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Abstract

The aim of this paper is to investigate the use of Machine Learning to accelerate the pro-
cess of gas turbine design optimization. Traditionally, the process simulations involved in
optimization are performed using commercial Computational Fluid Dynamics (CFD) soft-
ware tools to find the best combinations of design parameters under specific conditions
and operational constraints. However, such simulations can become computationally too
complex and slow for routine analysis of component designs. To address this challenge, a
meta-modeling approach is developed in this study that uses "computer simulation data"
collected from a small number of simulation runs. The trained metamodel is then used to
predict the metal temperatures of the turbine blades to approximate the complex thermo-
dynamic simulations. The focus of this research is to accurately model the cooling process
of a turbine by analyzing the effect of changing the diameters of the cooling holes drilled
into the gas turbine blades on the output metal temperatures. It is concluded that neural
networks can estimate the metal temperatures several orders of magnitude faster than a
parallelized CFD software at a cost of mean error of 5.44˝C. This approach can provide
immediate feedback for real-time design iterations at the early stages of design.
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1 Introduction

1.1 Motivation

Siemens Industrial Turbomachinery (SIT AB), Finspång is one of the leading manufacturers
of medium industrial gas turbines for power generation in the world. Gas turbines are de-
signed to operate for long periods of time and in tough environments, of which the turbine
blades are often the limiting component [Figure 1.1]. According to [1], modern gas turbine
vanes and blades are exposed to gas at temperatures well above the melting point of the
component material. Therefore, the blades and vanes have to be cooled in order to lower the
temperature and avoid creating too large temperature gradients. Large temperature gradi-
ents cause excessive thermal stresses and significantly reduce the component life, leading to
premature failures [1]. The use of effective turbine blade cooling technologies is imperative
since gas turbine performance and efficiency is highly dependent on turbine rotor inlet tem-
peratures. Inadequate turbine blade cooling can jeopardize safe turbine operation, making it
critical to optimize the life cycle of turbine components.

Figure 1.1: Siemens Gas Turbine (SGT) 800. Image downloaded from [2], [3] © SIT AB

Significant advances in science and technology have revolutionized the design of gas tur-
bines. Turbine blades are usually made of super alloys that can operate at a high fraction

1



1.1. Motivation

of their melting point, have excellent mechanical strength and resistance to oxidation. Due
to the high cost associated with conducting physical test experiments, many industries rely
heavily on virtual prototyping tools to perform process simulations. For example, the cool-
ing process of a turbine blade can be analyzed over a complete range of operating conditions,
and different blade designs can be digitally studied to optimize the life cycle. SIT AB uses
three-dimensional CFD simulations to accurately predict the complex flow-field and metal
temperatures of the turbine blade to make engineering design decisions [4]. However, a
general problem with complex computer simulations is that they are time consuming and
computationally intensive. In addition, design optimization is an iterative process that often
involves a loop of design-simulation-redesign. To overcome this challenge, the metamodeling
technique has been recognized in the literature as a useful approach to reduce the computa-
tional effort involved [5], [6], [7]. It is also known as surrogate modeling, fast-approximation
modeling, or data-driven modeling. It is a concept that introduces an explicit and simplified
model based on the empirical relationship between the inputs and the corresponding outputs
in a data set generated from the detailed simulation model.

The current design process at SIT AB is shown in Figure 1.2. It is an iterative loop of
five different stages. First, a parametric Computer-Aided Design (CAD) model is created for
the component geometry of interest, which in this study is the blade of an SGT 800 gas tur-
bine [Figure 1.1]. The cooling inside the blade is simulated on the discretized mesh model
using the CFD software called C3D, which performs complex thermodynamic calculations
iteratively until convergence. In the next stage, the metal temperature from the C3D output
are used to predict the mechanical stresses and strains using Finite Element Method (FEM).
The fourth and final stage uses the thermal and mechanical integrity outputs to calculate the
expected life of the component in terms of load cycles (number of on-off cycles before com-
ponent failure) and hours (time for which the model can run at operating threshold speeds).

Figure 1.2: Design Cycle at Siemens Energy

If a particular simulation results in poor stress distributions or expected life, the model
must be redesigned and the entire cycle restarted. To speed up the design process, each
stage must be replaced by a fast approximation model. The focus of this study is to replace
the cooling model in the second stage of the design cycle using a surrogate model built on
empirical simulation data. A linear kriging surrogate [8] is inbuilt in the optimization soft-
ware presently used which serves as an existing baseline for this study. Since the empirical
model performs a fixed number of computations, it runs much faster than the original sim-
ulation model. The computational cost is mainly determined by the number of runs of the
original model to obtain the simulation data, which can be decided depending on the avail-
ability of time and resources. Surrogate modeling is an efficient way to explore input param-
eter ranges, analyze the sensitivity of design variables and response variables [9], warm-start
high-accuracy CFD simulations to speed up design cycles [10].

2



1.2. Aim

The type of metamodel depends on the intended use and the underlying physics that the
model aims to capture. The complex simulation model used to study turbine blade cool-
ing implies an implicit input/output function that maps the simulation parameters (e.g., the
diameter of the cooling holes, the mass flow in the cooling channel of the blade, geometry
of the blade), onto the response metal temperatures. The metamodel learns this underlying
function and is thus able to predict the output temperature for any value of the inputs.

Based on previous work, it has not been possible to establish one surrogate which always
yields the best result, instead it depends strongly on the problem it is designed to solve. Stud-
ies have shown that the best performing surrogate models for high-dimensional data sets are
deep learning models and ensemble methods. In [11], regression forest is used to approxi-
mate the behaviour of fluid particles with a feature vector designed based on the differential
equations governing the flow. The promising results in the study suggest the applicability of
machine learning methods such as regression forests to physics-based fluid simulations. The
research in [7] also uses an ensemble approach taking advantage of multiple neural networks
to model transient gas-solid flow simulations in a rectangular 3D fluidized bed. To the best
of the author’s knowledge, metamodeling has not been investigated with respect to its ap-
plication to CFD simulation of a gas turbine blade cooling, which is the primary objective of
this work. Gradient Boosted Decision Trees (GBDT) and Fully Connected Feedforward Deep
Neural Networks (FDN) are chosen as the surrogate models for this study and are evaluated
against linear baselines. The report also addresses how to handle high dimensional response
variables in metamodeling by exploiting their correlation structure. Principal Component
Analysis (PCA) is used to reduce the high-dimensional response to low-dimensional score
vector. The motivation behind using PCA is that the temperature response variables spatially
close to each other are highly correlated and thus can be efficiently represented by a low-
dimensional score vector [12]. According to the study in [12], PCA was successfully used for
a small-scale CFD simulation with up to 182,250 output variables.

1.2 Aim

The main objective of this paper is to investigate Machine Learning methods to build a meta-
model that can help speed up the design optimization process of a gas turbine, in particular
the cooling process of the turbine blades. The data obtained from CFD simulations is used to
train and evaluate the model. The metamodel will solve the problem of simulating the effect
on turbine blade cooling when the diameter of the cooling holes is changed. The boundary
conditions for the cooling process and the parametric CAD mesh model of the component are
not changed in the computer simulation experiments. In fluid mechanics, boundary condi-
tions are constraints necessary for the solution of a boundary value problem such as a system
of differential equations and are important to model the physical phenomenon [13].

1.3 Research Aims

1. Explore Machine Learning approaches to predict the output metal temperatures using
the input diameters of cooling holes, geometry of the component, and the boundary
conditions for the cooling model such as mass flow. Create and validate metamodels
which can be utilized by a mechanical engineer at Siemens in place of the original C3D
model.

2. Investigate dimension-reduction techniques to handle the high dimensional input and
response data.

3. Evaluate methods for multioutput predictions and draw comparisons with baseline
models chosen in this study and the existing linear kriging baseline having a Root Mean
Squared Error (RMSE) value of 98.2.

3



1.3. Research Aims

4. Compare and quantify the speed up gained from metamodel-based predictions over
the simulations from traditional CFD calculations for the cooling process of gas turbine
blade.

4



2 Theory

2.1 Sampling

2.1.1 Design of Experiments

The metamodel tries to approximate a black-box function that maps input diameters to out-
put metal temperatures as represented by the simulation model. All information about this
unknown function is in the generated design samples. However, it is not possible to know
in advance what the optimal distribution of designs is and how many designs are needed to
achieve a good modeling solution [14]. To determine the input settings for the design sam-
ples, generally, a process called the design of experiments (DOE) is used. It is a systematic
and rigorous statistical sampling approach to control where the design points are placed in
the design space to effectively evaluate the response function. In the context of computer
experiments, the main objective of DOE is to select the values of simulation inputs such that
the simulation data obtained are representative of the input space being explored and infor-
mative for predicting the process outputs.

The classical DOE methods [15], e.g., factorial designs, typically assign two or three pre-
determined levels for each process input, and then conduct experiments at all combinations
of the different input levels. Obviously, the more variables to investigate, the more combina-
tions are required. Due to the limited levels of the factors being studied, this strategy may not
have an optimal coverage of the design space and thus may result in a less reliable empirical
model [16]. The drawbacks of classical DOEs have motivated the concept of “space-filling”
designs, where the design points are uniformly distributed in the domain of each input [17].

