
there are 40 key frames per scene. These key frames are also used for evaluation.

In this work, the focus is centered on estimating the position, orientation and identity for
each object of interest on a scene given detection data consisting of position of the center of
object of interest, size of detection boxes and class assignment probabilities. The variables
coming from detector output are discussed further in 3.5.

Although the sampling rate is higher, the data that can be used is limited. 40 key frames
are made available for the tracking task for each sequence. Furthermore, the ground truth
(GT) is only accessible for evaluation on 850 video sequences (training and validation sets) as
the last 150 sequences of the test set are reserved for officially competing tracking methods.
Finally, due to computational costs, we are only able to perform evaluation and experiments
on 150 sequences of the evaluation set. Computational costs and limitations are discussed in
4.1.1.
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3.5. Detection dataset

3.5 Detection dataset

The detector output data used are the output of detection neural networks. In this work, we
focus on the use of the MEGVII [48], MapPillars [22] and CenterPoint [47] detections for the
NuScenes dataset. These detections use only LiDAR point clouds as inputs and output the
detections for the frames of interest at 2Hz. These detections are composed of a classification
label and a box regression. We will only use detection sets that use LiDAR data only as this
work does not focus on sensor fusion. The data used is thus in real world coordinates and
not in image coordinates like RGB image data.

For detections, the performance of detectors is evaluated by the mean average Precision
(mAP) and the NuScenes Detection Score (NDS). The mAP is defined as the integral over the
precision versus recall curve. In this definition precision and recall are:

precision =
TP

TP + FP
(3.6)

recall =
TP

TP + FN
(3.7)

Where TP are the true positive detection of objects, FP (false positive) are the falsely de-
tected objects, and FN are the false negative detections. The mAP is thus the averaged value
of the different integrals for each object class over different recall values. The NDS is de-
fined as the weighted sum of different types of errors that include translation errors between
detection boxes and ground truth, the mAP, orientation errors, velocity errors and accuracy
(classification probability) errors. For both of these performance measures, the higher the
value, the better the performance. We present in table 3.1 the reported performance [5] [47]
of the detections that will be used in this work.

Detection method mAP Ò NDS Ò
Megvii 51.9 62.8

CenterPoint 58.0 65.5
PointPillars 29.5 44.9

Table 3.1: Detection sets and their performance measure

The MEGVII detections are provided by the NuScenes dataset providers. The detections
of the MEGVII detection set are the output of a two-staged detector. Features are extracted
using a 3D feature extractor and then sent to a region proposal network before a multi-head
group performs classification, box regression and orientation estimation[48] as presented in
section 1.2.1 of the introduction chapter. These detections are publicly available and provided
by the dataset makers. These detections are used in the baseline method AB3DMOT [43] and
in StanfordIPRL-TRI tracking methods [7].

CenterPoint detections are also produced using a two-stage detector [47]. A 3D feature
extractor network extracts map-view features. Using a detection head (a 2D convolutional
neural network), the first stage of the detector produces object centers and 3D box propos-
als. Finally, using center features a Multi-layer Perceptron (MLP) predicts a confidence score
and refines the box regression [47]. These detections are used in the SimpleTrack and in the
CenterPointEnsemble tracking methods.

Overall, the CenterPoint detector performs better overall and over all categories of interest
for tracking. We will use both methods to compare the PMBM performance against various
other tracking methods, but we will favor the CenterPoint detections otherwise.

The detection information that is available is presented in figure 3.2:
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3.6. Other tracking methods

Figure 3.2: Detection data information

3.6 Other tracking methods

The performance of the PMBM is compared to four other tracking methods: A baseline for
3D multi-object tracking (AB3DMOT) [43], StanfordPRL-TRI [7], SimpleTrack [34] and Cen-
terPointEnsemble [47]. AB3DMOT is chosen as a baseline to evaluate the initial performance
of the PMBM tracking filter. This baseline is provided by the dataset providers [5]. The other
methods are taken in order of best performing as state-of-the-art trackers whose code and
results are made available as open source and can be directly compared to the PMBM tracker.

AB3DMOT uses a 3D Kalman filter and MEGVII detections. The data association is per-
formed using Mahalanobis distance with the Hungarian algorithm. This data association
algorithm is similar to Murty’s algorithm, but retains only the global hypothesis with highest
weight and discards all others. Murty’s algorithm retains a set number of global hypothesis
and then performs further reduction between steps. StanfordPRL-TRI uses a similar setup
to AB3DMOT but improves on it by using a greedy nearest-neighbour approach to associate
measurements with predicted states [7].

CenterPointEnsemble’s tracking approach predicts the position of object centers and an
estimate of the velocity from multi-frame data. The data association is performed using
a greedy nearest-neighbour approach. SimpleTrack uses the same detections as Center-
PointEnsemble. SimpleTrack uses a Kalman filter to predict object states and the Hungarian
algorithm to solve the data association problem.
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4 Results

This section of the report focuses on presenting results of experiments conducted and the per-
formance of the PMBM tracking filter applied to the NuScenes dataset. All of the experiments
are performed on the validation split of the dataset and evaluated on it. One sequence of the
training set is used to tune the PMBM process parameters. Results regarding the study of fil-
tering of clutter in detection is followed by evaluation of performance of the PMBM tracking
filter with different detections and different tracking methods and finally a short study on
the effect of motion and measurement noise on the AMOTP. For all results, we have chosen
to multiply the AMOTA, MOTA, AMOTP and MOTP by 100 for ease of reading and com-
parison. MOTA and AMOTA take values between 0 and 100. MOTP and AMOTP have a
minimum value of 0 and are unbounded by the top.

