
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Statistics and Machine Learning

2020 | LIU-IDA/STAT-A--20/006--SE

Intra-Day Electricity Trading with
Reinforcement Learning

Julius Kittler

Supervisor : Jose M. Peña
Examiner : Oleg Sysoev

http://www.liu.se

Abstract

This thesis addresses the problem of trading electricity on the German intra-day elec-
tricity market. In particular, the continuous hourly intra-day market is considered, where
electricity is traded that is to be delivered at a specific hour in the future on the same or
next day. Electricity is traded continuously, meaning that orders can be placed at any given
time until shortly before the specific hour at which the electricity is delivered to consumers.

The problem of trading electricity is addressed with reinforcement learning (RL). In
particular, RL agents are trained to place both, buy and sell orders, with the goal to achieve
large profits per traded volume. The RL agents also need to make decisions about the
volume they want to buy or sell at each trade. The primary RL method applied in this thesis
is a synchronous advantage actor-critic method (A2C) and the secondary RL method is a
deep Q-network (DQN). Bayesian optimization is applied to optimize hyperparameters,
features and reward functions. Training, validation and evaluation are conducted based
on static data of historic market orders instead of a dynamic market simulation. This means
that the actions of the RL agents do not affect the market prices in the context of this thesis.

Mainly, this thesis makes three contributions by a) comparing different reward func-
tions, b) comparing different RL methods and c) comparing the final RL agent with baseline
strategies. In regards to the reward functions, it is shown that a prevalent reward function
from the financial domain, the Sharpe ratio, is not the most suitable reward function in the
electricity domain if the goal is to optimize profits. In regards to RL methods, A2C and
DQN resulted in similar behavioral strategies and their performance difference was not
found to be significant. In regards to baseline strategies, the final RL agent was shown to
outperform different baseline strategies: a random trader, a forecast trader and a moving
average trader. However, the RL agent was not able to outperform a simple rule-based
algorithm that was reverse engineered to mirror the RL agent’s main strategy of selling at
sudden price increases.

Overall, this thesis shows that RL is suitable for creating profitable trading agents and
for identifying successful trading strategies. Moreover, this thesis also shows that success-
ful trading strategies may be simple in the context of electricity trading, which allows to
represent them with rule-based algorithms. Therefore, a possible approach might be to
use RL to identify successful trading strategies and to then convert these strategies into
rule-based algorithms to reduce complexity and improve interpretability.

Acknowledgments

I would like to thank my supervisor Ludwig Rauch at EXXETA for highly fruitful discus-
sions, feedback and help to prioritize relevant aspects of the thesis. Above all, I would like to
thank him for being a great and supportive colleague that was really fun to work with.

Furthermore, I would like to thank my supervisor Jose M. Peña for giving detailed feedback,
for pointing me to relevant literature within the field of reinforcement learning and beyond
and for inspiring me to combine ideas from different academic research fields. I was im-
pressed by how closely Jose M. Peña followed along with the progress of this thesis.

Last but not least, I would like to thank my examiner Oleg Sysoev not only for his precise
feedback from a statistical viewpoint but also for running the outstanding master’s program
in Statistics and Machine Learning at LiU, which to me was the best possible preparation for
this master’s thesis. I can hardly express how thankful I am for these 2 years full of challenges.

iii

Contents

Abstract ii

Acknowledgments iii

Contents iv

List of Figures vi

List of Tables vii

Acronyms 1

Reinforcement Learning Symbols 2

Trading Symbols 3

1 Introduction 4
1.1 Motivation . 4
1.2 Objective . 5
1.3 Research Questions . 5
1.4 Delimitations . 5

2 Theory 6
2.1 Introduction to Reinforcement Learning . 6
2.2 Introduction to Neural Networks . 11
2.3 Methods in Reinforcement Learning . 13
2.4 Synchronous Advantage Actor-Critic (A2C) . 18
2.5 Deep Q-Network (DQN) . 19
2.6 Reward Functions for Trading . 21

3 Literature Review 26
3.1 Properties of the Electricity Market . 26
3.2 Electricity Price Forecasting . 27
3.3 Reinforcement Learning in the Electricity Domain 28
3.4 Reinforcement Learning in the Financial Domain 28

4 Data 30
4.1 Data Preparation . 30
4.2 Feature Engineering . 32
4.3 Data Split . 36

5 Method 37
5.1 Environment . 37
5.2 Evaluation Metrics . 39

iv

5.3 Bayesian Optimization . 41
5.4 Baseline Strategies . 43
5.5 Statistical Evaluation . 44
5.6 Reward (Question 1) . 47
5.7 Methods (Question 2) . 48
5.8 Baseline (Question 3) . 49
5.9 Software . 50

6 Results 51
6.1 Reward (Question 1) . 51
6.2 Methods (Question 2) . 55
6.3 Baseline (Question 3) . 59

7 Discussion 63
7.1 Reward (Question 1) . 63
7.2 Method (Question 2) . 66
7.3 Baseline (Question 3) . 68
7.4 Transfer into practice . 71
7.5 Ethical considerations . 72

8 Conclusion 74

A Appendix 76
A.1 Static data for RL environments . 76
A.2 RL Algorithms . 77
A.3 Feature Distributions . 80
A.4 Q-Q Plots . 82
A.5 Training Metrics . 83
A.6 Episode Categorization . 89
A.7 Example Episodes . 90
A.8 Results by Episode Type . 98
A.9 Forecast Baseline . 101
A.10 Hyperparameters . 104
A.11 Selected Features . 106

Bibliography 107

v

List of Figures

2.1 Agent-environment interaction in a Markov decision process 7
2.2 Example of a multilayer perceptron with 2 hidden layers 12
2.3 Action-value function parameterization with NN 14
2.4 Policy function parameterization with NN . 16
2.5 State-value function parameterization with NN . 16
2.6 Example of risk-neutral and risk-avoiding utility . 24

4.1 Diagram of order book data . 31
4.2 Correlation plot of all features after scaling . 34
4.3 Violin plots of price before scaling for 6 instruments 35
4.4 Violin plots of price before scaling by data type . 36

5.1 Diagram of RL environment . 38

6.1 Question 1 - Example of episode with spikes . 53
6.2 Question 1 - Distribution of evaluation metrics by reward type 54
6.3 Question 2 - Median profit per volume traded by Optuna trial for A2C and DQN . 56
6.4 Question 2 - Distribution of evaluation metrics by model type 58
6.5 Question 3 - Distribution of evaluation metrics by trading strategy 61

A.1 Causal relationships in RL environment based on static data 76
A.2 Violin plots of market features before scaling . 80
A.3 Violin plots of indicator features before scaling . 80
A.4 Violin plots of market features after scaling . 81
A.5 Violin plots of indicator features after scaling . 81
A.6 Question 1 - Q-Q Plots and Boxplots . 82
A.7 Question 1 - Learning curves from training phase 85
A.8 Question 1 - Learning curves from training with 1 single contract 86
A.9 Question 2 - A2C learning curves from training phase 87
A.10 Question 2 - DQN learning curves from training phase (250K steps) 88
A.11 Example episodes by episode type . 90
A.12 Question 1 - Example of episode with increasing trend 91
A.13 Question 1 - Example of episode with decreasing trend 92
A.14 Question 2 - Example of episode with spikes . 93
A.15 Question 2 - Additional example of episode with spikes 93
A.16 Question 2 - Example of episode with increasing trend 94
A.17 Question 2 - Example of episode with decreasing trend 94
A.18 Question 3 - Example of episode with spikes . 95
A.19 Question 3 - Example of episode with increasing trend 96
A.20 Question 3 - Example of episode with decreasing trend 97
A.21 Forecast of price percentage changes with NN . 101
A.22 Question 3 - Learning curves forecast model . 102

vi

List of Tables

4.1 Feature overview . 33
4.2 Overview of training, testing and validation data . 36

5.1 Overview of methods by research question . 37

6.1 Question 1 - Distribution of profit per volume traded by reward function 52
6.2 Question 1 - Bootstrap hypothesis tests and confidence intervals 52
6.3 Question 2 - Distribution of profit per volume traded by model type 57
6.4 Question 2 - Bootstrap hypothesis tests and confidence intervals 57
6.5 Question 3 - Distribution of profit per volume traded by trading strategy 59
6.6 Question 3 - Bootstrap hypothesis tests and confidence intervals 60

A.1 Question 1 - Profit per volume traded by episode and reward type 98
A.2 Question 1 - Profit by episode and reward type . 98
A.3 Question 2 - Profit per volume traded by episode and model type 99
A.4 Question 2 - Profit by episode and model type . 99
A.5 Question 3 - Profit per volume traded by episode type and trading strategy 100
A.6 Question 3 - Profit by episode type and trading strategy 100
A.7 Question 3 - Classification accuracy of forecast model and majority classifier 103
A.8 Question 3 - Forecast confusion matrix (training) . 103
A.9 Question 3 - Forecast classification report (training) 103
A.10 Question 3 - Forecast confusion matrix (test) . 103
A.11 Question 3 - Forecast classification report (test) . 103
A.12 Overview of hyperparameters (DQN) . 104
A.13 Search space of hyperparameters (DQN) . 104
A.14 Overview of hyperparameters (A2C) . 105
A.15 Search space of hyperparameters (A2C) . 105
A.16 Question 3 - Selected features with Bayesian optimization 106

vii

Acronyms

RL reinforcement learning

MDP Markov decision process

TD temporal difference

MC Monte Carlo

NN neural network

A3C asynchronous advantage-actor critic

A2C synchronous advantage-actor critic

DQN deep Q-network

OTE optimal trade execution

EPF electricity price forecasting

1

Reinforcement Learning Symbols

t discrete timestep

T final timestep of an episode

At a random variable representing the action at time t

St a random variable representing the state at time t

Rt a random variable representing the reward at time t

Gt a random variable representing the return following time t (until the end of the episode)

a an action (a value of the random variable At)

s, s1 a state and it’s subsequent next state (values of the random variables St and St+1)

r a reward (a value of the random variable Rt+1)