2.1.2 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) is one of the most common methods used today for space-
filling designs [18], which tries to minimize the number of data points needed to achieve high
accuracy for surrogate models. In the context of statistical sampling, a square grid containing
sample positions is a latin square if there is only one sample in each row and each column
[Figure 2.1b]. Latin square corresponds to a 2D LHS where stratified samples are drawn from
two features. A latin hypercube is the generalization of this concept to an arbitrary number of
dimensions, where each sample is the only one in each axis-aligned hyperplane that contains

5



2.1. Sampling

it [19]. This is the latin hypercube requirement. In random sampling, new sample points
are generated without taking into account the previously generated sample points. Latin
hypercube sampling first specifies the number of samples and also stores which row and
column each sample was taken from to satisfy the Latin hypercube requirement.

(a) (b)

Figure 2.1: (a) 2D random sampling (b) 2D LHS

Figure 2.2: 1-Dimensional Stratified Sampling

The key principle behind this method
is to stratify the input probability distri-
bution to avoid sampling all points from
the same local region. In one-dimensional
LHS, the cumulative density function (if no
prior exists, a uniform distribution is as-
sumed) is divided into n equal intervals as
shown in Figure 2.2. Then, a sample is
randomly selected from each interval. In
two-dimensional LHS, the one-dimensional
method is applied to the marginal distri-
butions to obtain one-dimensional samples
for each variable separately. Once we have
the two lists of samples, they are randomly
combined, into two-dimensional pairs to get
n two-dimensional samples [18], [20].

Extending the same principle to k di-
mensions, when LHS is performed on k continuous design variables to achieve n samples,
the chosen range of values for each variable is first divided into n intervals. This creates a
total of n x k distinct intervals. Once we have k lists of n intervals each, we randomly com-
bine them into k-dimensional groups. Then, within each interval of each pair, we randomly
select a value according to a defined probability distribution. In the absence of a prior, we
assume a uniform distribution. Thus, we obtain n samples (groups) of k-dimensions. In de-
sign optimization, design variables are referred to as factors and the intervals in which their
input domains are stratified are called the factor levels. LHS assumes independence between
the factors, but is still relevant for the data in this study because the diameters of the cooling
holes can be varied independently of each other.

A basic LHS does not guarantee qualitative space-filling properties [Figure 2.3(a)]. There
are several variations of the method to achieve more optimal LHS and better space-filling.
The Optimal LHS technique is a modified Latin Hypercube where the combination of factor
levels for each factor is optimized, rather than randomly combined [21]. The goal of this

6



2.2. Principal Component Analysis

Figure 2.3: (a) 2D LHS with bad space-filling properties (b) 2D LHS with good space-filling
properties

optimization process is to maximize distances between data points in order to achieve more
space-filling data.

2.2 Principal Component Analysis

In theory, when modelling the cooling process of the turbine blade, the temperature values at
different spatial locations can be directly used as output variables. However, the dimension
of the temperature outputs from CFD simulation can be extremely high. As the granular-
ity of the mesh increases, the output dimension drastically increases since the temperature
is predicted at every node in the mesh. For example, the 3D simulation in this work gives
approximately 284,553 metal temperature values which can make the meta model complex.
This problem can be addressed by using dimensionality reduction techniques, such as prin-
cipal component analysis (PCA) [22], [23].

PCA is calculated on the covariance matrix or the correlation matrix of the data. PCA
finds a linear transformation of data such that the directions where data varies the most are
preserved. This transformation is orthogonal and converts a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables. PCA uses singular
value decomposition to calculate the eigenvectors and their eigenvalues for the covariance
matrix [24]. The eigenvectors form the basis for transformed data, these are called principal
components or principal axes and form the new dimensions or a new coordinate system.
The eigenvalues represent the variances in the data captured by the principal component
directions. The original data projected onto the new principal component axes are called the
scores.

Let yi(i = 1, . . . , N) be a vector of dimension P containing the metal temperatures from
the i-th simulation run. Then, the data from all the N runs are concatenated into a matrix of
order N ˆ P : Y = [y1, . . . , yN]1. In PCA, the temperature matrix is projected into scores and
loadings as

Y = TP1 (2.1)

where:
T(N ˆQ) is the scores;
P(PˆQ) the loadings or principal components;

If the original variables are highly correlated, the dimension of T can be dramatically
smaller than that of Y (i.e. Q ăă P), while still containing the essential information of Y.
Hence, a large number of temperature values are represented with very few score variables,
which are then used as the outputs for metamodeling. The model prediction is thus also in
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the form of PCA scores, which can be transformed, according to 2.2, to get the prediction
for the original temperatures. For brevity, a single score vector from the matrix T is denoted
t˚,j(j = 1, . . . , Q), which is of the order (N ˆ 1) (N is the number of simulation runs).

Ŷ˚ =
[
t̂˚,1, . . . , t̂˚,Q

]
P1 (2.2)

where t̂˚,j(j = 1, . . . , Q) is the prediction from metamodel for the j-th score vector and Ŷ˚
is the reconstructed original temperature prediction. After dimensionality reduction, regres-
sion models are developed to relate the input variables x, to the PCA scores as output. Since
the scores are of dimension Q, this is a multioutput regression problem.

2.3 MultiOutput Regression

Regression refers to a predictive modelling that typically involves predicting a single numer-
ical value. Multioutput regression are regression problems where multiple numerical values
are predicted given input variables. Often the outputs are not independent of each other and
may require a model that predicts all outputs together, or each output dependent upon the
other outputs.

The task of multioutput regression can be divided into multiple sub-tasks. For example,
to predict three values y1, y2 and y3 given an input X, three single-output regression models
can be built where one model is fit to each output. The simple regression models can be
implemented using two approaches [25], [26]. First, by developing a separate model for each
target value to be predicted directly. These models are independent of each other.

Model1: Given X, predict y1
Model2: Given X, predict y2
Model3: Given X, predict y3

Second, by creating a sequence of dependent models where the first model uses the input to
predict one output. The second model uses the input and the output from the first model to
predict the second output and so on [27].

Model1: Given X, predict y1
Model2: Given X, y1, predict y2
Model3: Given X, y1, y2, predict y3

The second approach assumes an implicit order in the y’s which may be justified in some
problems. But also since the models are chained together and every model depends on the
output from its previous model, the computational time complexity can be quite high. The
first approach is preferred in the experiment performed in this study where the y’s are inde-
pendently modelled in parallel because of reasons explained in Section 3.2.

2.4 Evaluation Metrics

2.4.1 Mean Squared Error

If a vector of n predictions is generated from a sample of n data points, and y is the vector of
observed values, with ŷ being the predicted values (e.g. as from a least-squares fit), then the
MSE of the predictor is computed as

MSE =
1
n

n
ÿ

i=1

(yi ´ ŷi)
2 (2.3)
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The only issue with MSE is that we cannot directly correlate it with the data as the order
of the error metric is more than that of the data. Hence, we take the root of the MSE which
is called the Root Mean Squared Error. Here, we are not changing the error metric but only
reducing its order to match that of the data and make it more interpretable.

RMSE =

g

f

f

e

1
n

n
ÿ

i=1

(yi ´ ŷi)
2 (2.4)

2.4.2 Mean Absolute Error

Mean absolute error (MAE) is another common loss function used for regression. The loss is
the average of the absolute differences between true and predicted values.

MAE =
1
n

n
ÿ

i=1

|y´ ŷi| (2.5)

MAE is a popular metric because, like RMSE, the units of the error score match the units of
the target value that is being predicted. But unlike the RMSE, the changes in MAE are linear
and therefore intuitive. That is, MSE and RMSE punish larger errors more than smaller errors,
inflating or magnifying the mean error score due to squaring of the error. The MAE does not
give unequal weights to different types of errors and instead increases linearly with increases
in error.

2.4.3 R-Squared

R-squared (R2), also known as the coefficient of determination, is the proportion of variance
of a dependent variable that’s explained by an independent variable in a regression model.
Whereas correlation represents the strength of the relationship between an independent and
dependent variable, R-squared explains to what extent the variance of the features explains
the variance of the target variable. For a data set y = [y1, . . . , yn]

T with fitted (or modeled,
or predicted) values ŷ = [ŷ1, . . . , ŷn]

T , the variability of the data set can be measured with
two sums of squares formulas:

The total sum of squares (proportional to the variance of the data):

SStot =
n

ÿ

i=1

(yi ´ ȳ)2 = nσ2 (2.6)

The sum of squares of residuals, also called the residual sum of squares:

SSres =
n

ÿ

i=1

(yi ´ ŷi)
2 = nMSE (2.7)

where ȳ and σ2 are the mean and the variance of the observed data respectively, given by:

ȳ =
1
n

n
ÿ

i=1

yi, σ2 =
1
n

n
ÿ

i=1

(yi ´ ȳ)2 (2.8)

The most general definition of the coefficient of determination is

R2 = 1´
SSres

SStot
= 1´

MSE
σ2 (2.9)

Best possible score is 1 and it can be negative because the model can be arbitrarily worse, i.e.
R2 P [1,´ inf). A constant model that always predicts the expected value of y, disregarding
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the input features, would get a R2 score of 0. In a multi-target regression setting, R2 is first
computed as a vector on the individual targets and then averaged out over all the m targets.

1
n

m
ÿ

j=1

R2
j = 1´

1
n

m
ÿ

j=1

MSEj

σ2
j

(2.10)

where σ2
j (j = 1, . . . , m) are the variances of the different target variables.