4.1 Experiments

The experiments that are performed in this work aim to gain empirical evidence of the perfor-
mance of the PMBM tracking filter, the needs in terms of dataset and parameters. This work
aims to compare the PMBM filter to baselines and state-of-the-art methods in the context of
empirical environment. The experimental setup, limitations and experiments are presented
in this section.

4.1.1 Experimental setup and limitations

The experimental machine uses an Intel® coreTM i7-10700 CPU @2.90GHz x 16 with 16GB
of RAM and hard disk drive of sufficient size to contain all of the dataset (500Gb). The op-
erating system is Ubuntu 20.04 64bits. As explained, the computations are CPU intensive
and sequential in nature. The API has very strict requirements in terms of database organi-
zation and loads the entire split of the data needed into memory before transforming them
into Python objects. This means that large JSON files cannot be loaded and manipulated due
to memory limitations. The computations themselves vary in length between 100 and 1000
ms/frame or computations between 30 minutes and more than 1 hour. This work focuses on
the validation set of data as this is the only one small enough to give access to the GT with
the memory restrictions presented.
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4.2. Qualitative analysis

These computation limitations make the extensive use of loops over parameter for tuning
prohibitive in practice but a systematic heuristic approach allows a thorough investigation of
the research questions.

4.1.2 Conducted experiments

A systematic approach is established to answer the research question with study components
regarding the performance of the PMBM depending on the detections used, the parameters
of the PMBM and how they affect performance and finally the performance of the PMBM
compared to other tracking methods.

The detections provided contain clutter (false detections) that negatively affect the com-
putation time and may negatively affect the performance of the PMBM. After establishing a
set of starting parameters that are advised by domain experts as a starting point for our study,
we evaluate the PMBM using different clutter filters on the detections of the best performing
detector CenterPoint. The clutter filter threshold sets the limit above which a detector output
detection probability must be in order to be considered as a valid object detection. We then
set out to compare the performance of the PMBM against other trackers by taking care of us-
ing the same detections than those trackers while ensuring that we are using the best clutter
filter available. Finally, we study the effect on the performance of the filter when using differ-
ent sets of parameters for the Kalman filter noises. We use mostly the CenterPoint detections
as they are the best performing that are made available. These are the best representation
of an empirical detector available. We also ensure that we are only using LiDAR measure-
ments so that when we are comparing between methods, sensor fusion will not enter into
consideration and allow us a fair comparison between the PMBM filter and other methods.

4.2 Qualitative analysis

We illustrate the clutter visible as well as thresholded detection where only elements detected
with more than 20% probability by the detection network are visible on screen. We include
as well the output of the PMBM filter for this sequence of images. This analysis aims to show
the successes and failures of the PMBM tracking algorithm. The output shown in the figures
of this section are bounding boxes for objects detected or tracked superimposed on camera
data. The bounding boxes are obtained as the average between the previous frame bounding
box size and the current frame bounding box, such that the bounding box is always estimated
to be larger than the true bounding box with respect to the estimate center of the object. The
outputs shown here is an example sequence from the training set and was used for initial
tuning of parameters:

27



4.2. Qualitative analysis

(a) frame 9

(b) frame 10

(c) frame 11

Figure 4.1: Three frames from detections with no filtering threshold
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4.2. Qualitative analysis

(a) frame 9

(b) frame 10

(c) frame 11

Figure 4.2: Three frames from detections filtering at 20% threshold

In figure 4.2, the light blue labeled measurements are clutter detections or incomplete
objects on the detector output for detected objects filtered at 20% threshold.
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4.2. Qualitative analysis

(a) frame 9

(b) frame 10

(c) frame 11

Figure 4.3: Three frames from the output of the PMBM filter

We notice the same amount of clutter on 4.1c and 4.2c and that the PMBM tracking filter
handles the clutter properly for that same frame in 4.3c by correctly associating the proper
detection with the track that on the next frame.

We now present the example results on frames at a further time step that illustrate lagging
tracking boxes and identity switches and their respective raw detections in figures 4.4 and 4.5.
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4.2. Qualitative analysis

(a) frame 15

(b) frame 16

(c) frame 17

Figure 4.4: Three frames of raw detections
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4.2. Qualitative analysis

(a) frame 15: lagging tracking boxes, tracking box too large for
bus with identity "bus 4"

(b) frame 16: Occluded object considered as detected, bus IDS
to "bus 25"

(c) frame 17: lagging tracking box for "car 8"

Figure 4.5: Three frames from the output of the PMBM filter

We can observe in these figures that on frame 15, the tracking box for the bus is much
larger than on the raw detection. This is caused by a sudden change in motion (rotation) that
deviates from the predicted motion of the object. Futhermore, we observe lagging tracking
boxes on the visible grey car. The lag observed for this car in frame 16 can also be attributed
to the data association being performed between the clutter (smaller detection box in frame
16) and the predicted tracking box compared to the ground truth box. This will affect the
MOTP and AMOTP measures. In the next frame (frame16), we can also observe an IDS from
"bus 4" to "bus 25" as well as an occluded car labelled as detected due to a clutter detection
allowing the data association. Finally on frame 17, we can observe that the tracking box for
"car 8" is lagging. We also see that the occluded black car in frame 16 maintains its identity
and is properly tracked.