π a policy (a decision-making rule)

π(s) action taken in state s under deterministic policy π

π(a|s) probability of taking action a in state s under stochastic policy π

2

Trading Symbols

Vt total volume traded at time t (by all market participants)

Vb
t volume bought by the agent at time t

Vs
t volume sold by the agent at time t

Pt market price per volume at time t

Ct total cash of the agent at time t

Qt total inventory, i.e. quantity of volume, owned by the agent at time t

Et total equity of the agent at time t (Ct + Pt �Qt)

PT total profit (or loss) of the agent for an episode of length T

3

1 Introduction

1.1 Motivation

Trading financial assets such as stocks, indices and currencies has received much attention
in academic literature. Among others, the problem of trading financial assets has been ap-
proached with methods from the field of reinforcement learning (RL), with early successes by
e.g. Moody et al. in 1998 [1], [2]. Recent advances in the field of reinforcement learning, e.g.
[3], [4], have opened a whole new level of opportunities. For instance, reinforcement learning
agents were used to beat human champions in games such as Go, Dota 2 and StarCraft II [5]–
[7]. Recently developed successful reinforcement learning methods have also been applied
for trading in the financial domain [8].

In the electricity domain, the problem of trading has also been approached with reinforce-
ment learning [9]–[11]. However, the focus has been on addressing the problem of optimal
trade execution (OTE), where a certain amount of electricity is either to be sold or to be bought
in order to maximize revenue or minimize cost respectively. In contrast, this thesis addresses
the problem of optimizing profit by doing both, buying and selling electricity, as in the fi-
nancial domain. This problem has received little attention from the research community in
the electricity domain. Nevertheless, trading electricity by doing both, buying and selling, is
practically possible. Just like in the financial domain, this problem may be approached with
reinforcement learning. This leads to the questions: what is reinforcement learning and why
it is a suitable methodological choice for trading electricity?

In the field of statistical learning, we generally distinguish between unsupervised and
supervised learning [12]. Reinforcement learning may be seen as a third paradigm. The
main idea of reinforcement learning is to train an agent to take actions in an environment in
order to optimize some objective function. The agent learns by actively gaining experience
through exploration: in some environment state s, the agent takes an action a and receives
a reward r (and continues this process from the next state s1). Learning by taking actions
and receiving a feedback from the environment is what distinguishes reinforcement learning
from supervised learning. In supervised learning, we estimate functions f : x Ñ y based
on some given, labeled training data (X, y). In reinforcement learning, we learn functions
f : s Ñ a based on experience in form of tuples (s, a, r, s1) (representing state, action, reward,
next state), which are not given as is but instead collected by the agent itself. By making use of
exploration, the agent learns to take sequences of actions that are optimal without ever being

4

1.2. Objective

given which actions are optimal (not even in the form of training data). This motivates the
choice of reinforcement learning for this thesis.

Importantly, RL agents are usually trained in an environment which dynamically re-
sponds to the agents’ actions. In video games such as Dota 2, the agent might attack the op-
ponent, and as a consequence, the opponent will fight back or try to defend itself. However,
it is also possible to train an agent in an environment that does not change as a consequence
of the agent’s actions. In the context of trading for example, one could make the assumption
that the agent’s trades do not affect the market price of whatever product is traded. In this
case, the environment, which is mainly based on the market price, would not be affected by
the actions of the agent. Hence, the environment may be represented with a static data set
consisting of historic time series of the market price. Please refer to section A.1 for more de-
tails. Using static data is a common approach in research about reinforcement learning for
trading and was, for instance, used in [8], [13], [14]. Also in this thesis, RL agents were trained
in an environment where states were represented with static data as described in chapter 4.

1.2 Objective

The underlying purpose of the thesis is to create a RL agent that can profitably trade electric-
ity. In particular, the RL agent is supposed to maximize profit per volume traded. This means
that each volume of electricity traded by the agent should result in large incremental profits.
In this thesis, the agent is supposed to make trading decisions not only about whether to buy
or sell but also about the volume to buy or sell.

Trades are to be placed on the continuous hourly intra-day market. In this market, elec-
tricity is traded that is to be delivered at a specific hour in the future on the same or next day.
Moreover, electricity is traded continuously, meaning that orders can be placed at any given
time until shortly before the specific hour at which the electricity is delivered to consumers.

1.3 Research Questions

This thesis aims to answer three research questions. These questions are relevant not only
from a practical perspective but also from an academic perspective. First, it is important to
define the reward function for the RL system because, in the context of RL, the reward func-
tion determines which actions the agent learns to take. Second, it is relevant to understand
how different methodological approaches may affect the performance. Third, it is important
to compare the results with a baseline in order to understand how well the RL agent performs
relative to simple approaches. In particular, the first and the second question have received
attention in academic literature, for instance in [2] and [15] respectively.

1. Reward: Is the Sharpe ratio, a prevalent reward function from the financial domain, the
best reward function for intra-day trading in the electricity domain?

2. Method: Does the RL agent achieve a better performance when trained with an actor-
critic method than when trained with a critic-only method?

3. Baseline: Does the RL agent achieve a better performance in trading electricity than
baseline strategies that are commonly used for trading?

1.4 Delimitations

The thesis focuses exclusively on the German continuous intra-day electricity market and it
focuses exclusively on hourly contracts (for electricity that is delivered at a specific hour).
Furthermore, the agent only places market orders (and not limit orders or any other type of
orders). This means that orders specify the volume to buy or sell (but not the price at which
to buy or sell since all orders are executed at market price).

5

2 Theory

While it is possible to use supervised learning for trading, reinforcement learning provides a
much more elegant approach [15]. This is because trading applications are essentially appli-
cations that perform actions to optimize a certain objective and in reinforcement learning, an
agent is trained to perform actions to optimize a certain objective as well.

In contrast, the approach of supervised learning is less elegant. In supervised learning,
prediction models are trained to make forecasts of e.g. future prices. These forecasts sub-
sequently need to be mapped to actions explicitly. This approach may not be optimal for
various reasons, such as failure to optimize the objective [13], [15]. For instance, the objective
may be to maximize profits, but forecasts are made to minimize forecast error. In addition,
the forecasts may not be mapped to actions in a way that maximizes profits. Finding an
optimal mapping from predictions to actions is non-trivial, and therefore, it is common to
use heuristics such as: buy some volume if the forecast corresponds to a price increase by 3%
and sell some volume if the forecast corresponds to a price decrease by 3% [16]. Reinforce-
ment learning on the other hand, allows to learn sequences of actions that optimize the objec-
tive directly, without any intermediate steps such as predictions. Importantly, reinforcement
learning does not require any prior knowledge about which actions are optimal. Therefore,
this thesis mainly uses reinforcement learning instead of supervised learning.

In this chapter, theoretical concepts relevant for this thesis are introduced. Section 2.1
introduces the elements of reinforcement learning, section 2.2 introduces neural networks,
section 2.3 provides an overview of RL methods, section 2.5 introduces the first RL method
applied in this thesis, section 2.4 introduces the second RL method applied in this thesis,
and section 2.6 introduces reward functions that are used for reinforcement learning in the
context of trading. Throughout this thesis, efforts were made to maintain the notation of the
text book Reinforcement learning: An introduction by Sutton and Barto [17]. This text book is
also the main reference for sections 2.1 and 2.3.

2.1 Introduction to Reinforcement Learning

The purpose of this section is to give an overview of the elements of reinforcement learning.
This section does not explain actual methods but rather introduces the terms and concepts
that are necessary to understand RL methods.

6

2.1. Introduction to Reinforcement Learning

2.1.1 Finite Markov decision process

Finite Markov decision processes (MDPs) represent the foundation of reinforcement learning
theory. A finite MDP consists of four elements: a finite set of states S , a finite set of actions
A, a finite set of rewards R and the probability distribution displayed in equation 2.1. In
general, states contain the information available to the decision maker (also called agent),
actions represent the decisions taken by the agent and rewards represent the feedback that
the agent receives in response to taking a certain action in a certain state.

p(St+1 = s1, Rt+1 = r|St = s, At = a), (2.1)

The probability distribution from equation 2.1 is also referred to as p(s1, r|s, a) in short.
St+1, St, At and Rt+1 are random variables representing states, actions and rewards respec-
tively and s1, s P S , a P A(s) and r P R are values of these random variables. A(s) denotes the
set of valid actions for a state with value s. The prime 1 denotes the value at the next timestep,
meaning that s is the state value at the current timestep and s1 is the state value at the next
timestep.

There are two main assumptions of the finite MDP [18]. First, it is assumed that the Markov
property is fulfilled and second, it is assumed that the temporal homogenous transition probability
property is fulfilled. Both are reflected in the probability distribution p(s1, r|s, a).

1. The Markov property states that the random variables at time t + 1 only depend on ran-
dom variables at time t (but not on any random variables before that, such as t� 1). In
other words, St+1 and Rt+1 only depend on St and At (but not on St�1 and At�1 or any
other random variables before).

2. The temporal homogenous transition probability property states that the random variables
St+1 and Rt+1 do not depend on the value of time t itself. In other words, the probability
Pr(St+1 = s1, Rt+1 = r|St = s, At = a) is the same when t = 1 as when t = 100 (as long
as the values s and a in the condition are the same).