The mathematical framework for R-squared does not hold good when the regression
model is non linear [28]. In non-linear models such as neural networks, the features get com-
bined in different ways, where the variance of data SStot is not a sum of variance of the errors
SSres and the variance of the model (= 1

n
řn

i=1(ŷi ´ ȳ)2). Still, R2 as a function of the MSE
and data variance σ2 may be considered useful to interpret how well the model performs
alongside other evaluation metrics like MSE and MAE.

2.5 Ridge Regression

Ridge estimation is carried out on the linear regression model

y = Xβ + ε (2.11)

where:
y is the N ˆ 1 vector of observations of the dependent variable;
X is the N ˆ K matrix of regressors (there are K regressors);
β is the Kˆ 1 vector of regression coefficients;
ε is the N ˆ 1 vector of errors.

The OLS estimator pβ solves the minimization problem

pβ = arg min
b

N
ÿ

i=1

(yi ´ xib)
2 (2.12)

where xi is the i -th row of X and b and β̂ are Kˆ 1 column vectors.

The ridge estimator β̂λ solves the slightly modified minimization problem [29]

pβλ = arg min
b

N
ÿ

i=1

(yi ´ xib)
2 + λ

K
ÿ

k=1

b2
k (2.13)

where λ is a positive constant.

In ridge estimation a penalty is added to the least squares criterion. We minimize the sum
of squared residuals plus the squared norm of the vector of coefficients. In other words, the
linear regression model is penalized for having too many variables in the model. The ridge
problem penalizes large regression coefficients, and the larger the parameter λ is, the larger
the penalty. The consequence of imposing this penalty, is to reduce (i.e. shrink) the coefficient
values towards zero. This allows the less contributive variables to have a coefficient close to
zero or equal zero.

2.6 Neural Network

Neural networks are networks of simple processing elements operating on the data and com-
municating with one another. They are widespread in machine learning because of their abil-
ity to perform universal approximations [30]. The element in the network are called neurons.
The illustration of a simple neural network is shown in Figure 2.4.
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Figure 2.4: Mathematical model of a neural network

Activation functions are mainly used to add non-linearity to the model. Neural Network
without non-linear activation simply acts as a Linear Regression. There are different activa-
tion functions suitable for different tasks. In this work, ReLU activation layer was used.

relu(x) = max(0, x)

Figure 2.5: ReLU activation function

Its gradient is defined as:

d
dx

relu(x) =
"

0 if x ď 0
1 if x ą 0

As part of network training, the gradient of the loss function to be minimized is repeatedly
evaluated with the current weights of the network. The network weights are then updated
in the opposite direction of this gradient by an amount determined by the learning rate. The
most commonly used loss functions for regression are the mean squared loss and mean abso-
lute loss. Different optimization algorithms are used to direct the search of optimal weights
efficiently to minimize the loss.

2.7 Decision Trees for Regression

Decision trees are predictive models that use a set of binary rules to calculate a target value.
They split the data space multiple times according to certain cutoff values in the features.
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Given any data point, a decision tree arrives at an estimate by passing it through a series of
True/False questions on the input variables until it reaches a leaf node. The final prediction is
the average of the values of the target variable in that leaf node [Figure 2.6]. The model learns
in the training phase, what questions to ask and in which order, i.e., the features needed for
the best splits and their thresholds in order to make the most accurate estimates possible.
When the relationship between features and outcome is nonlinear or where features interact
with each other, decision trees outperforms linear regression models. It is considered to be
a non-parametric method. This means that decision tree makes no assumptions about the
data distribution and the model structure [31]. While working with continuous numerical
variables, it converts them into buckets and hence loses some information and predictive
power when assigning different data points to the same bucket. The underlying model is
simply the average of the data points in the terminal nodes of the tree [32]. Another possible
option is to use median or even run a linear regression model instead of using the average
[Figure 2.6a, 2.6b].

(a)
(b)

Figure 2.6: Decision Tree Regressor with (a) Median estimates (b) Least Squares (Linear Re-
gression) estimates. (Images downloaded from [33], [34] under creative Commons Attribu-
tion License.)

A tree’s accuracy is mainly affected by the decision of its splits. Decision tree for re-
gression normally uses mean squared error (MSE) to decide to split a node in two or more
sub-nodes. It picks features and their values for the splits such that the sub-groups created
are as different from each other as possible. It calculates the MSE separately for each subset.
The weighted average (MSE*n_samples) of the MSE of all the sub-groups created during a
split represents how good that split is. The tree then chooses the best split which results in
the smallest average MSE value, also known as the minimum impurity. A brute-force ap-
proach to find the best split is to try every variable and to try every possible value of that
variable and see which variable and which value gives a split with the best score. While
this kind of exhaustive search is possible in case of decision tree regressors with categorical
features having finite number of factors, it is impossible in case of decision tree regressors
with continuous input features. More commonly, some form of optimization algorithms are
used to build the decision trees by controlling hyperparameters such as minimum impurity
decrease or maximum depth [35]. The optimization process halts if the stopping conditions
are reached in the tree. No more splits occur in the tree if the decrease in MSE induced by the
split is less than the minimum impurity value specified, or when the tree reaches its specified
maximum depth [Figure 2.7].

Decision trees and tree-based models in general are unable to extrapolate to any kind of
data they haven’t seen before as they are just averaging data points they have already seen.
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They would fail to make accurate predictions if the new data provided are unrelated to the
data that they have been trained on. In summary, decision tree is a type of supervised ma-
chine learning algorithm (having a pre-defined target variable) that can be used in regression
problems if and only if the target variable is expected to be inside the range of values seen in
the training dataset [36], [37]. One major drawback of Decision Trees is that they are prone
to overfitting. Small variations in the data might result in a completely different tree being
generated. Hence, they are often used in an ensemble such as random forest to decrease
the variance in predictions. Random forest combines the predictions from multiple different
trees trained on different subsets of the same data to make more accurate predictions than
any individual model.

Figure 2.7: Regression Tree Hyperparameters

2.7.1 Gradient Boosted Decision Trees

The term boosting refers to a family of ensemble algorithms which converts weak learners to
strong learners [31]. It is an ensemble of machine learning models, typically decision trees,
aimed at primarily reducing bias, and also variance. Bagging ensemble techniques such as
random forests [38] train multiple weak learners in parallel and “bag” their predictions to
get a mean final prediction. Whereas, boosting is a sequential ensemble method where weak
learners, are sequentially produced during the training phase. In each iteration, the perfor-
mance of the present model is improved or “boosted” by assigning higher weights to the
previous, incorrectly classified samples or by optimizing some loss function.

There are many ways through which boosting can be carried out. Two of the methods
are discussed here. AdaBoost, short for "Adaptive Boosting" identifies the shortcomings of
base learners by increasing weights of incorrectly predicted data points (and decreasing the
weights of correctly predicted points) so that the next model will pay extra attention to get
them right [Figure 2.8a]. It also assigns weights to each learner in a way where models with
better predictions get more weight in the final prediction [39]. Gradient Boosting method
does not adjust weights of the data points, instead it focuses on the residual errors made
by the previous estimators and predict them. In other words, it optimizes the loss function
of the previous learner by adding the prediction of a new model that reduces the overall
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(a)
(b)

Figure 2.8: Ensemble of Decision Tree Regressors with (a) AdaBoosting (b) Gradient Boosting

loss. In this way, the present base learner is always more effective than the previous one.
Gradient Boosted Regression Trees can be seen as a stage-wise additive modeling algorithm.
In each iteration, it performs a steepest descent minimization for a given loss function, such
as mean squared error or mean absolute error by adding a base learner to fit the residuals of
the previous learner [Figure 2.8b]. The loss function is a measure indicating how good the
model’s coefficients are at fitting the underlying data. In case of regression tasks, the loss
function is based on the error between true and predicted values of the target.

Figure 2.9: Gradient Descent. (© Taylor & Francis Group LLC - Books. Reprinted with per-
mission.)

To improve a model F, we want to minimize the loss of the model for the entire training
dataset of size n [40]

L(Y, F(X)) = f (F (X1) , F (X2) , . . . , F (Xn) , Y)

In a non-parametric approach, F(X) evaluated at each point X is considered to be a "parame-
ter". In the function space there are infinite number of such parameters, but in a given dataset,
only a finite number are involved [41]. Minimization is performed by fitting an estimator H
on

(
Xi, BL

BXi

)
@i to approximate the gradient descent :

F (Xi)´
BL

BF (Xi)
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Algorithm 1: Gradient Boosting for regression

Fit estimator F1 for i

for i in [1, M] //M weak estimators do

Loss in ith iteration : Li =
řn

j=1
(
Yj ´ Fi (Xj

))2

Calculate negative gradient : ´ BLi

BXj
= ´ 2

n ˚
(
Yj ´ Fi (Xj

))
@i

Fit a weak estimator Hi on
(

X, BL
BX

)
end

Prediction from the final estimator FM :

FM(X) = Fi(X) + ρ ˚ Hi(X) = F1 + ρ ˚
řm

i=1 Hi(X) where ρ is the learning rate which
determines the size of the steps taken to reach a (local) minimum.

The key hyperparameters that can be tuned to optimize the performance of boosting al-
gorithms are the number of estimators which controls the number of weak learners and the
learning rate which controls the contribution of weak learners in the final combination. Apart
from this, the hyperparameters of base learners discussed above [Figure 2.7] can also be op-
timized for maximum performance.