32



4.3. Effect of clutter on tracking performance

It should be noted that the output of the PMBM tracking filter are point estimate (the
mean value of the Gaussian state distribution) given by a particular global hypothesis. The
uncertainty is handled and included in the Kalman process where the state covariance is used
in the prediction step and the innovation covariance updates the uncertainty between the
measurement and the predicted state estimate. The uncertainty is implicit in the algorithm.
The uncertainty does not appear in the state estimation because the cost calculation of the data
association algorithm only considers the mean value of the state vector as input to calculate
the cost and choose the optimal global hypothesis.

4.3 Effect of clutter on tracking performance

The elements detected above the detection threshold and their effects on the AMOTA and
AMOTP of the PMBM algorithm overall and for each class of interest are presented in tables
4.1 and 4.2. Filtering is performed on the CenterPoint detections such that all detections with
a detection probability below the filtering threshold are removed from the detection set. The
PMBM parameters are the ones found in appendix A.

Thresholding % overall Ò bicycle bus car motorcycle pedestrian trailer truck
0 63.9 34.6 79.9 81.1 63.9 71.7 51.5 64.3

10 63.9 34.6 79.9 81.1 63.9 71.8 51.5 64.3
20 65.3 39.1 78.2 81.1 66.5 78.5 50.8 62.8
30 63.1 39.4 75.9 77.4 63.5 78.6 48.6 58.6
40 59.4 39.3 73.6 70.8 58.3 75.4 45.1 53.0
50 53.9 35.4 69.1 63.8 51.1 71.5 41.8 44.5

Table 4.1: AMOTA for different clutter filtering levels. AMOTA takes values between 0 and
100 and higher values are better.

Thresholding % overall Ó bicycle bus car motorcycle pedestrian trailer truck
0 61.1 57.5 61.7 43.1 56.8 45.8 100.3 62.5

10 61.1 57.5 61.7 43.0 56.8 45.8 100.3 62.5
20 68.1 76.7 65.5 46.6 63.8 45.9 100.1 70.2
30 77.0 94.5 69.2 55.4 71.3 48.8 114.0 86.1
40 86.6 104.0 73.2 68.3 84.9 56.8 121.3 98.2
50 99.1 121.3 81.1 81.3 101.1 65.5 128.4 114.8

Table 4.2: AMOTP for different clutter filtering levels. AMOTP is unbounded by the top and
takes a minimal value of 0 and lower values are better.

Overall, the best filtering threshold for detections is 20% from the perspective of the
AMOTA and lower AMOTP for no filtering and 10% filtering threshold. For the remaining
experiments, we choose a filtering threshold of 20% on all detections from this point for-
ward. The better performance in terms of AMOTP of lower filtering threshold is attributed
with the data association. If more detections are available, more of them could be removed
through data association if they only exist within a limited amount of frames. Considerations
of computational resources are also taken into account in the choice of threshold for clutter
detections. Computations of the PMBM tracking filter were observed to be twice as long for
thresholds 0% and 10% than for the 20% threshold. This is attributed to the reduction of the
number of possible targets to loop through the algorithm.
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4.4. PMBM against other methods and with different detectors

4.4 PMBM against other methods and with different detectors

The overall performance of the PMBM tracking filter, AB3DMOT [43], StanfordPRL-TRI [7],
SimpleTrack [34] and CenterPointEnsemble [47] are presented here as well as the PMBM
performance using different detector models in table 4.3. We use a detection threshold of
20% for all PMBM evaluations. The performance of other tracking methods are available on
their code repositories for the evaluation set. The arrows indicated if low (Ó) or high (Ò) are
considered as good.

Tracking method - detector AMOTA Ò AMOTP Ó MOTA Ò MOTP Ó MT Ò ML Ó IDS Ó FP Ó FN Ó
AB3DMOT-Megvii 15.1 150.1 15.4 40.2 1006 4428 9027 15088 75730
StanfordPRL-TRI 55.5 79.8 45.9 35.3 4294 2184 950 17533 33216
PMBM-Megvii 57.4 83.0 50.5 35.6 3869 1499 1334 9752 25307
AB3DMOT-PointPillars 2.9 170.3 4.5 82.4 480 5332 7548 41115 88551
PMBM-PointPillars 27.6 142.2 24.4 72.1 2416 2482 1965 10162 43489
CenterPointEnsemble 66.4 56.6 56.1 32.1 4430 1523 562 13187 20446
SimpleTrack 68.6 57.2 59.2 32.9 4385 1475 519 12983 19941
PMBM-CenterPoint 65.3 68.1 56.9 32.8 4202 1451 1461 10981 21686

Table 4.3: Performance measures for trackers using different detections.