Figure 2.1: Agent-environment interaction in a Markov decision process [17]

2.1.2 Agent-environment interaction

In the context of RL, MDPs describe the interaction between an agent and its environment.
At every timestep t, the agent is in a certain state St and takes an action At. Subsequently,
the environment issues a reward Rt+1 and the next state of the agent St+1. This process is
visualized in figure 2.1. It repeats until termination if the environment is episodic like in this
thesis (or until infinity if the environment is continuing). In an episodic environment, the
following trajectory is observed for one episode of length T:

7

2.1. Introduction to Reinforcement Learning

S0, A0, R1, S1, A1, R2, S2, A2, R3, ..., ST�1, AT�1, RT , ST (2.2)

The definition of episodes depends on the RL application. In the context of board games,
an episode might represent one game of, for instance, chess or Go. Similarly in video games,
an episode might represent one game session that lasts until the player looses or wins. In the
context of intra-day trading, an episode might correspond to one day of trading.

While the finite MDP seems suitable for formalizing the problem of reinforcement learn-
ing, its assumptions are generally relaxed for RL problems in practice. Sutton and Barto
encourage to "think of the state as whatever information is available to the agent about its
environment" [17, p. 7]. In the context of trading for instance, the state St may contain infor-
mation about past market prices from t� k, ..., t instead of only information about the market
price at time t. Thereby, the Markov property would be relaxed. Furthermore, the time t may
be encoded in the state space as well if it provides valuable information to the agent. Thereby,
the temporal homogenous transition probability property would be relaxed as well. In addition,
many practical problems, such as the problem of trading electricity, are best represented not
by a discrete state space with a finite set of states but instead with a continuous state space,
which is still denoted as S . In summary, the MDP is used to formalize the problem of rein-
forcement learning, but its assumptions may be relaxed in practice.

2.1.3 Return

The return Gt is the sum of discounted future rewards, as shown in equation 2.3. This equa-
tion is generally used for both, continuing environments (with infinitely many timesteps) and
episodic environments (with T timesteps per episode). However, for episodic environments,
we may simply express the return as in equation 2.4. Note that the return Gt can also be
expressed recursively as in equation 2.5. The discount factor γ P [0, 1] is generally used to
assign less weight to rewards in the far future than to rewards in the near future. This is done
because there is more uncertainty for rewards in the far future.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
8̧

k=0

γkRt+k+1 general case (2.3)

Gt = Rt+1 + γRt+2 + ... + γT�t�1RT =
T�t�1¸

k=0

γkRt+k+1 episodic case (2.4)

Gt = Rt+1 + γGt+1 recursive expression (2.5)

Importantly, the return is of relevance because the objective of the agent is to maximize
the expected return E [Gt|�], as represented by the state-value and action-value functions in
equations 2.7 and 2.8 respectively.

For understanding, it may be helpful to reflect on the differences between the reward Rt
and the return Gt. The reward Rt is given directly by the environment at time t, whereas the
return Gt is not yet known at time t because it depends on the rewards from future timesteps.
Further note that while the reward Rt depends on the past action At�1 (and possibly other
past actions), the return Gt depends on the action At and on future actions (that result in the
future rewards Rt+1, Rt+2, ..., RT).

For example, consider the last reward and the last return of an episode of length T with
a trajectory as in equation 2.2. The last reward, RT , is simply a reward like any other reward
during the episode. It is given by the environment upon the action AT�1 taken by the agent.
The return GT , however, is zero. This is because in an episodic environment, no future rewards
will be observed after timestep T, and the return is computed based on future rewards.

8

2.1. Introduction to Reinforcement Learning

2.1.4 Policy

Before introducing the state-value function and the action-value function in the subsequent
sections, the term policy needs to be introduced. A policy π, also known from decision theory
[19], is a probability distribution. It describes the probability that the action At takes the
value a given that the state of the agent St takes the value s. Note that a policy may be
deterministic, namely in the case where a particular action value a occurs with a probability
of 1, i.e. π(At = a|St = s) = 1, and all remaining actions take probabilities of 0.

π(a|s) = π(At = a|St = s), (2.6)

where s P S and a P A(s), i.e. s is any valid state and a is any valid action for the state s.

2.1.5 State-value function

The state-value function vπ(s) represents the expected return conditioned on the current state
St, assuming that the agent follows the policy π from St onwards. In reinforcement learning,
we generally aim to find a policy π which maximizes the state-value function (or the action-
value function from the next section).

vπ(s) = Eπ [Gt|St = s] = Eπ

[
8̧

k=0

γkRt+k+1|St = s

]
(2.7)

2.1.6 Action-value function

The action-value function qπ(s, a) represents the expected return conditioned on the current
state St and conditioned on the action At taken by the agent in this state, assuming that the
agent follows the policy π from St+1 onwards. The difference between the state-value func-
tion and the action-value function is the following: in the action-value function, the action
At taken in state St does not necessarily have to conform to the policy π, whereas in the
state-value function it does.

qπ(s, a) = Eπ [Gt|St = s, At = a] = Eπ

[
8̧

k=0

γkRt+k+1|St = s, At = a

]
(2.8)

2.1.7 Optimal policy, state-value function and action-value function

An optimal policy π� is a policy that maximizes the state-value function vπ(s) and the action-
value function qπ(s, a) as shown in equation 2.9. Reversely, the optimal state-value function
v�(s) and optimal action-value function q�(s, a) are represented by the state-value and action-
value functions that maximize the expected return (by following the optimal policy π�) as
shown in equations 2.10 and 2.11. The equations below apply for all s P S and for all a P A(s),
i.e. for all possible states and all valid actions in the respective states.

π�(At = a|St = s) = argmax
π

vπ(s) = argmax
π

qπ(s, a) (2.9)

v�(s) = max
π

vπ(s) = Eπ� [Gt|St = s] (2.10)

q�(s, a) = max
π

qπ(s, a) = Eπ� [Gt|St = s, At = a] (2.11)

Note that if the optimal policy π� was known, we would know exactly which actions to
take to maximize the return Gt. Since the optimal policy is generally not known, the purpose
of reinforcement learning is to approximate the optimal policy π� with π̂. This is is also
referred to as the control problem described in section 2.1.9 below.

9

2.1. Introduction to Reinforcement Learning

2.1.8 Prediction problem

The prediction problem is the problem of estimating the state-value function vπ(s) or the
action-value function qπ(s, a) for a given, fixed policy π. The approximations of the state-
value and the action-value function are denoted as v̂π(s) and q̂π(s, a). If we solve the pre-
diction problem for different policies, we may come to a conclusion about which policy is
preferred, i.e. which policy gives rise to larger expected returns. Consequently, solving the
prediction problem for different policies allows to compare these policies and identify the
policy that approximates the optimal policy π� best.

2.1.9 Control problem

The control problem is the problem of finding an optimal policy π�, or more realistically an
approximation of it, namely π̂. To find an approximation of the optimal policy, different poli-
cies may have to be evaluated and compared. This leads back to the prediction problem: in
order to solve the control problem, we may have to solve the prediction problem for multiple
different policies until we find a policy that cannot be improved further.

2.1.10 Bellman equations

Bellman equations (and adaptations of them) are used in reinforcement learning for solving
both, the prediction and the control problem. Essentially, the state-value function vπ(s) and
the action-value function qπ(s, a) are reformulated recursively. The resulting Bellman equa-
tions are then turned into assignment statements used to update the approximations of the
state-value and the action-value function, v̂π(s) and q̂π(s, a). The main advantage of the re-
cursive formulation is that we can perform such updates after observing a single experience
tuple (s, a, r, s1) instead of having to wait until all tuples of a particular episode are observed.

As stated before, the return Gt from equation 2.5 can be expressed recursively as Gt =
Rt+1 + γGt+1. We may hence reformulate the state-value function by making use of this
recursive relationship, which takes us from equation 2.12 to equation 2.13. The corresponding
Bellman equation is shown in the subsequent equation 2.14. It’s main characteristic is that
vπ(s) is represented as a function of itself, more precisely of vπ(s1), where s1 is the value of
the next state St+1.

vπ(s) = Eπ [Gt|St = s] (2.12)

= Eπ [Rt+1 + γGt+1|St = s] (2.13)

= Eπ

[
Rt+1 + γvπ(s1)|St = s

]
(2.14)

Although the step from equation 2.13 to the Bellman equation 2.14 seems intuitively
reasonable (having in mind that vπ(s1) is an expectation of Gt+1 since it is defined as
vπ(s1) = Eπ [Gt+1|St+1 = s1]), the proof is rather involved and omitted here.

Importantly, we may not only formulate the Bellman equation for the state-value function
but also for the action-value function and for the optimal versions of these two functions as
shown in section 2.1.7. An overview of all these corresponding Bellman equations be found
in the equations below.

vπ(s) = Eπ

[
Rt+1 + γvπ(s1)|St = s

]
(2.15)

qπ(s, a) = Eπ

[
Rt+1 + γvπ(s1)|St = s, At = a

]
(2.16)

v�(s) = max
a

E
[
Rt+1 + γv�(s1)|St = s, At = a

]
(2.17)

q�(s, a) = E[Rt+1 + γ max
a1

q�(s1, a1)|St = s, At = a] (2.18)

10

2.2. Introduction to Neural Networks

2.1.11 Application of the Bellman equations

The expected return represented by the state-value function vπ(s) = Eπ [Gt|St = s] and
the action-value function qπ(s, a) = Eπ [Gt|St = s, At = a] is generally not known. There-
fore, it needs to be estimated by drawing samples of Gt. To be precise, the agent draws
samples of experience tuples (s, a, r, s1): in a given state s, the agent takes action a and ob-
serves the reward r and the next state s1. Repeated many times, this results in a trajectory
S0, A0, R1, S1, ..., ST�1, AT�1, RT , ST . Based on this trajectory, the return Gt can then be com-
puted for every t, among others by making use of the Bellman equations.