2.8 Repeated K-Fold Cross Validation

K-fold cross validation is a re-sampling procedure used to evaluate the performance of ma-
chine learning algorithms on a limited data set. Data is first shuffled and split into k equal
and non-overlapping groups or folds. Each fold is held back as a validation set once while
all the other folds are collectively used as a training set. A model is fit on the training set and
evaluated on the hold-out validation set. The evaluated score is retained, and the model is
discarded each time. Hence, a total of k models are fit and evaluated on the k unique hold-out
test sets and the mean performance is reported [Figure 2.10]. K-fold cross-validation method
is primarily used to estimate the generalization performance of machine learning models
which is their ability to predict well on unseen data.

Figure 2.10: K-Fold Cross-Validation. Image downloaded from [42]. (© Springer Nature.
Reprinted with permission.)

The cross validation algorithm is stochastic, different splits of the same dataset may result
in very different results. Therefore, a single run of the k-fold cross validation procedure is
likely to give a noisy estimate of the model performance which is either too optimistic or
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pessimistic. The difference in the estimated performance from one run of k-fold cv to another
is dependent upon the model and on the dataset itself [43].

Repeated k-fold cross validation is one way to improve the estimated model performance.
It involves repeating the k-fold cv procedure multiple times and reporting the mean result
across all folds from all repeated runs. This mean is expected to be a more accurate estimate
of the true unknown underlying mean performance of the model on the dataset [44].

2.8.1 Asymmetric Loss for Regression

In regression one usually minimizes the mean squared error (MSE) for a sample:

MSE =
1
n

n
ÿ

i=1

(
f (xi)´ f̂ (xi)

)2
(2.14)

where f is the function that maps input x to target y and f̂ is the approximated function.

A way to define an asymmetric loss function would be to simply multiply by a weight:

L : ( f (xi) , f̂ (xi) , α)Ñ
1
n

n
ÿ

i=1

(
sign

(
f (xi)´ f̂ (xi)

)
+ α

)2
¨

(
f (xi)´ f̂ (xi)

)2
(2.15)

with α P (´1, 1) being the parameter that can be adjusted to change the degree of asym-
metry, while maintaining the quadratic loss and sign(x) is a function that returns ´1 if x is
negative and +1 if x is positive. It is used to trade off the penalty of underestimation against
overestimation. Positive values of α penalize overestimation and negative values penalize
underestimation [45].

Figure 2.11: Custom Loss

2.9 Hyperparameter Optimization

There are some parameters in machine learning models that are not updated during the learn-
ing. These are called the hyperparameters and generally used to either control the model (e.g.
number and depth of the decision trees, number of layers in a deep neural network, etc.) or
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the learning process (learning rate in gradient descent algorithm, number of epochs, etc.).
These hyperparameters must be tuned to allow a machine learning model to be customized
for a specific task or dataset. Hyperparameter tuning is an optimization problem where the
objective function of optimization is unknown or a black-box function. Two of the simplest
and most common optimization methods used are random search and grid search.

Random search defines a search space as a bounded domain of the various hyperparam-
eter values and randomly samples points in that domain. Whereas grid search is more ex-
haustive, it defines a search space as a grid of hyperparameter values and samples every
position in the grid. To find the hyperparameters that achieve the best performance, the ma-
chine learning model is trained with the sampled hyperparameter values on the training set
and evaluated according to a predefined metric on a cross validation set. While both these
algorithms can theoretically obtain the global optimal value of the optimization objective
function, they suffer from the curse of dimensionality, i.e., the efficiency of the algorithms
decrease rapidly as the number of hyperparameters being tuned and the range of values of
hyperparameters increase [46].

2.9.1 Bayesian Optimization

Bayesian optimization is an effective method for finding exrema of objective functions that are
computationally expensive to evaluate [47]. This objective function to be optimized is usu-
ally unknown and the optimization problem is akin to mining for gold in an unknown land
[48]. Bayesian optimization uses a surrogate function (also called a response surface) with a
prior over the space of objective functions to model the true underlying objective function.
Gaussian Process (GP) is a common choice for surrogates because of its flexibility and ability
to give uncertainty estimates [49]. It combines prior information about this unknown func-
tion with sample information, to obtain the surrogate posterior by using the Bayes’ rule. The
posterior captures the updated beliefs about the unknown objective function. Then, based
on this posterior information, it gives a distribution over the "updated" function values from
which we get a probabilistic estimate for where the maximum value can be found. The opti-
mization goal is to find the maximum value at the sampling point for an unknown function
f which has no analytical expression and/or is not differentiable:

x+ = arg max
xPA

f (x) (2.16)

Bayesian optimization derives from Bayes’ theorem [47], i.e., given evidence data E, the
posterior probability P(M | E) of a model M is proportional to the likelihood P(E | M) of
observing E given model M multiplied by the prior probability of P(M):

P(M | E)9P(E | M)P(M) (2.17)

A common use case of Bayesian Optimization is hyperparameter tuning to find the best
performing hyperparameters on machine learning models using limited number of function
evaluations. This is useful in case of models such as deep neural networks and gradient
boosted regression trees that are relatively expensive to train and evaluate multiple times.
Here, the unknown objective function is a function of all the hyperparameters to be opti-
mized, and the data are the hyperparameter values where the machine learning models are
evaluated. The data points are sampled from the search space sequentially according to an
aquisition function α(x). The aquisition function α(x) chooses the next sample point as the
one which has the highest probability of improvement over the current max f (x+). Mathe-
matically, the selection of next point can be written as follows [49],

xt = argmaxx α(x) (2.18)
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The aquisition function is a function of the posterior and it trades off exploitation and ex-
ploration. Exploitation means sampling where the surrogate model predicts a high objective
and exploration means sampling at locations where the prediction uncertainty is high. Both
correspond to high acquisition function values and the goal is to maximize the acquisition
function to determine the next sampling point [47]. Bayesian optimization is more suitable
than grid search or random search for high dimensional search spaces but one disadvantage
is that parallelization is not trivial [50].
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3 Method

3.1 Data

This section will cover the source and description of the data, the sampling method used to
generate the data and the generation process itself. Preliminary data exploration findings
related to the data distribution and correlation analysis of input and target variables are also
presented.

3.1.1 Source

This thesis work is based on the analysis of CFD simulation data generated in the design
optimization process of a gas turbine blade within the R&D department at SIT AB, Finspång.
The cooling simulation model in the second stage of the design cycle [figure 1.2] is the focus
of this study. It takes as inputs the diameter (m), area (m2), and the location of the cooling
channels inside the blade and calculates as output, the steady-state metal temperatures (C) at
each node in the CAD mesh of the component geometry [figure 3.1]. The cooling channels
in the blade are also known as the flow network collectively. Some of the channels that are
internal to the component are already casted when the component arrives in Finspång and
their diameters cannot be changed during the optimization process. Only the cooling holes
on the surface of the component can be optimized for improved lifespan of the blade. In
total, 143 holes were found to be optimizable for which the diameters are varied across the
experiments. The component mesh has 96,800 nodes in the airfoil and platform regions of the
blade [figure 1.1] where the metal temperatures are analyzed. The cooling process occurs as a
result of coupling between the flow network where the cooling air flows and the component
mesh where the target metal temperatures are calculated. Therefore, each cooling hole (input
diameter) is connected to multiple mesh nodes (target temperature) around it as visualized
in [figure 3.1].

The location of the cooling channels and the component mesh i.e., the blade geometry is
kept constant in this study. Apart from the CAD geometric input and the parametric inputs
that are the diameters of the cooling channels, there are also boundary conditions specified
on certain input nodes in the cooling channel of the blade known as ducts. These are the
inlet Pressure Loss Coefficient (PLC) defined in the duct at the root of the blade, the inlet
temperature (C), inlet pressure (Pa) and inlet mass flow (kg/s) of the cooling air. Mass flow
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(a) (b)

Figure 3.1: (a) Cooling Channels/Flow Network where the input diameters are defined (b)
Metal Temperatures calculated on the nodes in the component mesh. Images downloaded
from [51], [52]

also known as mass transfer is the movement of fluids down a pressure or temperature gra-
dient and the mass flow of the cooling air influences the cooling capacity of the blade. The
boundary conditions are also kept constant for the purpose of this study. For clarity, a set
of input variables and output variables that can be used to train a surrogate cooling model
is described as a data point or a design. The dataset for this study contains 1600 unique de-
signs generated using the commercial CFD software called C3D. The input ranges for cooling
channel diameters and the values for boundary conditions defining the flow of the cooling
air inside the blade are decided by a team of experts at Siemens.

3.1.2 Sampling

For the input sampling process, the 143 optimizable cooling branches in the flow network of
the blade are grouped into three flow groups called the Leading Edge (LE), Trailing Edge (TE)
and the Centre (C) each having a further level of subgrouping of their own (start, middle and
end). The diameters of the branches within a subgroup are varied together. Therefore, a total
of 9 input factors are sampled from their pre-determined diameter ranges listed in Table 3.1
using the LHS technique that gives the best spread of the input factors [Section 2.1.2].

3.1.3 Generation

HEEDS is an automation program developed by Siemens, that is used to automate design
generation. It allows users to create a customizable pipeline of different processes such as
generating the CAD model and doing CFD simulations on it.