The PMBM tracking filter outperforms all AB3DMOT implementations on all perfor-
mance measures. The PMBM tracking filter also outperforms the StanfordPRL-TRI filter in
terms of MOTA, AMOTA, ML, FP and FN. The PMBM filter underperforms when using the
CenterPoint detections overall compared to state-of-the-art tracking filters, but remains com-
petitive in terms of AMOTA and MOTA. On Megvii and CenterPoint detections, the PMBM
tracking filter has a considerable difference in performance compared to other state-of-the-art
solutions in terms of AMOTP where the PMBM tracking filter performs less well than other
methods. This is attributed to the data association process that allows for some association to
happen between some clutter and predictions if the detections are closer to the predicted state
and that the global hypothesis weight is higher than other global hypothesis that would per-
form the association between the correct measurement and the predicted state. The MOTA
and MOTP is better for the PMBM when compared to the CenterPointEnsemble method. We
also observe that for better detector performance, we observe a better AMOTA and AMOTP
for the PMBM filter.

We present in table 4.4 the overall AMOTA and AMOTA per class of interest for the dif-
ferent methods presented.

Tracking method - detector AMOTA overall Bicycle Bus Car Motorcycle Pedestrian Trailer Truck
AB3DMOT-Megvii 15.1 0 40.8 27.8 8.1 14.1 13.6 1.3
StanfordPRL-TRI 55.5 25.5 64.1 71.9 48.1 74.5 49.5 51.3
PMBM-Megvii 57.4 22.8 73.9 76.6 58.1 75.3 36.7 58.2
AB3DMOT-PointPillars 2.9 0 6.6 9.4 0 3.9 0 0
PMBM-PointPillars 27.6 0 37.4 62.6 13.3 52.3 8.7 18.6
CenterPointEnsemble 66.4 45.7 80.0 84.2 61.5 77.7 50.3 65.6
SimpleTrack 68.6 51.0 80.4 83.8 68.3 79.2 53.0 64.9
PMBM-CenterPoint 65.3 39.1 78.2 81.1 66.5 78.5 50.8 62.8

Table 4.4: Overall AMOTA and for each class for different tracking methods

The PMBM tracking filter performs better AMOTA in all classes compared to the baseline
method. The PMBM filter also outperforms the StanfordPRL-TRI across all classes except
bicycle and trailers. The PMBM remains competitive against other state-of-the-art solutions.
This table shows that the data association is performing according to desired behavior.
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4.4. PMBM against other methods and with different detectors

We present the recall curves against MOTA and MOTP for CenterPointEnsemble, Simple-
Track and PMBM-CenterPoint. We otherwise refer the reader to the appendix B for additional
figures related to the CenterPoint detections, appendix C for figures related to Megvii detec-
tions and appendix D for figures related to PointPillars detections.

We expect the MOTA vs. recall curve to increase and then drop as recall value increases
as the amount of positive results is included until the presence of other classes’ errors get
included in and drop the MOTA performance. The later the drop, the better classifier of that
class we have. The higher the value of MOTA, the better tracking, from a track perspective
for that class we observe.

For MOTP, the expected behavior is that we would observe an increasing value of MOTP
as the value of recall increases because we are including more and more dislocation errors
into the MOTP numerator. Sudden changes (increases) in MOTP value would indicate that
we are now changing how many classes are included . A sudden decrease would imply that
the denominator becomes larger faster than errors are included.
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4.4. PMBM against other methods and with different detectors
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Figure 4.6: Recall curves for CenterPointEnsemble
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Figure 4.7: Recall curves for SimpleTrack
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Figure 4.8: Recall curves for PMBM-CenterPoint

We observe a better MOTA vs. recall curve of the PMBM for pedestrians when comparing
with the CenterPointEnsemble MOTA curve. We notice that the best tracked classes accord-
ing to the MOTA vs. recall curves are cars, buses and pedestrians. This could indicate that
the chosen motion models are appropriate for those classes.

The PMBM tracking filter underperforms compared to other state-of-the-art solutions
across all classes with respect to the MOTP. The behavior with respect to different classes
is the same across methods. This could indicate that the behavior observed can mostly be
attributed to the dataset. We further observe that for all methods the MOTP is low (good per-
formance) for classes motorcycle, pedestrian, car and bicycle compared to the other classes
(trailer, bus and truck). This indicates that the largest contribution to AMOTP is contained in
those three classes. These are rare classes that are over-represented in the dataset as opposed
to reality.
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4.4. PMBM against other methods and with different detectors

For ease of interpretation and comaprison, MOTA and MOTP plots are presented for Cen-
terPointEnsemble, SimpleTrack and PMBM-Centerpoint for the car class on the same figure
4.9:

(a) MOTA at different recall threshold

(b) MOTP at different recall threshold

Figure 4.9: Recall curves comparing CenterPointEnsemble, SimpleTrack and PMBM-
CenterPoint for the car class

From these curves, it can be observed that the PMBM underperforms in terms of MOTA
at high recall values against the other state-of-the-art methods but is better than SimpleTrack
in terms of MOTP. This indicates that the PMBM is competitive with state-of-art alternatives
on the NuScenes dataset with little parameter tuning.
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4.5. Motion and measurement noise tuning

4.5 Motion and measurement noise tuning

The values of the the measurement and motion uncertainty are allowed to be reduced and
grow in order to study their effects on the MOTP. The values of motion noise (P) and mea-
surement noise (R) are multiplied by a factor indicated on the heat map axes indexes with
respect to the parameters found to be optimal in 4.2. We present the results in figures 4.10
and 4.11.