There are various possibilities for representing the return Gt. Here, four of them are in-
troduced briefly: Monte Carlo, 1-step Q-learning, 1-step TD and n-step TD. TD stands for
temporal difference. Q-learning also falls into the category of temporal difference methods,
meaning that 1-step Q-learning, 1-step TD and n-step TD are temporal difference methods.

Gt = Rt+1 + γRt+2 + ... + γT�t�1RT MC (2.19)

Gt = Rt+1 + γ max
a1

q̂π(St+1, At+1 = a1) 1-step Q (2.20)

Gt = Rt+1 + γv̂π(St+1) 1-step TD (2.21)

Gt = Rt+1 + γRt+2 + ... + γn�1Rt+n + γnv̂π(St+n) n-step TD (2.22)

First, we may (in an episodic environment) wait until the end of an episode when all
rewards are observed. Then, we could represent Gt with the Monte Carlo (MC) approach,
based on all observed, discounted rewards as in equation 2.19. The Bellman equations are
not applied if the Monte Carlo approach is used because all rewards are observed, and no
recursive expression with the state-value or the action-value function is needed.

Alternatively, we may make use of a 1-step approach. In the 1-step approach, Gt is repre-
sented as a combination of Rt+1 and of the discounted expected return thereafter. In 1-step
Q-learning, as in equation 2.20, the discounted expected return is represented with the action-
value function by applying the idea of the Bellman equation 2.18. In 1-step TD, as in equation
2.21, the discounted expected return is represented with the state-value function by applying
the idea of the Bellman equation 2.17.

Lastly, we may make use of an n-step approach. In the n-step approach, Gt is represented
as a combination of observed, discounted rewards from Rt+1 to Rt+n and of the discounted
expected return v̂π(St+n) thereafter. This approach can be seen as a compromise between the
Monte Carlo approach, where Gt is exclusively based on observed rewards, and the 1-step
approach, where only one observed reward contributes to Gt.

2.2 Introduction to Neural Networks

Neural networks (NN) are an important component of the RL methods described later in sec-
tion 2.3. Neural networks represent a type of machine learning model that can approximate
complex, non-linear functions f : x Ñ y. A successful form of neural networks is the mul-
tilayer perceptron (MLP) described by Bishop in [20], the main reference for this section. In
the following, MLPs are introduced very briefly because they were used to represent the RL
agents in this thesis. Please refer to [20] for a detailed introduction.

An example of a MLP with two hidden layers is displayed in figure 2.2. Visibly, it resem-
bles a network of neurons connected with synapses, motivating the name of neural networks.
Given some input vector x, the MLP returns a prediction in form of the output vector ŷ. The
corresponding true output vector is denoted as y and is available for training. Each synapse,
i.e. arrow, in the MLP represents a weight w. The objective of training a MLP is to learn all
weights so that the prediction error 1

2
°K

k (yk � ŷk)
2 is minimized.

To achieve this objective, two processes are repeated iteratively: forward propagation and
backward propagation. Forward propagation is equivalent to making a prediction: the input

11

2.2. Introduction to Neural Networks

...

...
...

...

x1

x2

x3

xD

h(1)1

h(1)M

h(2)1

h(2)Q

ŷ1

ŷK

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Ouput
Layer

Figure 2.2: Example of a multilayer perceptron with 2 hidden layers. The input layer consists
of D nodes, the first hidden layer consists of M nodes, the second hidden layer consists of Q
nodes, and the output layer consists of K nodes.

vector x is turned into the corresponding output vector ŷ. Backward propagation is equiv-
alent to conducting weight updates: the prediction error 1

2
°K

k (yk � ŷk)
2 is computed, and

each weight is updated in order to decrease the prediction error by using gradient descent.
Forward propagation is conducted by making use of perceptrons. As the name suggests,

multilayer perceptrons are networks that consist of multiple layers of perceptrons. Each node
in the MLP (except for the input nodes) represents the output of a perceptron. The percep-
tron consists of three elements: input values, weights and activation function. This is best
explained with an example. For instance, the first node of the first hidden layer, denoted as
h(1)1 , is computed with the following perceptron:

h(1)1 = σ

(
Ḑ

d=1

xdw(1)
1,d

)
, (2.23)

Here, input values, weights and activation function are represented by xd, w(1)
1,d and σ

respectively. In particular, w(1)
1,d represents the weight corresponding to the arrow pointing

to node h(1)1 from node xd. Note that h(1)1 is computed based on all nodes from its previous
layer, i.e. x1, ..., xD, and based on all weights corresponding to arrows pointing from these
nodes to h(1)1 . Similarly, any of the other nodes in the networks of the hidden layers and
the output layers are computed, ultimately resulting in the output vector ŷ. The purpose of
the activation function is, among others, to introduce non-linearity, helping to fit non-linear
functions [21]. Please refer to [21] for an introduction about the activation functions used in
this thesis, including the ReLU, tanh and softmax activation functions.

Backward propagation is conducted for each weight by performing a gradient step into
the direction of decreasing prediction error. For each weight, the partial derivative of the pre-
diction error ε = 1

2
°K

k (yk � ŷk)
2 with respect to the weight is computed, denoted as Bε

Bw . Sub-
sequently, the weight is updated by taking a step of gradient descent: w = w� η Bε

Bw , where η
denotes some learning rate. If forward propagation and backward propagation are repeated

12

2.3. Methods in Reinforcement Learning

multiple times iteratively, such weight updates are performed numerously. Ultimately, this
results in weights that minimize the prediction error ε.

2.3 Methods in Reinforcement Learning

The purpose of this section is to give an overview of the methods from the field of rein-
forcement learning. In section 2.3.1, the choice of approximate solution methods over tabular
solution methods is explained. Subsequently, the three common approaches from the field of
approximate solution methods (critic-only, actor-only and actor-critic) are introduced in the
sections 2.3.2, 2.3.3 and 2.3.4. Hereby, the focus is on explaining the general concepts rather
than the exact methods used for this thesis. The methods used in the thesis, are explained
in the subsequent sections: the advantage-actor critic method (A2C), representing the actor-
critic approach, is explained in section 2.4, and the deep Q-network (DQN), representing the
critic-only approach, is explained in section 2.5.

2.3.1 Tabular solution methods vs. approximate solution methods

Sutton and Barto distinguish between two categories of methods in the field of reinforce-
ment learning: tabular solution methods and approximate solution methods [17]. The main
difference between these two is that tabular solution methods require a finite, discrete state
space S and a finite, discrete action space A. This allows for a tabular representation of
q̂(s, a) � q�(s, a) with rows for states and columns for actions and of v̂(s) � v�(s) with rows
for states and only one column. For instance, given a discrete value of s and a discrete value of
a, the action-value q̂(s, a) can be looked up in the action-value table at the row corresponding
to s and the column corresponding to a.

However, if the state space (and possibly also the action space) is continuous, then it does
not make sense to pick a tabular representation for q̂(s, a) and v̂(s). Instead, q̂(s, a) and v̂(s)
may be represented as functions that can take any (continuous) values of s and a as input and
return q̂(s, a) and v̂(s) as output. Such functions may for instance be represented with neural
networks. Instead of learning values in tables, the parameters (also called weights) of the
neural network are to be learned. In other words, q̂(s, a) and v̂(s) are parameterized as some
functions q̂(s, a, wq) � q�(s, a) and v̂(s, wv) � v�(s), where the weight vectors wq and wv are
to be learned during training. In addition, the policy may also be parameterized as π̂(a|s, θ) �
π�(a|s), where θ is the weight vector to be learned. Different forms of parameterization are
possible but most commonly neural networks have been used since they were shown to be
very successful for training RL agents to play Atari games [3].

While tabular solution methods are helpful for understanding the basics of reinforcement
learning, they are not covered here because they are not actually applied for this thesis. In-
stead, emphasis is put on approximate solution methods since all RL methods used in this
thesis are approximate solution methods. The choice fell on approximate solution methods
because the state space S is naturally continuous in the context of trading due to continu-
ous variables such as market price. This approach is in line with academic research: as the
literature review chapter 3 shows, approximate solution methods are predominant in studies
about RL for trading.

2.3.2 Critic-Only Methods

In critic-only methods, only the action-value function is used, which is parameterized as
q̂(s, a, wq). An example of a neural network parameterizing the action-value function is dis-
played in figure 2.3. The network takes the state s, consisting of D values, as input and gives
the expected return q̂(s, a) of this state for each possible discrete action as output. This means
that there is one output node per action. In case of three actions, the three output nodes
represent the expected returns q̂(s, a1), q̂(s, a2) and q̂(s, a3).

13

2.3. Methods in Reinforcement Learning

The neural network can be used as follows: for any given state s, the network returns
q̂(s, a1), q̂(s, a2) and q̂(s, a3), and subsequently, the action which returns the highest ex-
pected return can be taken by the agent in this state. This results in the deterministic policy
π̂ = argmaxa q̂(s, a). Regarding the network architecture, note that it would also be possible
to include the actions into the input layer instead of the output layer. However, since the
q̂(s, a) values are needed for all actions, the neural network would have to do several predic-
tions in this case. By including the actions into the output layer, as shown in figure 2.3, all
q̂(s, a) values can be obtained with only one prediction. Hence, this architecture is preferred.

...

...
...

s1

s2

s3

sD

h(1)1

h(1)M

h(2)1

h(2)Q

q̂(s, a1)

q̂(s, a2)

q̂(s, a3)

Input Layer
(State)

Hidden
Layer 1

Hidden
Layer 2

Ouput Layer
(Action-Value)

Figure 2.3: Action-value function parameterization q̂(s, a, wq) with NN (for critic-only meth-
ods). This network is also used for DQN in this thesis.