In this thesis, HEEDS is used to simulate the metal temperatures on a turbine blade under
a range of diameter values for the optimizable cooling holes on the blade. A pipeline of three
processes was set up [Figure 3.2]. The first process samples the 9 input factors from their cho-
sen diameter ranges using the LHS technique to ensure proper coverage of the input space.
A python script is used to write these values into an excel file. The second process maps the
input diameter values from the excel into an .xml format which is the file format expected by
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Number Variable Min Baseline Max

1 TE_start 0.00001 0.0007 0.001
2 TE_middle 0.00001 0.0007 0.001
3 TE_end 0.00001 0.0007 0.001
4 LE_start 0.00001 0.0006 0.001
5 LE_middle 0.00001 0.0006 0.001
6 LE_end 0.00001 0.0006 0.001
7 C_start 0.00001 0.0006 0.001
8 C_middle 0.00001 0.0006 0.001
9 C_end 0.00001 0.0006 0.001

Table 3.1: Input Factors

the simulation software. The final process in the data generation pipeline is running the com-
mercial C3D toolkit to simulate the metal temperatures corresponding to the cooling channel
diameters. The CAD mesh model of the blade used by the C3D software remains constant
across all the generated designs. The computational time for a single simulation run is on
average 15 minutes on a desktop computer running Windows 10 system with an Intel Core
i7-9850H processor. HEEDS has support for extra features, such as cloud computing, different
sampling techniques and surrogate models (linear and gaussian kriging [8], [53]).

Figure 3.2: HEEDS Processes as shown in the graphical interface of HEEDS. © SIT AB

3.1.4 Data Distribution

Quantile-Quantile (Q-Q) plot is a probability plot, which is a useful graphical method for
comparing two probability distributions by plotting their quantiles against each other. The Q-
Q plot of the metal temperature response data [Figure 3.3] suggests that it is under-dispersed
i.e., the distribution has thinner tails than a normal distribution. Under dispersion can occur
when adjacent subgroups are correlated with each other, also known as autocorrelation. On
a Q-Q plot under-dispersed data appears S shaped. In a histogram, it can be seen that such
data has a reduced number of outliers [54], [55]. The data is bimodal (mixture of distributions)
with one peak close to 900˝C and another smaller peak at 500˝C.

3.1.5 Correlation Analysis

The correlation between the cooling hole diameters and the output metal temperatures were
studied using scatter plots for each hole and its neighbouring metal temperatures. Changing
the diameter of a single cooling hole affects the temperature at multiple points on the blade
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(a) (b)

Figure 3.3: (a) Q-Q plot of metal temperature response (b) Density distribution of metal tem-
peratures

region close to it. Thus, there is a one-to-many mapping between the inputs and outputs. The
diameters for two branches, one from the leading edge of the blade and one from the trailing
edge of the blade are plotted in Figure 3.4 against the metal temperatures of their closest
points on the blade across all the 1600 simulation runs. The cooling channel on the trailing
edge is more correlated to its neighbouring node temperatures than the trailing edge is to its
neighbouring temperatures. This means that not all the holes need to be changed to lead to
the desired change in temperatures and the position of branches in the blade is essential in
determining the metal temperatures.

(a) (b)

Figure 3.4: Correlation between input diameters and output metal temperatures in (a) Lead-
ing Edge (b) Trailing Edge of the blade

3.2 Implementation

This section will cover how the experiments performed in this thesis were carried out. As
part of data pre-processing, data conversions and dimensionality reduction using PCA are
performed on the data. Separate metamodels are then implemented to predict each score
under the assumption that the score variables are independent. It is a reasonable assumption
since the scores are linearly uncorrelated due to the application of PCA. The original response
is then re-constructed from the predicted score vector.
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3.2.1 Data Pre-Processing

Data Conversion Pipeline

The data for this research is a dump of .xml and .txt files exported from the CFD software. The
data is hosted in the simple cloud storage offered by Amazon Web Services (AWS). Several
pre-processing steps were involved in order to extract the relevant input and output informa-
tion from the files. A simple pipeline was set up [Figure 3.5] to transform the raw data into
suitable formats that can be used to train the surrogate models on.

The pipeline consists of three steps. In the first step, parsers built for each of the file
formats are used to get the raw data into data frames. In the second step, data from multiple
data frames are combined and merged to get the input and output variables of the model into
desired shape. In the last step, the reshaped arrays are converted into pickle file format and
stored in Amazon Simple Storage Service (Amazon S3) for performance reasons.

Figure 3.5: Data Processing Pipeline

Dimensionality Reduction using Cross Validated PCA

The most important parameter for the PCA algorithm is to choose the optimum number of
Principal Components (PCs) that will be sufficient to describe the data effectively. For this
study, it is not only enough to capture the maximum variance in the data but also reduce
the reconstruction error on the validation set. Reconstruction error is the absolute difference
between actual temperature values and the temperatures computed using the PCs [Equation
2.2]. When applying PCA to the 98,600-dimensional temperature response, 99.9 % of the vari-
ance in the original data is explained by just 50 principal components [Figure 3.6]. It indicates
that 50 principal components are sufficient to capture the essential information of the high-
dimensional temperature variables. However, the mean reconstruction error calculated on
the validation set is not optimal for 50 components [Figure 3.7] and can be further lowered
with the addition of more PCs.

Figure 3.6: PCA Cumulative Variance Ex-
plained

Figure 3.7: PCA mean reconstruction error for
a particular train-validation split
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Furthermore, the number of optimum PCs for low reconstruction error also depends on
the particular split of train and validation data. These results hold good only for a particular
train-validation split. In order to find the optimum number of PCs for any train-test split
on the dataset, cross-validation (CV) is carried out on the PCA algorithm using the training
dataset which consists of 80% of the total simulated designs. During the cross-validation
procedure, the training dataset is further split into train-validation sets in the ratio of 80-20
containing 64% and 16% of the total designs respectively. For validation of the PCA algo-
rithm, two error metrics are used to compute the cross-validation scores, the maximum and
mean reconstruction error on the validation set. The maximum reconstruction error gives an
estimate of the worst error in the temperatures reconstructed from PCs averaged over all the
validation samples. Whereas the mean error gives an estimate of the mean absolute error in
the reconstructed temperatures averaged over all the validation samples.

The method of repeated K-fold cross-validation is used with K=5 [Algorithm 2]. In each
step of the repeated K-fold CV, the PCA algorithm is fit on 80% of the training data and
the remaining 20% of the training set is used to compute the CV scores. The resulting
graphs of cross validated PCA are presented and discussed in the results chapter. A com-
parative study of the metamodels trained using different number of principal components
(100, 200, 300 . . . 1000) is also presented in the results chapter and the two approaches are
compared with each other in order to select the optimum number of PCs.

Algorithm 2: Cross-Validation on PCA
Result: The optimum number of Principal Components

for n_components in range [20, 1000] with a step size of 20 do

Initialize training and validation error metrics;
Create repeated K fold cross validation splits;

for TR, VA data sets in CV splits of temperature response do

Scale the TR and VA sets to have zero mean and unit variance;
Fit PCA to TR set and apply transformation on VA set;

Apply inverse PCA to TR and VA sets to get back scaled temperatures;
Apply inverse scaling to TR and VA sets to get back the original temperatures;

Compute max reconstruction error for TR and VA sets;
Compute mean reconstruction error for TR and VA sets;

end
Compute average of max and mean errors of all repeated folds;

end

3.2.2 Multi Output Regression Models

The dataset containing 1600 simulation designs is split into train-validation-test sets with a
64-16-20% ratio. When working with a regression problem, the most common baseline is to
use a central tendency measure such as the mean or median as the result for all predictions.
Several multi-output regression models [Section 2.3] including a mean, median and linear
regression baseline are trained on the train and validation sets and evaluated on the test set.
The mean and median baselines simply predict the target temperature at each point in the 3D
mesh as the mean and median respectively of the corresponding temperature values in the
training data set. Mainly, two models are compared in this study - Gradient Boosted Decision
Trees (GBDT) and a Fully Connected Feedforward Deep Neural Network (FDN).
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Linear Regression (LR) with L2 Regularization

The implementation of the ridge regression algorithm in the scikit-learn library supports mul-
tiple outputs directly. Thus, fitting the model to the multi dimensional temperature response
makes it possible to predict multiple values at once. The linear regression model with L2
regularization strength λ = 0.0001 is used as a baseline in this study.

Gradient Boosted Decision Trees (GBDT)

The gradient boosted decision trees algorithm on the other hand does not support multi out-
put regression directly and will raise an error when fit on multi dimensional response vari-
ables. A workaround for such models designed to predict only one value is to divide the multi
output regression problem into multiple sub problems [section 2.3]. The MultiOutputRegres-
sor wrapper implementation in scikit-learn, which uses the CART algorithm [56], takes a
regression model as input and fits one regressor per target. In this experiment, an ensemble
of gradient boosted decision trees was fit on each PCA score of the high-dimensional metal
temperature response variables. The GBDT base learners were tuned on the hyperparameter
ranges summarized in Table 3.2 using bayesian optimization [Section 2.9.1]. For compari-
son, GBDT was also fit on each of the original high-dimensional temperature responses. The
objective function minimized by the optimizer is the mean squared loss and the model is
evaluated on the validation set for the hyperparameter tuning.