Figure 4.10: AMOTA Ò of PMBM-CenterPoint for different values of motion noise (P) and
measurement noise (R)

Figure 4.11: AMOTP Ó of PMBM-CenterPoint for different values of motion noise (P) and
measurement noise (R)

For both AMOTA and AMOTP, the change in performance is observed when the motion
noise changes with only very small effects when the measurement noise is reduced. The
measurement noise was not increased because of matrix singularity arising in some of the
sequences. This result seems to indicate that the performance is affected more by the choice
of motion model than by our tuned measurement model for this tracking problem. Further-
more, the next conclusion that can be taken from these heat maps is that the increase in motion
noise does not improve the performance measures. This indicates that the lagging of tracking
boxes (reflected in AMOTP) should be affected by another parameter.

40



5 Discussion

5.1 Qualitative analysis

The PMBM globally performs as expected from the perspective of the theoretical background.
Only one measurement can be associated to a single distribution and objects are tracked prop-
erly according to the motion model and measurement model used in this implementation. We
identify several shortfalls of the implementation of the PMBM that we are using. The filter-
ing of clutter does not always remove some or all of the clutter observed. This attests to the
importance of the good performance of the detector. We also observe that the PMBM suffers
from IDS when objects tracked change their motion greatly from expected behavior. These
IDSs occur during fast turns and strong deceleration/accelerations between frames. The rea-
son for these IDS is explored in 5.5 and can be summarized by a data association issue with
the most likely hypothesis being chosen is the birth of a new object. Finally, the lagging of
tracking boxes with respect to the actual position of the tracked object is attributed to a lack
of parameter tuning or the presence of clutter. Overlapping clutter detections may influence
the update process. The cost matrix may consider one detection rather than another in the
optimal global assignment of targets in the data association process, but this may not be the
optimal assignment for this particular object.

5.2 Study of clutter on CenterPoint detections

The study of the filtering threshold for clutter detections showed an expected improvement
in computation time with an increase in filtering threshold. The higher the filter limit, the less
computations are expected and a faster runtime is expected. We also observe that the AMOTA
is best at a filtering threshold of 20% but an AMOTP that is overall better at lower filtering
threshold. The increase in AMOTA is expected as there are less chances of clutter influencing
the data association for that threshold and thus the proper tracks are identified. For the
AMOTP, lower thresholds mean that conversely, more clutter measurements that might be
closer to the ground truth position are considered for data association. Overall the behavior
is expected and we justify the use of a threshold of 20% by the higher AMOTA that confirms
that the proper objects are tracked. The AMOTP behavior can also be attributed to other
parameters that are presented in 5.5. Although this study was performed on only the best
detector available, other detection method might behave differently. For practical reasons,
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5.3. PMBM with 3 different detections and the same clutter filtering thresholds

we choose the threshold of 20% as a rule of thumb in line with domain expert methodology
and presented in [34]. In this paper, the author propose an optimal clutter filtering threshold
on CenterPoint at 24%.

5.3 PMBM with 3 different detections and the same clutter filtering
thresholds

The expected behavior of the PMBM with different detections is that better performing detec-
tor should yield a better performance of the PMBM. This is the behavior observed between
the performances of all PMBM implementation using different detector outputs across all
presented performance measures. This behavior highlights the influence of a good detector
on all performance metrics of any tracking filter. We highlight here the importance of a good
detector related to the discussion on AMOTP in the previous section 5.2 and in 5.5 to come. A
good detector should output less clutter, more precise detections (in the MOTP sense) and re-
duce the measurement noise. This directly impacts the performance in terms of both MOTA
and MOTP. We emphasize here the increase of 8 points when using the CenterPoint detec-
tions compared to the Megvii detections and the increase of 38 points between PointPillars
and CenterPoint detections for the PMBM. In this work, we are limited in our use of detector
by the fact that we use prepared detector outputs that are open-source and readily available
to compare with other tracking methods.

5.4 PMBM performance against other tracking methods

In the wider context of comparing the performance measure of the PMBM with respect to
other tracking methods, we have made the choice of comparing with tracking methods that
made both code and results available for direct and fair comparison. We observe that the
PMBM tracking filter outperforms the StanfordPRL-TRI method using Megvii in terms of
(A)MOTA, MT and ML performance measures. This implies that the PMBM tracking fil-
ter tracks properly the objects of interest in sequences compared to the StanfordPRL-TRI
tracker. However, the tracking is imprecise (in the MOTP sense). The (A)MOTP is com-
parable between methods but the PMBM underperforms across this performance measure.
Similarly, this is observed also when comparing with other state-of-the-art methods (Center-
PointEnsemble and SimpleTrack) using CenterPoint detections where the (A)MOTP is sys-
tematically worse in the case of the PMBM compared to the other two methods. This discrep-
ancy is attributed to a lack of parameter tuning as explained in 5.5 further. We note however
that the PMBM slightly outperforms other state-of-the-art methods for the ML performance
measure although it displays double IDS and similar MT performance measures. This could
be an indication that the explicit modeling of undetected objects in the context of the PMBM is
robust to occlusion and appearing objects although the motion model and other parameters
are not well optimized. The IDS performance also seem to indicate that the motion model
chosen or the data association approach can be further refined. There are strong assumptions
attributed to the constant velocity motion model. The assumption is that the velocity of the
parameter does not change during the time step increment. This is not always realistic in all
traffic situations. This assumption is partly mitigated by applying different motion noise to
different tracked object classes. Another possible mitigation method would be to use different
motion models for different classes of objects.