Intuitively, we may at first say that the objective should be to fit q̂(s, a, w) so that it repre-
sents the corresponding true expected reward q(s, a) as accurately as possible, measured by
the mean squared error. This is because if we know the true expected reward, then we can
always pick the truly optimal action a in any given state.

Recall that q(s, a) is defined as an expectation q(s, a) = E [Gt|St = s, At = a]. Instead of
comparing the corresponding approximation q̂(s, a, w) with q(s, a) directly, we instead com-
pare q̂(s, a, w) with samples of Gt. We do this because q(s, a) is unknown. (If it was known,
there would be no need to approximate it with q̂(s, a, w)). In conclusion, we aim to find
q̂(s, a, w) so that it minimizes the loss in equation 2.24. The corresponding gradient can be
derived as in equation 2.25, giving us a problem that may be solved with gradient descent as
shown in the algorithm 2. Gt may be represented with the 1-step Q-learning approach, as in
equation 2.20: Gt = Rt+1 + γ maxa1 q̂(St+1, At+1 = a1, w).

L(w) =
1
2
[Gt � q̂(St, At, w)]2 (2.24)

∇L(w) = � [Gt � q̂(St, At, w)]∇q̂(St, At, w) (2.25)

2.3.3 Actor-Only Methods

In actor-only methods, only the policy function is used, which is parameterized as π̂(a|s, θ).
An example of a neural network parameterizing the action-value function is displayed in

14

2.3. Methods in Reinforcement Learning

figure 2.4. The network takes the state s, consisting of D values, as input and returns the
probability of taking each action π̂(a|s) as output, here for three actions in total. This means
that there is, again, one output node per action. In case of three actions, the three output
nodes represent the probabilities π̂(a1|s), π̂(a2|s) and π̂(a3|s). In the neural network, the
softmax activation function is used in the output layer to ensure that the probabilities sum
up to 1, so that the policy is a valid probability distribution:

°
iPt1,2,3u π̂(ai|s) = 1.

The neural network can be used as follows. For any given state s, the network returns the
probabilities π̂(a1|s), π̂(a2|s) and π̂(a3|s). Subsequently, an action is sampled from this prob-
ability distribution and then taken by the agent, resulting in a stochastic policy. Alternatively,
the action with the largest probability can be taken (instead of sampling from the probability
distribution), resulting in a deterministic policy. Note that the action-value function, which
is used in the critic-only methods to obtain the action, is not needed for actor-only methods
because in actor-only methods the action comes directly from the policy function.

Intuitively, every update of the parameters θ is supposed to result in an updated policy
π̂(a|s, θ) which gives actions resulting in larger expected return than before the update. In
other words, we would like to perform gradient ascent, shifting the policy weights θ into
the direction of maximum increase of the expected return. The expected return can be repre-
sented with the state-value function vπ̂(s).

For conducting gradient ascent, we make use of the policy gradient theorem. Essentially, this
theorem expresses the gradient of the state-value function vπ̂(s) with respect to the policy
parameters θ. This is possible because as described previously in equation 2.7, the state-
value function vπ̂(s) depends on the policy π̂: the state-value function gives the expected
return assuming that the agent starts in state s and follows the policy π̂ thereafter. The policy
gradient theorem gives us the result from equation 2.26. The proof is omitted here but it can
be found in the text book by Sutton and Barto [17].

∇J(θ) = Eπ [Gt∇ ln π̂(At|St, θ)] , (2.26)

where J(θ) represents the performance function vπ̂(st), which means that ∇J(θ) =
∇vπ̂(st). To illustrate actor-only methods, algorithm 3 shows a particular actor-critic algo-
rithm called REINFORCE. Note that REINFORCE represents Gt with the Monte Carlo ap-
proach from equation 2.19, whereas in the critic-only algorithm 2 Gt was represented with
the 1-step Q-learning approach from equation 2.20.

2.3.4 Actor-Critic Methods

In actor-critic methods, only the policy function and the state-value function are used, which
are parameterized as π̂(a|s, θ) and v̂(s, wv). The policy function π̂(a|s, θ) is the same as the
policy function from the actor-only methods in figure 2.4, except that the weights θ will differ
after training. An example of a neural network parameterizing the state-value function is
displayed in figure 2.5. The network takes the state s, consisting of D values, as input and
gives the expected return v̂(s) as output. This means that there is only one output node. The
policy network π̂(a|s, θ) is used in the same way as in the actor-only method from section
2.3.3. The state-value network v̂(s, wv) is only used during training but not after training.

Actor-critic methods are closely related to actor-only methods. To motivate
actor-critic methods, we may focus on the term Gt in the policy gradient theorem
∇J(θ) = Eπ [Gt∇ ln π̂(At|St, θ)]. Gt may vary strongly depending on the corresponding
observed rewards from Rt+1 to RT . If the observed rewards are large, Gt will be large and
therefore the gradient ascent step will do a strong update to the weights θ. This may result
in a very unstable training process, which raises the question whether we may somehow
reduce the variance of Gt. We may do so by subtracting a baseline b(St) from it, adjusting the
policy gradient from equation 2.26 to equation 2.27.

15

2.3. Methods in Reinforcement Learning

...

...
...

s1

s2

s3

sD

h(1)1

h(1)M

h(2)1

h(2)Q

π̂(a1|s)

π̂(a2|s)

π̂(a3|s)

Input Layer
(State)

Hidden
Layer 1

Hidden
Layer 2

Ouput Layer
(Action-Probability)

Figure 2.4: Policy function parameterization π̂(a|s, θ) with NN (for actor-only and actor-critic
methods). This network is also used for A2C in this thesis.

...

...
...

s1

s2

s3

sD

h(1)1

h(1)M

h(2)1

h(2)Q

v̂(s)

Input Layer
(State)

Hidden
Layer 1

Hidden
Layer 2

Ouput Layer
(State-Value)

Figure 2.5: State-value function parameterization v̂(s, wv) with NN (for actor-critic methods).
This network is also used for A2C in this thesis.

16

2.3. Methods in Reinforcement Learning

∇J(θ) = Eπ [(Gt � b(St))∇ ln π̂(At|St, θ)] (2.27)

This leads to the question which function should be picked as a baseline b(St). To reduce
variance, it seems reasonable to subtract the expected value of Gt from Gt. We have expressed
the expected value of Gt before, namely as state-value function: vπ(s) = Eπ [Gt|St = s].
Hence, we may choose an approximation of the state-value function v̂(St, w) as baseline,
which is shown in equation 2.28. Note that we choose the state-value function and not the
action-value function because there is no need to have the action At in the condition. This is
because the actions are now given by the policy π̂(a|s, θ), unlike in the critic-only approach
where the action-value function was required to obtain the policy π̂ = argmaxa q̂(s, a, w).

∇J(θ) = Eπ [(Gt � v̂(St, w))∇ ln π̂(At|St, θ)] (2.28)

Finally, the question is how to represent Gt. In theory, we may apply any of the represen-
tations mentioned before in the section 2.1.11. For instance, we may choose a Monte Carlo
representation as shown in equation 2.29 below. Alternatively, we might also choose a 1-step
TD representation as shown in equation 2.30 below. As explained in section 2.1.11, TD stands
for temporal difference. In temporal difference methods, the return Gt is expressed as a sum
of observed rewards and of discounted expected return after the observed rewards. Hereby,
the Bellman equations are applied. Importantly, actor-critic methods were first proposed with
a temporal difference approach such as in equation 2.30 but not with a Monte Carlo approach
as in equation 2.29 [22]. Sutton and Barto do not even consider the algorithm an actor-critic
algorithm if the Monte Carlo approach is used [17]. Instead, they refer to it as a an actor-only
method with baseline.

∇J(θ) = Eπ

[
(Rt+1 + γRt+2 + ...γT�t�1RT � v̂(St, w))∇ ln π̂(At|St, θ)

]
(2.29)

∇J(θ) = Eπ [(Rt+1 + γv̂(St+1, w)� v̂(St, w))∇ ln π̂(At|St, θ)] (2.30)

In summary, if we modify the policy gradient from equation 2.26 to equation 2.30 and
learn the required approximation of the state-value function v̂(s, w) in addition to the ap-
proximation of the policy π̂(a|s, θ), then we move from an actor-only method to an actor-critic
method. The actor-critic method is illustrated in algorithm 5. For reference, the algorithm for
the actor-only method with baseline is illustrated as well, namely in algorithm 4, as it may
be helpful to understand the relation between actor-only and actor-critic methods. Note how
the actor-only algorithm 3 differs from the actor-only with baseline algorithm 4 by adding
the state-value function as baseline. Then note how the actor-only with baseline algorithm 4
differs from the actor-critic algorithm 5 by changing the representation of the return Gt from
Rt+1 + γRt+2 + ...γT�t�1RT as in equation 2.29 to Rt+1 + γv̂(St+1, w) as in equation 2.30.

Lastly, note that actor-critic methods are sometimes called advantage actor-critic methods.
The term Rt+1 + γv̂(St+1, w) � v̂(St, w) from equation 2.30 is referred to as δ in the algo-
rithm 5. This term δ is also referred to as advantage [4]. Here, Rt+1 + γv̂(St+1, w) represents
the observed return Gt after taking a particular action At, whereas v̂(St, w) represents the ex-
pected return Eπ̂ [Gt|St = s] under policy π̂(At|St, θ). Therefore, if taking action At results
in Rt+1 + γv̂(St+1, w) ¡ v̂(St, w), then the action At leads to an advantage compared to the
policy π̂(At|St, θ). Importantly, At also comes from the policy itself but since it is a single ac-
tion, it is not representative of the full policy, a probability distribution, and we may therefore
conclude that it can have an advantage over the policy. Consequently, actor-critic methods
are sometimes called advantage actor-critic methods.