Parameter Range Low Range High
Learning Rate 0.0003 0.1
Number of Estimators 10 200
Maximum Depth 3 20
Minimum Impurity 0.1 0.5

Table 3.2: GBDT - Hyperparameter Ranges

Fully Connected Feedforward Deep Neural Network (FDN)

To decide on the architecture of the deep neural network, a tuning job was carried out on
parameters such as the number of dense layers and the number of neurons in the dense lay-
ers. The tuning job utilized 30 different networks with different number of hidden layers and
neurons to find the optimum depth of the network and the optimum number of neurons in
each layer using the bayesian optimization strategy [Section 2.9.1]. Other hyperparameters
like the learning rate, number of epochs and dropout regularization were also optimized to
achieve high model performance. Table 3.3 summarizes the parameter ranges used in the
hyperparameter tuning of the fully connected feedforward deep neural network. Early stop-
ping was used with a patience of 20 by monitoring the validation mean squared error loss.
In this experiment, the output layer size was first fixed to 96800 for predicting the original
high-dimensional temperatures and then to 700 for PCA score predictions.

Parameter Range Low Range High
Learning Rate 0.0003 0.01
Epochs 500 3000
Number of Dense Layers 2 6
Dropout 0.15 0.7
Number of Neurons in Dense layers 300 2000

Table 3.3: FDN - Hyperparameter Ranges
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The proposed best architecture uses two fully connected dense layers, each with ReLU
as an activation function, and an Adam optimizer that minimizes the mean squared loss
objective function [Figure 3.8]

Figure 3.8: Architecture of NN Model used for training

3.2.3 Experimental Setup

AWS Sagemaker estimators are used to train the surrogate and baseline models. Tensorflow
is used for deep learning models, while Sklearn is used for gradient boosted decision trees
and linear regression models. The instances used for training the Tensorflow and Sklearn
models are g4dn.2xlarge and ml.m4.2xlarge, respectively, as the former supports GPU while
the latter does not. Both the instances have Intel Xeon Scalable processors as CPUs, 32GB
of RAM, whereas g4dn.2xlarge has an additional 1 NVIDIA T4 Tensor Core GPU. The AWS
Sagemaker tuner is used for hyperparameter tuning, which uses Bayesian optimization by
default. The models are tuned and trained on 1280 simulation designs (train + validation
sets) and evaluated on the remaining 320 designs (test set).

3.3 Evaluation

Before using the metamodels, it is important to know the accuracy of the model, i.e., how well
the metamodel represents the underlying detailed simulation model. This could be done by
studying different error measures. When the metamodel is found to be accurate enough, it
can be used for metamodel-based optimization studies.

3.3.1 Standard Metrics

The evaluation metrics used to compare the performance and evaluate the predictive ac-
curacy of the surrogate models are the Standard Mean Squared Error (MSE), coefficient of
determination (R2), Mean Average Error (MAE) and the Root Mean Squared Error (RMSE).
The standard MSE does not distinguish between the two types of error i.e., under-predictions
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and overpredictions and penalizes both the same way. It is mainly concerned with penalizing
large errors significantly (quadratically) more than the small ones.

3.3.2 Custom MSE

In determining the lifespan of the turbine blade, it is more favourable for the model to over-
predict than underpredict the metal temperatures. This is because predicting temperatures
higher than the actual values will result in a conservative life evaluation which can be re-
garded as a lower limit for the true life of the component computed from the CFD simula-
tion. Hence, a custom MSE metric which is asymmetric is implemented for the evaluation of
the model. The asymmetric loss function introduced in Section 2.8.1 is used to optimize the
model and also used as an evaluation metric to assess its performance on the test set. As we
want to err on the side of over-estimating, we trade off the penalty of over-estimation against
under-estimation by assigning asymmetric weights to the two types of errors [section 2.8.1].
An α value of -0.49 was used to set the degree of asymmetry.
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4 Results

This section presents and compares the results gathered in the experiments. Four different
experiments were carried out in this study. First, performance of the baselines and the surro-
gate models were evaluated on the entire output dimension of the target. Second, optimum
number of principal components was selected based on the results of CV PCA on the target
variables. Third, baselines and the surrogates were evaluated on the optimum number of
PCA scores of the target variables. Fourth, the FDN surrogate was trained and evaluated
using an asymmetric regression loss. To compare the CFD results with the surrogate model
results, the best and worst predictions by the surrogates are presented. The MSE and MAE of
all the predictions on the test set are also visualized on the blade geometry. Finally, the time
taken by the surrogate models for training and making predictions are compared.

4.1 Hyperparameter Optimization

Before any training, selection of model hyperparameters was done for all the models. Hyper
parameter tuning jobs were run for both FDN models with fixed output layer size 96800
and 700, and GBDT model with output size 700. Whereas, the GBDT model with output size
96800 was trained with the default settings for the hyperparameters: Number of Estimators=10,
Maximum Depth=4, Minimum Impurity=0.1 and Learning Rate=0.1. Because running a tuning
job for GBDT models fit on 96800 response variables without GPU support was not practically
feasible.

A total of 30 FDN models and 20 GBDT models with different hyperparameter settings
were trained on 1024 simulation designs in the training set (60%) and evaluated on 256
designs in the validation set (16%). The optimal values of hyperparameters found by the
bayesian optimization are listed in Table 4.1 for FDN and Table 4.2 for GBDT. As can be seen
from plots in Figure 4.1 and Figure 4.2, the hyperparameter samples evaluated by the opti-
mizer are chosen greedily to minimize the MSE loss of the response surface of the underlying
objective function.
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4.1. Hyperparameter Optimization

Parameter Optimum Value Optimum Value
FDN (700) FDN (96800)

Learning Rate 0.006064 0.000988
Epochs 1985 2950
Number of Dense Layers 2 2
Dropout 0.424645 0.525365
Number of Neurons in Dense layers 1892 1692

Table 4.1: FDN - Optimal hyperparameters

Figure 4.1: FDN - Hyperparameter Tuning using Bayesian Optimization (Drop out, Epochs,
Learning Rate, No. of neurons, No. of dense layers)

Parameter Optimum Value GBDT (700)
Learning Rate 0.095749
Number of Estimators 193
Maximum Depth 4
Minimum Impurity 0.209655

Table 4.2: GBDT - Optimal hyperparameters

Figure 4.2: GBDT - Hyperparameter Tuning using Bayesian Optimization, Max Depth, Min
Impurity, No. of Trees, Learning Rate
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4.2 Training directly on high-dimensional target data

As a reference, all the models are first trained directly on the high dimensional metal temper-
ature response variables. The performance of mean, median, and linear regression baseline
models are compared with that of the two chosen models in this study [Table 4.3].

Model MAE MSE RMSE R2

Median 34.10 3699.45 60.82 -0.051
Mean 34.82 3626.04 60.22 -0.005
Ridge Regression 12.79 473.83 21.77 0.544
FDN 11.59 335.20 18.31 -6.605
GBDT 12.92 486.69 22.06 0.745

Table 4.3: Performance comparison of models trained on high-dimensional metal tempera-
ture response

4.3 Results for different amount of PCA components

It is observed that for the CV PCA experiments ran with the settings detailed in Section
3.2.1, the improvement in the maximum reconstruction error gained from adding additional
PCs plateaus after 500 principal components [Figure 4.3]. The mean reconstruction error
reaches its minimum value around 300 principal components, much before the maximum er-
ror reaches its minimum. According to these results, selecting 500-1000 principal components
for building the metamodels will most likely keep the maximum error introduced due to di-
mensionality reduction below 10˝C. It is an optimal choice considering how the max error
doesn’t improve much with the addition of more PCs beyond this point. The results of CV
PCA can be generalized and said to be true for the underlying true distribution of the data.

Figure 4.3: Cross-Validation Scores

To further validate if the choice of PCs was optimal, an alternative approach was con-
sidered. The two chosen models were trained on different number of PCs determined on
the training set and evaluated on their predictions on the validation set. Here, the errors
introduced due to the surrogate models are evaluated on top of the errors present from di-
mensionality reduction [Figure 4.4]. This is in contrast with the first part of this experiment
where only the reconstruction errors due to the dimensionality reduction was considered to
optimize the PCs. For both the models, validation MSE falls below 20˝C when 700 principal
components is selected. There is no decided value of MSE that is desired to be achieved here,
only to minimize it as much as possible with low computational overhead. It is obvious from
the results that adding more PCs drives the validation MSE further lower, but the improve-
ment quite saturates after 500 components. This is in agreement with the results of CV PCA.
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To minimize the validation MSE objective and maximize model performance, 700 PCs were
selected as the optimum choice for training the surrogate models on. The FDN model was
trained with the optimized architecture found in the previous experiment with the full out-
put dimension. It was not feasible to run a hyperparameter tuning job for each selection of
PCs before model training. Likewise, the GBDT model was trained on different number of
PCs with the default hyperparameter settings.

Figure 4.4: Test MSE of FDN and GBDT models trained on different number of principal
components

4.4 Training on PCA scores

The performance of the baselines, FDN and GBDT models trained on (700) PCA scores of the
high dimensional temperature response are presented in Table 4.4. The percentage improve-
ment of the best performing model which is the FDN is also reported.