We note here that the reported times for estimation are much shorter for greedy methods
compared to methods using the Hungarian or Murty’s algorithm although the experimental
resources might be different. Methods using a greedy approach report 1 ms/frame speeds
whereas other data association approach report tens or hundreds of milliseconds per frame
as estimation speeds. This poses the question of the need for complex probabilistic model
for object representation as opposed to using a good detector, motion model and a greedy
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5.5. Motion and measurement noise tuning for MOTP/AMOTP performance increase

data association process. We argue that the present PMBM tracking filter lacks tuning in its
parameters and that the empirical performance is limited by the low frequency of information
used. This argument is elaborated on in the discussion of 5.5. Furthermore, explicit handling
of occluded objects is not proposed by other methods.

5.5 Motion and measurement noise tuning for MOTP/AMOTP
performance increase

In order to expand on the issue of the precision (MOTP and AMOTP), it was important to
understand the process of a Bayesian filter. The key components of which are the motion
and measurement process noises. A high motion noise allows for more measurements to be
included into consideration due to extended motions being possible. With low measurement
noise, the expected behavior is that of points further from the center of predicted distribu-
tions to not be considered for association (more variation in the speed update). The results
obtained are not in line with expected behavior. We observe high variations depending on
the motion noise, but not when changing the measurement noise. This seems to indicate that
other parameters could be involved in the AMOTP performance measures. Due to the size of
the dataset and other computational restrictions it is difficult to evaluate the performance of
the PMBM tracking filter with respect to the large parameter space. We have restricted our-
selves to studying only the motion noise and measurement noise effects on the AMOTP. A
more thorough analysis of the parameters affecting the performance of the PMBM filter with
respect to the lagging of tracking boxes requires a search over the parameters presented in A
as well as motion noise, measurement noise, filtering threshold, detection method and mo-
tion model. Due to limited computational resources and time, this could not be accomplished
in this work.

The survival probability, detection probability and existence pruning threshold affect di-
rectly how the spatial distributions of objects that are considered exist within a frame and
during a sequence. This affects the AMOTP by restricting the data associations possible. The
birth intensity, weight and birth gate size affect directly where new objects that enter into
frame (or occluded previously) appear in and their dislocation with respect to the ground
truth measurements. The number of global hypothesis kept as well as the weight pruning
threshold affect the the data associations considered directly and thus influence the AMOTP.
The filtering threshold on the detections affects the AMOTP as explained in 5.2 and finally
the detection method affects the AMOTP as presented in 5.3. The change of motion model
can affect the MOTP/AMOTP performance measure in the prediction step. Different objects
will have a "typical" motion that is different depending on the class of the object as well as
environmental context. A car on a highway and in a city or parking garage do not exhibit
the same behavior. A pedestrian in a suburban area or at a traffic intersection with bicycle
and cars are not expected to have the same motion. Changes in motion of objects depending
on their class an environment are expected to affect the choice of motion model and thus the
predicted state density of these objects. This directly impacts the performance of the track-
ing filter with respect to the expected position of the tracked object and the data association
between the next measurement and the state density. The choice of the motion model also
affects the data association. An incorrect motion model (such as the bus turning example)
may lead to the most likely data association being that of a new object being born on scene
due to the wrong motion being predicted between frames. One could use a non-linear mo-
tion model to model motion. This would require to change the Kalman filter to incorporate
non-linearities by using either an unscented Kalman filter [42] or the extended Kalman filter
[19].

It is noted in [34] that the NuScenes dataset suffers from a lack of annotation frames at
higher frequency. This is stated to increase the difficulty of tracking the proper objects when
sudden changes in motion and speed are operated between those key frames. This is an
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5.6. Method limitations

essential problem both to the Kalman filter and to the data association. The Kalman filter
predictive performance is affected by the frequency at which we can obtain measurement in-
formation. By increasing the frequency, the changes in state from one time step to the next
are smaller and easier to predict (in particular motion, rotation and speed). For the data as-
sociation, the higher frequency of measurement would increase the association performance
due to clutter being present only at certain frames and not others, thus removing certain hy-
pothesis from consideration faster. In this same study [34], the detections are augmented to
10Hz and evaluated on the evaluation set. The results are presented in tables 5.1 and 5.2 with
the 2Hz results as well as the PMBM implementation on CenterPoint detections.

Tracking method-detector AMOTA Ò AMOTP Ó MOTA Ò MOTP Ó MT Ò ML Ó IDS Ó FP Ó FN Ó
SimpleTrack 10Hz 69.5 54.6 60.2 32.5 4570 1366 403 14505 18120
SimpleTrack 2Hz 68.6 57.2 59.2 32.9 4385 1475 519 12983 19941
PMBM-CenterPoint 2Hz 65.3 68.1 56.9 32.8 4202 1451 1461 10981 21686

Table 5.1: Comparison of performance measures of trackers against 10Hz detection data aug-
mentation.

Tracking method-detector AMOTA overall Bicycle Bus Car Motorcycle Pedestrian Trailer Truck
SimpleTrack 10Hz 69.5 50.3 79.5 83.8 74.1 80.6 52.7 65.6
SimpleTrack 2Hz 68.6 51.0 80.4 83.8 68.3 79.2 53.0 64.9
PMBM-CenterPoint 2Hz 65.3 39.1 78.2 81.1 66.5 78.5 50.8 62.8

Table 5.2: Comparison table of overall AMOTA for each class of interest between 10Hz detec-
tion data augmentation and other methods

We can observe an increase in performance (in the 10Hz case) compared to the case where
the 2Hz data is used across all metrics and in particular with respect to the AMOTP. The
authors argue that the performance of most trackers can be increased through having higher
detection frequency.