17

2.4. Synchronous Advantage Actor-Critic (A2C)

2.4 Synchronous Advantage Actor-Critic (A2C)

A2C is generally referred to as synchronous advantage actor-critic method. As such, it belongs
to the category of actor-critic methods introduced in section 2.3.4. A2C is originated in A3C,
which is an asynchronous advantage actor-critic method. The main references for this section
are the original paper about A3C from 2016 [4] and a blog post about A2C from 2017 [23].
Note that the A2C authors introduced A2C with said blog post instead of a published paper.
This section focuses on A2C, which is the primary method used for this thesis.

In essence, A2C is an advantage actor-critic method as introduced in section 2.3.4. How-
ever, instead of a single agent collecting experience in form of tuples (s, a, r, s1) in a single
environment, there are several agents that collect experience in different copies of the envi-
ronment. These agents collect experience simulatenously, running on different threads of the
processor on the same machine. According to Mnih et al., the benefits of an advantage actor-
critic method with multiple agents (e.g. A2C) compared to an advantage actor-critic method
with a single agent are computational efficiency and training stability [4]. Importantly, training
stability refers to the ability to converge across the training period, even if unexpected expe-
rience tuples (e.g. with unusually large or small rewards) disrupt the learning progress.

Importantly, the weights learned by the agents, θ and w from π̂(a|s, θ) and v̂(s, w), are
shared globally, across the different agents in A2C. Whenever an agent performs an update of
the weights, it updates the globally shared weights. Whenever an agent uses the weights, e.g.
for sampling an action from the policy π̂(a|s, θ), it uses the globally shared weights. The term
synchronous implies that the agents wait for each other to collect their respective required
number of tuples (s, a, r, s1) before updating the globally shared weights. The number of
tuples to be collected by each individual agent before an update is the hyperparameter tmax,
which is set by the researcher.

The algorithm can be described as a 2-step process: 1) collection of experience and 2)
weight updates. These two steps are repeated many times. In the first step, all agents fetch
the up-to-date globally shared weights θ and w and start collecting tmax tuples (s, a, r, s1)
each, using the policy and state-value function with said weights. In the second step, once
all agents have completed collecting their tuples, the globally shared weights θ and w are
updated based on the collected tuples of all agents. The complete A2C training process is
displayed in algorithm 6. To be precise, in the algorithm, not the tuples (s, a, r, s1) are collected
but instead the gradients. It does not matter for the result if we collect the tuples (s, a, r, s1)
and compute the gradients later or if we directly compute and collect the gradients.

Note how the A2C algorithm 6 resembles the actor-only with baseline algorithm 4 and
the advantage actor-critic algorithm 5. In A2C however, multiple agents are used instead
of a single agent. Moreover, Gt is neither represented with the Monte Carlo approach from
equation 2.19 nor with the 1-step temporal difference approach from equation 2.21. Instead,
Gt is represented with the n-step approach from equation 2.22. Each Gt is computed as the
sum of some (at most tmax) observed, discounted rewards and of the discounted expected
return v̂(St+tmax , w) thereafter.

At this point, it may be interesting to point out the difference between A2C and A3C: in
A2C, all agents wait for each other before updating the globally shared weights collectively,
whereas in A3C, each agent updates the globally shared weights directly once it has com-
pleted collecting sufficient experience. Consequently, in A2C all agents start collecting tuples
(s, a, r, s1) at the same time and they use the exact same weights doing so. In A3C however,
the agents generally start collecting tuples (s, a, r, s1) at different time points, and therefore
the agents use different weights when collecting their experience.

Based on the current literature, it does not seem as if there is clear academic evidence that
either A2C or A3C performs generally better although OpenAI noted in their blog post that
A2C performed better in its benchmarks [23]. The main practical difference, according to
OpenAI, is that A2C is more efficient when running on a GPU.

18

2.5. Deep Q-Network (DQN)

2.5 Deep Q-Network (DQN)

Deep Q-networks (DQNs), also called Q-networks for short, belong to the category of critic-
only methods from section 2.3.2. Essentially, a DQN in its most basic form is a NN that
parameterizes the action-value function as q̂(s, a, w). An example is displayed in figure 2.3.

However, there are a variety of additional ideas that led to the success of DQNs: the ideas
of a separate target network and experience replay were key to the first success of DQNs [24],
mainly because they improved training stability. As described in section 2.4, training stability
refers to the ability of the method to converge across the training period, even if unexpected
experience tuples disrupt the learning progress. Later, the ideas of prioritized experience replay
[25], dueling networks [26] and double Q-learning [27] allowed for further enhancements. In the
following, the concepts used in the final DQN model of this thesis are introduced shortly:
target network, prioritized experience replay and dueling networks. These ideas, combined
with the general introduction about critic-only methods from section 2.3.2, form the DQN.

2.5.1 Target Network

The target network was the first main idea contributing to the success of DQNs in playing
Atari games [24]. Note that in the critic-only approach described in section 2.3.2, the weights
w of the Q-network q̂(s, a, w) are updated based on the Q-network q̂(s, a, w) itself. This is
because the Q-network is used for computing the losses (and hence also for computing the
gradients used for the weight update as shown in equation 2.25). In particular, it is used twice
in the loss function: first to represent the true return Gt and second to represent the predicted
expected return q̂(St, At, w) as shown in equation 2.32 below:

L(w) =
1
2
[Gt � q̂(St, At, w)]2 (2.31)

=
1
2

Rt+1 + γ max
a1

q̂(St+1, At+1 = a1, w)loooooooooooomoooooooooooon
1.

� q̂(St, At, w)looooomooooon
2.


2

(2.32)

Note that with the above approach, the weight update at each timestep does not only
affect the predicted expected return (in 2.) but also the true return Gt (through 1.). Mnih et
al. found this to be rather unstable and realized that they could improve training stability
by introducing a separate target network [24]. Every C timesteps, the Q-network q̂(s, a, w) is
copied to represent the target network q̂(s, a, w�). This means that the target network only
changes every C timesteps, whereas the Q-network generally changes at every timestep when
receiving a weight update. The target network is then used for representing the true return
Gt and the Q-network is (as before) used to represent the predicted expected return as shown
below in equation 2.33. Note that the only difference between equations 2.32 and 2.33 is that
q̂(St+1, At+1 = a1, w) from 1. was replaced with the target network q̂(St+1, At+1 = a1, w�).

L(w) =
1
2

Rt+1 + γ max
a1

q̂(St+1, At+1 = a1, w�)loooooooooooooomoooooooooooooon
1.

� q̂(St, At, w)looooomooooon
2.


2

(2.33)

2.5.2 Prioritized Experience Replay

Experience replay was the second main idea contributing to the success of DQNs in playing
Atari games [24]. Later, the improved technique prioritized experience replay was introduced
by Schaul et al. in [25]. Both, experience replay and prioritized experience replay, improve

19

2.5. Deep Q-Network (DQN)

training stability. However, prioritized experience replay is more efficient than experience re-
play. This means that shorter training time is needed.

In experience replay, a certain number of experience tuples et = (st, at, rt+1, st+1) is stored
in a replay memory (also called replay buffer). For instance, the experiences for a sliding win-
dow of the past 50K timesteps might be stored, where these experiences might come from
different episodes. The main idea of experience replay is to conduct weight updates based
on experiences sampled from the replay buffer. In particular, each weight update of the Q-
network is based on a batch of uniformly sampled experiences from this replay memory. For
instance, each update might be based on a batch of 32 experience tuples. Note that weight
updates may still be conducted at every single timestep t, each time with a new batch of
experiences sampled from the replay buffer.

Prioritized experience replay makes two main adjustments to the experience replay
method: first, experiences are not sampled from the replay buffer uniformly but instead with
probabilities corresponding to their importance and second, the losses corresponding to sampled
experiences that are to be used in a batch update are weighted.

The importance of an experience et is measured by the absolute value of the corresponding
loss (see equation 2.31), also called TD-error for temporal difference error. For instance, the
TD-error corresponding to experience et may be defined as εt =

1
2 [Gt � q̂(St, At, w)]2. Schaul

et al. suggest to sample the experiences from the replay buffer not uniformly but instead with
the following probabilities:

P(t) =
pα

t°
k pα

k
, (2.34)

where t is the index of the experience and the sum in the denominator is over all experi-
ences in the replay buffer. pt ¡ 0 is the priority of experience t and Schaul et al. suggest to
define it as pt = 1/ rank(|εt|). For example, the experience with the largest absolute TD-error
would receive a rank of 1 (and hence a priority of 1), the experience with the second largest
TD-error would receive rank 2 (and hence a priority of 1/2) etc. The hyperparameter α ¥ 0
determines the extent of prioritization. Larger values of α prioritize experiences with large
absolute TD-error even more and experiences with small absolute TD-error even less.

After sampling a batch of experiences, the TD-errors corresponding to these experiences
are weighted before using them to update the Q-network. According to Schaul et al., the
weighting is done to reduce bias: by sampling with the probabilities from equation 2.34, the
experiences with larger TD-errors are more likely to be sampled and due to their large errors,
these experiences would result in larger gradients and hence more extreme updates. This
bias is accounted for by assigning weights to the TD-errors: smaller weights are given to TD-
errors corresponding to experiences sampled with large probability P(t) and larger weights
are given to TD-errors corresponding to experiences sampled with small probability P(t).
The weights are defined as follows:

wt =

(
1
N
�

1
P(t)

)β

, (2.35)

where t is again the index of the sampled experience and N is the number of experiences in
the replay memory. β P (0, 1] is a hyperparameter that is increased from some value 1 until
it reaches the value 1 at the end of the training period, at which point it fully accounts for the
introduced bias. All weights are normalized before conducting the update: wt = 1/ maxt wt.
The Q-network is then updated based on the batch of weighted TD-errors wtεt corresponding
to the sampled experiences for this update.