Model MAE MSE RMSE R2 % Decrease in MAE

Median 35.59 3826.07 61.86 -0.036 84.71%
Mean 34.90 3627.72 60.23 -0.004 84.40%
Ridge Regression 12.79 473.83 21.77 0.544 57.47%
GBDT 5.49 120.89 10.99 0.917 0.91%
FDN 5.44 92.76 9.63 0.925 -

Table 4.4: Performance comparison of models trained on low-dimensional PCA scores of
temperature response

The mean squared error and the mean absolute error of predictions over the test samples
are plotted at each point in the 3D mesh of the blade for both the surrogate models [Figures 4.8
- 4.11]. The MSE and MAE are high along the leading and trailing edges of the blade where
the temperatures are harder to predict due to their wide ranges. Since, MSE is in squared
units, its harder to interpret its values in terms of the temperature outputs that we are inter-
ested in. Whereas, MAE matches the units of the target value being predicted and is therefore
more intuitive. The mean absolute error in both cases range between 0˝C´ 18˝C. There are
two modes in the MAE distribution of all the temperature nodes on the blade [Figure 4.7],
the first one is near 1˝C and the second peak is around 7.5˝C. In other words, most of the bad
predictions at the output nodes are off by less than 10˝C while at some nodes (mostly con-
centrated around the leading and trailing edges of the blades), they are off by 10˝C ´ 17˝C.
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The mean over all the target points on the blade gives a single error metric for the model as
presented in Table 4.4.

Figure 4.5 Figure 4.6

Figure 4.7: (a) Mean Absolute Error Distribution in FDN (B) Mean Absolute Error Distribu-
tion in GBDT

Figure 4.8: FDN Mean Squared Error

Figure 4.9: FDN Mean Absolute Error

The worst and best predictions of the metal temperatures from the two surrogate models-
GBDT and FDN trained on PCA scores, as visualized in the form of the gas turbine blade
geometry is presented in Figures 4.12 - 4.15. Each figure has three subplots, the left plot
is the result of CFD simulation model, the middle plot is the prediction from the surrogate
model, and the right plot is the error distribution which is the difference between CFD and the
surrogate. The regions in red are the nodes where the predicted temperature values are lower
than the actual temperatures, while the blue regions on the blade indicate overpredictions.
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Figure 4.10: GBDT Mean Squared Error

Figure 4.11: GBDT Mean Absolute Error

Figure 4.12: Worst prediction from Feedforward Deep Neural network

Figure 4.13: Best prediction from Feedforward Deep Neural network

33



4.5. Time Comparisons

Figure 4.14: Worst prediction from Gradient Boosted Decision Trees

Figure 4.15: Best prediction from Gradient Boosted Decision Trees

The neural network model with an RMSE of 9.63 outperforms the linear kriging baseline
having RMSE value of 98.2 with a relative improvement of 90%. The software script for the
integrated surrogate model only supports RMSE which is why that is the metric used for
comparison with the kriging baseline. Because the multi-target regression models compute
the mean error metrics along two axes, i.e., mean over the samples in the test set and also over
all the targets, we can compute the error metrics for each sample as well. Table 4.5 shows the
metrics computed for the worst and best predictions of the best performing surrogate model
which is the FDN. It can be seen that the worst RMSE is much lower than the RMSE of the
kriging baseline.

Sample MAE MSE RMSE R2

Worst 10.33 319.07 17.86 0.93
Best 2.66 13.89 3.73 0.99

Table 4.5: Sample error metrics for the FDN model

4.5 Time Comparisons

The C3D simulation times are listed in Table 4.6. These times are approximate and not exact
since the HEEDS software generates multiple designs at once and parallelizes the tempera-
ture calculates performed in C3D. At most 4 designs were run in parallel for the data gen-
eration in this study and the time taken for 320 designs is estimated by simple interpolation
for fair comparison with the surrogate prediction times. The computation time for the speed
up gained by the best performing surrogate models which are the FDN and GBDT models
trained on 700 PCA scores are summarized in Table 4.7. The total time taken for tuning jobs
are recorded in hours and the time taken for training the models with optimal hyperparam-
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eter values are recorded in seconds. The prediction times are over all the 320 designs in the
test set.

Model No. of Designs Computation Time (h) Computation Time (s)

C3D 4 0.25 900
C3D 320 20 72,000

Table 4.6: Temperature calculation times in C3D using HEEDS

Model Tuning (h) Training (s) Prediction (s) % Increase (over C3D)

FDN 0.92 129 0.137 99.9998
GBDT 1.13 124 7.843 99.9891

Table 4.7: Speed gain in predictions on 320 test designs using best performing surrogates
trained on low-dimensional PCA scores of temperature responses.

4.6 Custom loss

The residual errors from predictions on the test designs for the FDN model trained with
standard MSE loss and the custom asymmetric MSE loss are compared in Figure 4.16. The
majority of the residual errors close to zero are dropped to better visualize the effect of asym-
metric loss. The skewness towards negative values of residuals has clearly increased in (b)
compared to (a). But, the number of non-zero residuals (absolute value greater than 5) has in-
creased along the y-axis from (a) to (b). The best and the worst predictions from FDN trained
on the asymmetric loss is presented in Figure 4.17 - 4.18. Model metrics as computed in the
previous experiments are listed in Table 4.8. It can be seen that while the custom MSE loss is
minimized, the standard MSE loss of the model has increased as compared to the previous
FDN model trained on standard MSE loss.

Model MAE MSE RMSE Custom MSE R2

FDN (Custom Loss) 6.03 103.75 10.619 32.34 0.918

Table 4.8: Performance of FDN model trained using custom asymmetric MSE loss

(a) (b)

Figure 4.16: Residuals from FDN trained using (a) standard MSE loss (B) custom MSE loss
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Figure 4.17: Worst prediction from Feedforward Deep Neural network with Custom MSE
Loss

Figure 4.18: Best prediction from Feedforward Deep Neural network with Custom MSE Loss
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5 Discussion

This thesis aims to use metamodeling in the life cycle optimization of a gas turbine. This
chapter discusses the study results and the limitations of data and methods used to perform
the experiments. Ideas about future work are presented to guide further studies and im-
provements within the subject. The work is also placed in the broader context and its impact
on related areas are brought up.

5.1 Results

The results of the experiments presented in the previous chapter are discussed in this sec-
tion. In particular, models trained on the high dimensional targets are compared with mod-
els trained on the low dimensional PCA scores of the targets in terms of their performance,
training and prediction times.

5.1.1 Training directly on high-dimensional target data

The ridge regression baseline and gradient boosted decision trees perform considerably better
than the FDN model on the full dimension of the target temperatures. At first glance, the
results seem conflicting, both in terms of expected model performances and the observed
values of evaluation metrics. One would expect the FDN model to generalize better than
the simple linear regression baseline. Also, given the low value of MSE and MAE observed
for the FDN, it is surprising to see a low R-squared value. The poor generalization of the
model can be attributed to the large number of weights in the network. Due to the extremely
high dimensional output layer in the network architecture, there are approximately 30 million
trainable parameters in the model. The size of the data used in this study is insufficient to
reasonably train such a vast network.

In a multi-target regression problem, the MSE, MAE and R-squared metrics are calculated
for each target variable and averaged out over all of them to get a single estimate for the
model. One should not be misled by the low MSE value while assessing the various model
performances. A low MSE value or a high R-squared value on its own does not necessarily
mean good output predictions. Considering the distribution of MSE, MAE and R-squared
values over all the target variables gives a better insight into the goodness of fit of the models.
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It is helpful to evaluate which target variables (for this study, the blade regions) are predicted
well and which targets the model performs poorly on. The negative R-squared for FDN
despite the low MSE can be explained by looking at how the metric is computed [Equation
2.10]. The mean R-squared is not a linear function of the mean MSE (mean over all targets)
and is scaled by the variance of the targets. The average MSE of the FDN is comparable to
that of the GBDT and linear regression models. Still, because the model performs poorly on
most targets while performing exceptionally well on very few targets, it gets a low mean R-
squared score. The GBDT and linear regression models perform reasonably well on all the
targets and therefore have a low MSE complemented with a high mean R-squared score.

Due to the sampling methods used in the data generation process, there is an inherent
grouping in the predictors of the models. Input diameters for a group of cooling branches
are always varied together, which introduces collinearity among the predictors. Linear re-
gression with L2 regularization and gradient boosting technique, in general, can handle mul-
ticollinearity between input features quite well [57]. Neural networks also tend to be fairly
insensitive to multicollinearity because of their nonlinear projection methods and tendency to
overparameterize [58]. However, multicollinearity affects the learning of an artificial neural
network so that it will take more time to converge to its optimum weights.

5.1.2 Training on PCA scores

Two approaches were used to determine the optimum number of PCs in the target temper-
atures. In the CV PCA approach, reconstruction errors on validation data were considered
to optimize the PCs. These are the errors introduced due to dimensionality reduction. In
contrast, the learning curve approach optimized PCs based on the validation MSE errors
in surrogate modeling. The learning curve shows the improvement in model performances
with the addition of more PCs. Training the surrogates on 500-1000 principal components
did not affect the model performances much. An optimum of 700 PCs were chosen to keep
the maximum reconstruction error and also the validation MSE below 20˝C.