5.6 Method limitations

The PMBM tracking filter implicitly handles the three uncertainties of the MOT task. The
number of state uncertainties are modeled using the RFS cardinality distribution as a prob-
abilistic representation of both the birth, evolution and death process of objects in situation.
The uncertainty of the state is encoded in the Kalman filter process where the Gaussian state
mixture components have updated covariances during the prediction step and once more
during the update step. The uncertainty in identity (or track identification) is encoded in
Murphy’s algorithm where the loss (distance) is minimized over all detected objects but not
necessarily for each and every particular object. The uncertainties themselves are not used at
estimation time. Following the maximum likelihood estimate decision criterion for point es-
timate, the output of the algorithm is the mean value of each Gaussian state. The covariance
matrices are saved for each state and used accordingly at the next iteration of the algorithm
to perform the prediction step and updated after data association.

Due to the use of a large dataset with various sequences presenting different condition and
the use of detector outputs as empirical input, we can assume that this study reflects an em-
pirical investigation of the performance of the PMBM. We will however note that the average
performance measures AMOTA and AMOTP typically used in evaluation of tracker perfor-
mance are heavily dependent on the detectors used as well as the dataset itself. NuScenes
was chosen as it presents varied and numerous sequences in different driving situations in
an open source format. The performance measures of the PMBM presented in this work are
heavily dependent on the previous reasons and will only be indicative of the performance
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5.7. Ethical considerations

on this data set. Any generalization of the performance of the PMBM should be investigated
in a wider context and with different datasets. Furthermore, the (A)MOTA and (A)MOTP
represent the overall performance over the dataset split studied and the assumption is that
the errors of the tracker are distributed uniformly across the various sequences used. The
MOTA and MOTP are chosen at the recall threshold where they are maximized. This gives
an account of the tracker performance, but not its operation in conjunction with the detector.
The difference between AMOTA and MOTA or AMOTP and MOTP is seen through the re-
call curve performance and provides better information about the data and detector. These
performance measures should reflect the average population behavior given the sufficient
number of sequences and the diversity of traffic situations.

The assumption of uniformly distributed error presents a step forward in the empirical
investigation of the PMBM compared to previous empirical study [3]. In this study, detector
output was simulated by adding independently and identically distributed (i.i.d) white noise
to the ground truth detections and uniformly distributed clutter on 20 sequences of the KITTI
dataset. In effect, i.i.d noise was added to the measurement set cardinality and to the ground
truth spatial position of objects . We argue that this is not representative of the true cardinality
distribution of clutter and too similar to ground truth in the case of measurement noise. This
could be interpreted as a bias towards the ground truth when evaluating the PMBM. The
authors acknowledge the issue due to a lack of generalization of the implemented detector
for that work. These shortcomings are addressed in this study as we use empirical detections
that encompass both detected state noise and clutter cardinality distribution in a way that is
more faithful to an empirical situation. Furthermore, the large size of the dataset allows for
generalization of the detection models.

We argue further that the other performance measures are computed values across the
whole evaluation set of data. This implies that the interpretation that we make in this work is
based on our understanding of the theoretical framework within which we operate but does
not reflect the sequence or frame by frame realities. We reduced the risk of wrong interpreta-
tion by choosing to display a sequence that encompasses several shortcomings of the PMBM
in a "sufficiently complex" scenario.

We also emphasize that the PMBM tracking algorithm is the only method (to the best of
our knowledge) that has an explicit probabilistic representation of occluded objects through
the undetected object distribution and proposes a measurement driven handling of the oc-
cluded objects and objects born on the scene for the first time. Deep learning tracking method
rely mostly on similarity measures or greedy data association methods to solve the occlusion
problem. Other Kalman filter methods presented here (AB3DMOT, StanfordPRL-TRI and
SimpleTrack) do not have an explicit representation of occluded objects.

5.7 Ethical considerations

This research is commissioned by Arriver in order to study a new and promising MOT fil-
ter. Although the aim is focused on tracking, this work has impacts on societal aspects. This
tracking filter can be used to increase the safety of road users. If this filter was coupled with
a decision policy system, the hope is to reduce road accidents. The application in automotive
autonomous systems of such a filter poses the question of confidence and minimum safety
thresholds that have to be met. This is inherently an issue that must be taken into account
according to ethical and moral considerations that are biased by societal values. The use of
distributions to estimate the state of objects of interest could be a good approach to decision
making as confidence bounds can be estimated by using the covariance matrix for the dif-
ferent values of interest and inform the model user about the amount of information present
to make a decision. However, we must remind ourselves that threshold values must be cho-
sen and unexpected behavior once a product is brought into production could lead to fatal
outcomes for road users.
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5.7. Ethical considerations

The MOT filter could also be used for surveillance in order to study group behaviors or
for security and policing purposes. There are also several military applications in which such
a MOT filter could find a use. These are of course dependent on social needs and biases as
well. In any of these applications, the model builder’s bias as well as the application bias
should be taken into account. This means that the PMBM tracking filter could be used for
means detrimental to societal betterment and as a tool for control.
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6 Conclusion