2.5.3 Dueling Networks

Dueling networks were introduced by Wang et al. in 2016 [26]. The idea of dueling networks
is to adjust the architecture of the Q-network from figure 2.3, which represents the action-

20

2.6. Reward Functions for Trading

value function as q̂(s, a, wq). Importantly, the Q-network still fulfills the same purpose after
it is converted to a dueling version of the Q-network: it takes as input a state s and returns
as output the estimated expected return q̂(s, a) for each possible discrete action a. The main
aspect that changes is the architecture of the inner layers as described in the following.

According to Wang et al., the "dueling network should be understood as a single Q-
network with two streams that replaces the popular single-stream Q network" [26, p. 2].
The first stream can be thought of as an individual network that predicts the state-value v(s)
(just like in figure 2.5). The second stream can be thought of as an individual network that
predicts the advantage defined as A(s, a) = q(s, a) � v(s). These two networks each have
their own, separate hidden and output layers. However, the two networks are tied together:
they share the same input layer (consisting of the state s) and their output layers are com-
bined to a joint output layer consisting of the action-values q̂(s, a). Visibly, the outputs of the
two streams, Â(s, a) and v̂(s) can be combined to the joint output q̂(s, a) with the equation
q̂(s, a) = v̂(s) + Â(s, a). (The actual equation used is slighly more complicated as discussed
in the original paper [26].) Because of the shared input layer and a combined output layer,
the authors do not speak of two separate networks but instead of a single Q-network with two
streams, the state-value stream and the advantage stream.

The main benefit of dueling networks is nicely explained by Wang et al. in [26]: the state-
value stream receives an update whenever any action a is taken. For instance, if a particu-
lar action a1 is taken, then the corresponding update does not only improve the predictions
q̂(s, a1) but also the predictions q̂(s, a2) and q̂(s, a3). This is because every weight update af-
fects the output of the state-value stream, v̂(s), and the joint output q̂(s, a) is computed based
on v̂(s) for all actions a. Ultimately, this may lead to better estimates q̂(s, a).

2.6 Reward Functions for Trading

The choice of the reward function is essential in reinforcement learning because the agent
is trained to perform actions that maximize the expected return, where the return Gt is the
sum of discounted future rewards as defined in equation 2.3. Consequently, by defining the
reward function, we also define what we want the agent to learn. With different reward
functions, the agent may learn to take different actions because a different objective needs to
be optimized.

2.6.1 Relation of reward and target

Importantly, for a reinforcement learning system, we require that the agent receives a reward
Rt+1 P R after every taken action At instead of only at the end of the episode. Recall that the
foundation of reinforcement learning is the Markov decision process, which gives trajectories
based on state, action and reward tuples (s, a, r, s1). Contrary to its name, the reward may not
only represent positive but also negative or neutral feedback for the agent. The smaller the
reward, the more punishing is the feedback signal. The larger the reward, the more rewarding
is the feedback signal.

In practice, the reward is generally computed with a function that is chosen by the person
designing the RL environment. How the reward function is constructed, depends strongly
on the environment and the corresponding target of the agent. All actions At need to receive
a reward Rt+1 that is representative of how much they have contributed individually to the
target. There are environments with a target metric that is only observed at the end of an
episode, such as video games that can either be won or lost. In contrast, there are other
environments with a continuous target that is accumulated across the whole episode, such as
trading environments where profits are accumulated with trades throughout the trading day.

An example where target outcomes are observed at the end of the episode is the common
simplistic reinforcement learning problem based on a grid world representing a maze. Essen-
tially, the target of the agent is to find its way out of the maze. In such environments, the

21

2.6. Reward Functions for Trading

reward for the terminal action, when the agent finds its way out of the maze, may take some
positive value. All remaining rewards may take the exact same value, for instance a small
negative value like -1 so that the agent learns to take fewer steps to find out of the maze.

An example where target outcomes are accumulated throughout the episode is the case
of trading as in this thesis. Here, the target of the agent may be to maximize total profit per
trading day. The total profit is accumulated by the agent across the trading day, with the agent
buying and selling multiple times throughout the trading day. For instance, in a particular
trade, the agent may sell some volume of electricity for a higher price than the purchase price.
This would increase the total profit per day. In another particular trade, the agent may sell
some volume of electricity for a smaller price than the purchase price. This would decrease
the total profit per day. There are many possible functions for computing rewards for such
actions, and they are discussed in the subsequent sections.

2.6.2 Target metrics

Before considering possible reward functions for the context of trading, we need to properly
define possible target metrics of the agent. For instance, total profit per episode could be
used as target metric. However, different target metrics are possible. We may not only want
to achieve large profits but we may also want to avoid risky trades that could result in huge
losses. Such risk aversion would need to be reflected in the target metric.

Moody et al. distinguish between three different categories of target metrics: a) risk-
adjusted return, represented by the Sharpe ratio, b) profit and c) utility of profit [2]. Similar
distinctions have been made in a literature review about reinforcement learning for trading
in the financial domain where the categories were called Sharpe ratio, profit and other [15].

Interestingly, it has been stated that using the Sharpe ratio as target metric may generally
result in larger cumulative profits than using profit itself as a target metric because the Sharpe
ratio helps to avoid risky trades [2]. However, it is possible to avoid risk with utility of profit
as target metric as well [28]. Consequently, a comparison between the different categories of
target metrics and corresponding reward functions is a relevant research problem.

2.6.2.1 Sharpe ratio

The Sharpe ratio was first introduced as reward-to-variability ratio in 1966 in order to measure
performance of mutual funds [29]. The motivation of this ratio is that large returns tend to be
associated with larger variability (and therefore risk) than small returns. Since investors aim
for large returns with small variability, some metric is needed that adjusts for the variability
of returns, giving lower scores in case of large variability. To understand the Sharpe ratio, we
first have to introduce the terms of equity Et and return rt [30].

In the context of the RL system, equity Et P R, defined in equation 2.36, is the total value
of the cash and the volume of electricity owned by the agent at time t.

Et = Ct + Qt � Pt, (2.36)

where Ct is the total cash owned by the agent, Qt is the total volume of electricity owned
by the agent and Pt is the market price per volume of electricity at time t.

Subsequently, the return rt P R, defined in equation 2.37, is the absolute change of the
equity from time t� 1 to t. In some cases, the return is also defined as the percentage change
instead of the absolute change in equity [30]. However, if specific amounts of volume are
invested in each trade, it is common to define return as the absolute change in equity [2]. The
absolute change in equity is shown in equation 2.37 below.

rt = Et � Et�1 (2.37)

22

2.6. Reward Functions for Trading

Finally, the Sharpe ratio in its simplest form, defined in equation 2.38, is the ratio of the
sample mean and the sample standard deviation of returns [2].

ST =
r̄
sr

, (2.38)

where the estimates r̄ and sr are computed based on returns rt with t P 1, ..., T as described
in equations 2.39 and 2.40. Note that equation 2.40 shows the unbiased estimator of the
standard deviation but the biased estimator is sufficient for reinforcement learning [2].

r̄ =
1
T

Ţ

t=1

rt (2.39)

sr =

gffe 1
T � 1

Ţ

t=1

(rt � r̄)2 (2.40)

2.6.2.2 Profit

The total profit for an episode from t = 1, ..., T, defined in equation 2.41, is the difference
between the equity at the end of the episode and the equity at the beginning of the episode.

PT = ET � E0 (2.41)

Alternatively, one might express the profit in terms of the traded volumes and their re-
spective prices at each step t of the episode, as in equation 2.42.

PT =
T�1̧

t=0

[
Vs

t � Pt �Vb
t � Pt

]
, (2.42)

where Vs
t and Vb

t represent the volume sold and bought by the agent at time t respectively,
and Pt represents the market price per volume at which electricity was sold and bought. Note
that the volumes Vs

t and Vb
t are based on the actions taken by the agent, whereas Pt is given

by the market. Further note that at a specific time t, the agent can either buy or sell or do
none of the two. Hence, at least one of the two volume terms, Vs

t and Vb
t , has to be zero for

every t.

2.6.2.3 Utility of profit

In equation 2.41, profit is displayed as is. This is equivalent to applying a risk-neutral utility
function because no transformation is conducted to account for risk. However, we may also
apply different utility functions. For the context of trading, risk-avoiding utility functions
are of particular interest. Risk-avoiding utility functions have a concave shape, whereas risk-
neutral utility functions have a linearly shape [30]. This is illustrated with an example in
figure 2.6. With the risk-neutral utility function, every additional unit of profit results in the
same additional unit of utility. With the risk-avoiding utility function, the additional amount
of utility resulting from an additional unit of profit depends on the value of the profit: the
smaller the profit, the larger is the utility of an additional unit of profit. In other words, the
largest gain in utility is achieved by avoiding very large losses.

Convex-shaped utility functions can, for instance, be constructed by using logarithms or
powers of 1. For this thesis, the natural logarithm is used for the utility function, as shown
in equation 2.43 below.

UT = ln
(
ET
E0

)
, (2.43)

where ET is the equity at the end of the episode and E0 is the equity at the beginning of
the episode.