With the output layer size reduced to 700 dimensions instead of 96800 dimensions, the
number of parameters in the FDN model reduces to almost 2 million. The metal temperature
predictions improve considerably [Table 4.4]. The generalization performance of the FDN
can to some extent be attributed to the high rate of dropout regularization used. Interest-
ingly, the ridge regression model performs equally well when predicting the PCA scores of
temperatures and the original temperatures. There is almost no increase in prediction errors
introduced due to PCA for this model. Improvement of GBDT and FDN models is the most
drastic after PCA is applied to the target variables. FDN somewhat outperforms the GBDT
model on the test set in terms of the evaluation metrics and also its training and prediction
times. The worst temperature predictions from FDN are 100˝C off in magnitude from their
true values while the worst predictions from GBDT are off by 250˝C. The high difference
errors are generally concentrated along the leading and trailing edges of the blade as sug-
gested by the MSE and MAE plots [Figure 4.8-4.11]. Both models are trained on 1280 training
+ validation samples and evaluated on 320 samples in the test set. Their training times are
almost comparable [Table 4.7] even though FDN is trained using GPU support while GBDT
is trained without it. Whereas, the prediction time of GBDT is about 100 times slower than
that of the FDN which are both done on CPU. This is because the runtime cost for prediction
in GBDT is linear in the number of trees and also in the number of targets, whereas with the
FDN gives all outputs from one forward pass of the network.

The prediction results from FDN trained on asymmetric loss is unsatisfactory as sug-
gested by the histogram of residuals in Figure 4.16. This could be because the predictions
are in the domain of PC scores. And the asymmetric loss imposed on the scores does not
translate back to the expected overpredictions in terms of the original temperatures. Overall,
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the number of non zero residuals have increased which is worse for the evaluation of life of
the blade.Moreover, it is difficult to assess whether the goal of favoring overpredictions is
achieved since it is not trivial to decide how much trade off is acceptable in terms of replac-
ing the positive errors with negative errors. Ultimately, the output of the "thermal" surrogate
model is only a step in the bigger process of design optimization of the blade. The model
prediction errors themselves are not of high importance as long as the chain of surrogates
[refer Figure 1.2] can guide the design optimization process in the right direction. This can
only be validated when the optimum design of the blade (i.e., the diameter values of cooling
holes when the geometry of the blade is considered constant) as determined by the surrogate
models is also evaluated using the actual CFD simulations, which can be a week long process
and is outside the scope of this study.

5.2 Method

This section discusses the methods used, its limitations in the context of its applicability to
future and other similar works, and alternative approaches and recommendations for future
research.

5.2.1 Data Sampling and Generation

Unless the data generation process is truly random, there is likely some amount of bias in the
data used for training the surrogate models. One such constraint in the data sampling done
for this study is that the diameters of the cooling holes are varied in groups [Section 3.1.2].
This introduces some sampling bias in the data, which propagates to the model training. The
surrogate models are influenced towards patterns more commonly occurring in the training
data and are thus less likely to be correct in predicting extreme variations. This bias in train-
ing data in regression problems is similar to the problem associated with minority classes
in classification [59]. As a result, when test samples from a similar data generation process
are presented to the models, predictions are within the well-represented region. The errors
for such samples are low, while the predictions for test samples generated from a different
process will lie outside this region resulting in a high prediction error.

The primary aim of surrogate models is to reduce computational cost by avoiding the so-
lution of the full scale model. However, often, surrogate models do not exhibit the acceptable
features over the entire domain, even after extensive sampling is carried out [60]. In [61],
adaptive sampling or sequential sampling method is shown to require fewer observations
thus reducing the total time and computational effort required for data. In adaptive sam-
pling, a surrogate is fitted to the sample points that have already been generated. The fitted
surrogate is then used for directing new sample points towards areas that will increase the
surrogate accuracy. In other words, adaptive sampling relies on the prediction uncertainty of
the surrogate models to generate new data. It is shown to be more efficient in accounting for
the nature of the system being modelled [62].

5.2.2 Dimensionality Reduction

The number of nodes in the CAD mesh model of the blade where the metal temperatures are
calculated is very large. It is in the order of tens of thousands and can increase further if the
granularity of the mesh is increased. In this study, PCA is applied to the target temperature
variables to reduce the number of points for output predictions. PCA projects the data into
a lower-dimensional space where the variance of the projected data is greedily maximized
along each axis. It does not take correlations between the inputs and the output into account.
As a result, PCA may perform poorly if the input features are strongly correlated with target
directions that have low variance. PCA will drop the directions with a lower variance, and
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the final regressor will not be able to leverage the predictive power of the input features on
those target variables. Furthermore, PCA performs poorly when there are non linear correla-
tions present in the data. Other dimensionality reduction techniques need to be employed to
preserve the non-linear correlations between inputs and outputs. Because of the complex ge-
ometry of the turbine blade where the metal temperatures are calculated, they may be better
represented using a non-linear dimension reduction method that can uncover both linear and
nonlinear correlations in the data. Autoencoders are a family of neural networks that were
first developed in the late 1980s for the purpose of non-linear dimensionality reduction [63].
It can give a latent space representation of the high dimensional targets and has been widely
applied for this purpose in many studies. [64], [65]

5.2.3 Model Selection

The surrogate models used in this study fail to make accurate predictions along the leading
and trailing edges of the blade consistently. This is mainly because the temperature ranges
and distributions vary widely from one spatial region of the blade to another. They are not
well modeled using a single surrogate without more physics-based feature engineering [66].
One way to improve the predictions is to model different regions of the blade separately.
One can use a clustering method followed by a group of surrogate models for each cluster to
model each region more accurately. Each model can take into account the local distribution
of metal temperatures in that region leading to better predictions overall [67].

Furthermore, the models used in this work do not use the geometric structure of the blade
explicitly as input features to predict the metal temperatures. The position of the cooling
holes (input diameters) as well as the x, y, z coordinates of the nodes (output metal tempera-
tures) are constant in this study and therefore implicitly encoded in the position of the input
features and the target variables. However, if the blade’s geometry were to change in the
future, the models would still learn similar correlations between the cooling hole diameters
and the metal temperatures without taking into account the effect of physical geometry on
the input-output relation of variables. One way to encode this geometric information would
be to use graph neural networks to capture the neighborhood information of the nodes on
the blade. In [68], graph-based networks are used to learn accurate, long-term simulations of
different fluids, and rigid solids. One of the more interesting claims in the study is that the
graph network can generalize well beyond training to more challenging settings.

The use of ML models is particularly promising in scientific problems involving processes
that are not completely understood, or where it is computationally infeasible to run mecha-
nistic models in desired time. However, the application of even the state-of-the-art black box
ML models often have limited success in scientific domains due to their large data require-
ments, inability to produce physically consistent results, and their lack of generalizability
to out-of-sample scenarios [69]. Alternatively, in [66], a physics-guided machine learning
(PGML) approach was used to leverage the knowledge of physical systems into the learn-
ing of a neural network. The features extracted from simplified physics-based models are
combined with input features to learn physically consistent representation of the quantities
of interest such as pressure, temperature and velocity field of fluid simulations. Integrating
Physics-based modeling with machine learning to leverage their complementary strengths is
highly active area of research [70], [71].

5.3 The work in a wider context

The long-term implementation of this research work involves two stages – first stage is to
create surrogate models for each step of the design optimization cycle and the second stage
is to use these surrogates in the optimization process. This project addresses the first stage
i.e., to build a surrogate model for the cooling model of the turbine blade. The second stage

40



5.3. The work in a wider context

of implementation is to integrate this surrogate model with other surrogate models created
for stages further down in the design cycle. Ultimately, determining whether a mechanical
engineer at SIT AB can use this pipeline of surrogates to replace the current design optimiza-
tion is left as future work to be carried out after analysing the results of this thesis work. The
best designs produced by the pipeline of surrogates will be validated by running numerical
calculations on the actual CFD software. If the design is found to be optimal in the simu-
lations, then the surrogates can be used in the optimization process of gas turbines blades.
This is beneficial in many ways, both directly for Siemens in an economical aspect but also
in an environmentally sustainable aspect. Higher efficiency of gas turbines lowers fuel costs,
maintenance costs, and more crucially, in an age of escalating climate concerns, lowers carbon
dioxide emissions per unit of electricity generated. Depending on the extent of reliance on the
surrogate models and their predictions, this work is a first step in the direction of automating
the design optimization process. This will in the near future reduce the human intervention
required and relax the work loads of CFD engineers.

The ideas and techniques presented in this thesis apply to other related industries and
not only Siemens. The surrogate modeling framework used in this study can be adapted to
any field in engineering to optimize different design processes. If applied to the automobile
and aviation industries, metamodeling-based optimization could provide better and safer
alternatives quicker.
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6 Conclusion

In this work, two meta-modeling methods using multi-target regression are applied to the
cooling process of gas turbine blades. Through experiments, it is demonstrated that the pre-
dictions of blade metal temperatures by meta-modeling via fully connected feedforward neu-
ral network and gradient boosted regression trees are successfully correlated with the simula-
tions by C3D in most situations. Training the models on the reduced dimension of the output
temperature variables gives better prediction results than the models trained on the original
temperature variables that are spatially correlated. The mean error of every prediction point
from the neural network surrogate is below 20˝C and the overall mean error of the model is
about 5˝C. The model has an RMSE value of 9.63 which is a significant improvement over
the existing kriging baseline model with an RMSE value of 98.2. Thus, given new diame-
ters of the cooling holes, the metal temperatures can be estimated in a very short time. The
computational time gain compared to traditional process is in the order of tens of thousands
of seconds. Surrogates can make multiple predictions in under one-tenth of a second, while
a set of four design runs in C3D takes around fifteen minutes. However, there is currently
a lot of active research with deep learning methods and physics-informed neural networks
(PINN) that could provide much more interesting results in this area in the future.
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