Multi-Object Tracking (MOT) is the task wherein objects of interest are identified and tracked
in measurement sequences of interest. MOT methods try to answer uncertainties regarding
the number of objects, the state of the objects of interest and the identity (track) to which they
belong. The PMBM tracking filter is a bayesian filter that is proposed to solve the MOT task.
Using conjugate distributions over random finite sets for detected and undetected objects,
the PMBM tracking filter algorithm predicts the state of objects of interest at future time steps
and updates the prediction with the output of an object detector. This thesis answers the
following research questions:

• What is the performance of the PMBM on the NuScenes dataset? The performance of the
PMBM tracking filter was investigated and evaluated depending on detector used and
against different other tracking methods. AMOTA and AMOTP are performance mea-
sures commonly used to evaluate the performance of MOT methods on the NuScenes
dataset. They respectively represent the performance of tracking by assigning the right
object to the right track and the precision of tracking in the sense of how close to
the ground truth positions the estimated states are. The best AMOTA and AMOTP
achieved on the validation set using the PMBM tracking filter is 65.3 and 68.8 respec-
tively.

• How does the PMBM performance compare to a baseline tracking method and against other
state-of-the-art tracking algorithms? We have shown that the PMBM tracking filter can be
evaluated on the NuScenes dataset, outperforms the baseline AB3DMOT on all perfor-
mance measures and performs competitively to other state-of-the-art tracking methods.

• How is the performance of the PMBM affected by the quality of the object detector output?
Increased performance of the PMBM tracking filter is shown to positively be related to
better detectors. The PMBM performance is negatively affected by clutter, but shows
good performance in (A)MOTA performance measures.

There are several restricting conditions to the performance of the PMBM filter. These re-
strictions are partly inherent to the dataset (detection clutter, annotation frequency), to the
method (intractability of Murty’s algorithm leading to long computational times) and to our
tuning of the parameter in the form of a large parameter space that makes optimization dif-
ficult within the time constraints of this project. In the previous chapter, aspects of tuning
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are discussed. The issue of dislocated center of object with respect to ground truth (AMOTP)
remains; although there are indications that the observed large AMOTP is caused by param-
eters that are not the motion or measurement noise. We also showed that the Mostly Lost
performance measure is better than the state of the art solutions. This is a strong indica-
tor that the explicit modeling of undetected objects, that is unique to the PMBM, allows for
tracking of occluded objects.

More investigations are required in order to understand the effect of the large parameter
space on the AMOTP. Applying different motion models is also a viable way of decreasing
the AMOTP as we have shown that the constant velocity motion model used is not robust
enough to handle sharp turns and large changes in velocity. We could also apply different
motion models depending on location (GPS information) and class of object. The dataset
could also be augmented by using the information contained between key frames to refine
the prediction of the Kalman filter. This could allow for sudden changes in velocity and
rotation to be accounted for. As shown, better detections lead to better tracking performance.
Better detectors have less clutter detected and more precise detections (in the MOTP sense)
that can be used. In terms of the speed of execution of the algorithm, the bottleneck is the
data association process. More studies are needed to investigate the effect of the parameters
of the reduction and their effect on computational speed and MOTA/MOTP.
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A Parameters

The parameters used for optimal performance of the PMBM filter are found here:

1. Survival probability ps: 0.85

2. Detection probability pd: 0.95

3. Poisson birth weight: ln(0.1)

4. Poisson birth gate size: 11

5. Poisson log-weights pruning threshold: -5

6. Poisson intensity: 10�4

7. Maximum number of global hypothesis: 5

8. Existence pruning threshold: 10�3

9. Log-weights pruning threshold: -5

The diagonal terms of the covariance matrices for motion/measurement noise depends
on the class of the tracked object. The values of these covariance matrix terms are calculated
as the mean standard deviation of the respective component on the training set as presented
in [7].
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B Figures for CenterPoint detector
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Figure B.1: Recall curves for CenterPointEnsemble
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Figure B.2: Recall curves for CenterPointEnsemble
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Figure B.3: Recall curves for SimpleTrack
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Figure B.4: Recall curves for PMBM
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C Figures for Megvii detectior
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Figure C.1: MOTA & MOTP recall curves for AB3DMOT-megvii
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(a) FN at different recall threshold
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Figure C.2: FN, FP & IDS recall curves for AB3DMOT-megvii
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(a) MOTA at different recall threshold

(b) MOTP at different recall threshold

Figure C.3: MOTA & MOTP recall curves for StanfordPRL-TRI
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(a) FN at different recall threshold

(b) FP at different recall threshold

(c) IDS at different recall threshold

Figure C.4: FN, FP & IDS recall curves for StanfordPRL-TRI
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Figure C.5: MOTA & MOTP recall curves for PMBM-megvii
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Figure C.6: FN, FP & IDS recall curves for PMBM-megvii
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D Figures for PointPillars detector
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Figure D.1: MOTA & MOTP recall curves for AB3DMOT-PointPillars
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Figure D.2: FN, FP & IDS recall curves for AB3DMOT-PointPillars
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Figure D.3: MOTA & MOTP recall curves for PMBM-PointPillars
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Figure D.4: FN, FP & IDS recall curves for PMBM-PointPillars
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