23

2.6. Reward Functions for Trading

Figure 2.6: Example of risk-neutral and risk-avoiding utility

2.6.3 Reward functions

After defining the target metrics, Sharpe ratio ST , profit PT and utility of profit UT , this sec-
tion reviews possible reward functions based on these target metrics. By saying that a reward
function is based on a respective target metric, what is meant here is that the reward function
is similar in nature to the target metric.

This means that the reward function strongly resembles the target metric but that it may
not result in policies that maximize the target metric. For the target metric UT = ln

(
ET
E0

)
for

instance, the reward function may be defined as Rt+1 = ln
(
Et+1
Et

)
. Recall that the RL agent

learns to take actions that maximize the return Gt = Rt+1 + γRt+2 + ... + γT�t�1RT . Visibly,
the return Gt differs from the target metric UT and hence, the actions taken by the agent
may not maximize the target metric UT . This example also illustrates that designing reward
functions in reinforcement learning is not a trivial problem: it may be difficult to find an
optimal reward function for a specific target metric because there may be some detachment
between return Gt (the sum of discounted rewards) and the target metric.

2.6.3.1 Reward based on Sharpe ratio

Moody et al. suggest to optimize a variant of the Sharpe ratio, namely the differential Sharpe
ratio, because it can be differentiated with respect to a single observation of return rt, allowing
for online optimization in their recurrent reinforcement learning algorithm [2], [31]. However,
for other RL algorithms, what is used in practice is instead a running average of the Sharpe
ratio, as defined in equation 2.44. This is essentially the Sharpe ratio computed with returns
from the current and from the last L timesteps. For instance, it was applied in [32], [33].

Rt+1 =
r̄(t+1�L):(t+1)

s(t+1�L):(t+1)
r

, (2.44)

where the estimates r̄ and sr are computed based on returns rk with k P t + 1� L, ..., t + 1
as shown below.

r̄ =
1
L

t+1̧

k=t+1�L

rk (2.45)

24

2.6. Reward Functions for Trading

sr =

gffe 1
L� 1

t+1̧

k=t+1�L

(rk � r̄)2 (2.46)

2.6.3.2 Reward based on profit

Absolute return
The maybe most simple profit based reward function, defined in equation 2.47, is the differ-
ence in equity between time t + 1 and t [34], [35]. Note that this is the equivalent of the return
in equation 2.37, with the difference that the index has changed since rewards are generally
indexed by t + 1.

Rt+1 = Et+1 � Et (2.47)

VWAP delta
Another possible metric is the difference between the volume weighted average sell price and
the volume weighted average buy price, defined in equation 2.48. This metric does not come
from literature. Instead, it is suggested by the author and the commissioner.

Rt+1 =

°t
k=0[V

s
k � Pk]°t

k=0 Vs
k

�

°t
k=0[V

b
k � Pk]°t

k=0 Vb
k

, (2.48)

where Vs
k and Vb

k represent the volume sold and bought by the agent at time k respectively,
and Pk represents the market price per volume at which electricity was sold and bought.

2.6.3.3 Reward based on utility of profit

The risk-avoiding reward function used for this thesis resembles the corresponding target
metric from equation 2.43. The difference is that the ratio Et+1/Et is used instead of ET/E0.
This reward function has been suggested because it "penalizes losses stronger than gains" [28,
p. 942]. Several studies, for instance [32], [36], have made use of this reward function or a
variation of it.

Rt+1 = ln
(
Et+1

Et

)
(2.49)

25

3 Literature Review

This chapter gives an overview about the electricity market, electricity price forecasts and
the use of reinforcement learning for trading in both, the electricity and the financial market.
Section 3.1 summarizes relevant characteristics of the electricity market. Section 3.2 gives
an overview about the type of models that perform well for forecasting electricity prices.
Sections 3.3 and 3.4 give an overview about how reinforcement learning has been applied for
trading in the electricity and in the financial domain respectively.

Unfortunately, a prevalent issue in the field of price forecasting and reinforcement learn-
ing for trading is the lack of comparability across different studies. In particular in the field
of reinforcement learning, different studies use different environments, data sets, evaluation
metrics and algorithm implementations. For instance, no paper was found that addresses the
problem of trading in the continuous hourly intra-day electricity market in the way it was
done in this thesis. Hence, it is difficult to use quantitative results from other studies as refer-
ence or performance baseline. For this reason, this literature review rather focuses on giving
a broad overview instead of detailed insights.

3.1 Properties of the Electricity Market

The electricity market differs from other markets such as the financial market (where assets
such as stocks, indices or funds are traded) or commodity markets (where assets such as gold,
steel or corn are traded). The peculiarities of the electricity market have been greatly summa-
rized in other papers, such as [37]. In particular, this paper mentions two milestones strongly
affecting the electricity market (liberalization of the electricity supply chain and transition to
renewable energies) and, among others, three relevant properties of the electricity market (bal-
ance of supply and demand, dependence of supply on weather conditions and dependence
of demand on time). These milestones and properties are explained shortly below.

The liberalization of the electricity market in Europe began in the 1990s and lasted until the
2010s [38]. By breaking up monopolies and allowing competing private companies to partake
in the electricity supply chain, this milestone shaped the electricity market as it is today and
allowed electricity to be traded in the way it is traded for this thesis. The shift towards renewable
energies such as wind energy, changing the supply of electricity, contributed to more volatile
electricity prices due to the dependence of electricity prices on external factors like wind [39].

26

3.2. Electricity Price Forecasting

Importantly, electricity supply always needs to be equal to electricity demand, i.e. the
amount of electricity produced needs to correspond to the amount of electricity consumed.
This is a requirement of the power grid, through which electricity is delivered from producers
to consumers. Differences in supply and demand result in unstable electric frequencies in the
power grid, which in turn may result in power plants getting disconnected from the power
grid [40]. Essentially, electricity prices help to balance out supply and demand. If demand
exceeds supply, prices become expensive, which then reduces demand since consumers do
not want to buy electricity at expensive prices. If supply exceeds demand, prices become
negative, which then reduces supply since producers want to get paid (instead of having
to pay) for feeding electricity into the power grid [41]. Note that it is not possible to store
large amounts of electricity in order to sell this electricity later when there is more demand
than supply [42]. In conclusion, changes in supply (e.g. more produced wind energy) and in
demand (e.g. more electricity usage when people are at home) can affect electricity prices.

Both, demand and supply, are volatile and difficult to predict. On the demand side, it is
important to note that electricity is a product that is actively used by people, organizations
etc. There are certain time periods when people may use more electricity, for instance when
they come home in the evenings [43]. Therefore, electricity demand is dependent on the time
period. On the supply side, there exist electricity sources which depend on external factors
such as wind energy. Wind strength can neither be controlled, nor predicted perfectly [39].
Importantly, the price volatility resulting from variations in supply and demand creates both,
risk and opportunity, for trading electricity.

3.2 Electricity Price Forecasting

A review about electricity price forecasting (EPF) from 2014 raises the issue that EPF studies
are difficult to compare due to different data sets, error measures and software implementa-
tions [44]. As a result, studies may even give conflicting results. Hence, one may not be able
to conclude whether a particular prediction model used in one study is more suitable than a
different prediction model used in a different study.

A later study from 2018, however, thoroughly benchmarked 27 different models for pre-
dicting hourly day-ahead electricity prices. It found that a deep neural network (DNN) sig-
nificantly outperformed all other models, including other neural networks with long-short
term memory (LSTM) and gated recurrent units (GRU) [37]. The DNN applied in this study
consisted of two hidden layers with 239 and 162 neurons respectively. The neural networks
with LSTM and GRU, however, also significantly outperformed the remaining models, show-
ing that neural networks in general seem to perform well on this task. In addition, the study
found that models based on machine learning (e.g. support vector machines, neural net-
works, gradient boosting trees) significantly outperformed models based on time series mod-
els (e.g. ARIMA, DSARIMA, GARCH).

Importantly, this study conducted forecasts for the hourly day-ahead electricity market
and not for the hourly intra-day electricity market, which is the subject of this thesis. What
both markets have in common is that they are based on 24 instruments, one for each hour of
the day. However, in the day-ahead market, the orders for all 24 instruments are submitted
at once [45]. This means that the day-ahead market differs noticeably from the intra-day
electricity market, where orders are submitted continuously throughout the day. In addition,
intra-day prices may be more volatile than day-ahead prices [46]. Unfortunately, there are
seemingly no papers that benchmark EPF models on the intra-day electricity market.

Although there exist studies that conducted forecasts for the intra-day electricity market,
these studies generally do not aim to achieve good predictions or to compare model perfor-
mance. Instead, their objective is to study certain effects and characteristics of the electricity
market in general [47]–[52]. For this purpose, most of these studies apply time series models
such as GARCH.

27

3.3. Reinforcement Learning in the Electricity Domain

3.3 Reinforcement Learning in the Electricity Domain

Reinforcement learning has been applied in the electricity domain for various different tasks.
For instance, it has been used to train agents to buy or sell electricity as in the optimal trade
execution (OTE) problem and related problems [9]–[11], [53], [54], to model overall market
behavior [55]–[57], to train electricity broker agents in smart grids [58], [59], to train agents
to create electricity consumption plans for charging electric vehicles [60] and to train storage
device trading agents [14]. The latter resembles the scenario of this thesis in the sense that
both, buy and sell actions, are possible. In this thesis however, the agent cannot physically
store electricity. Instead it can only own electricity contracts, which must be sold before the
delivery time period. In contrast, storage devices allow to store electricity even until after the
delivery time period.

Generally, RL methods from the field of function approximation have been used due to
continuous state spaces and possibly continuous action spaces. For instance, actor-only meth-
ods were applied in [9], [53] and critic-only methods were applied in [11], [14], [59], [60]. Also,
actor-critic methods have been applied in the the electricity domain, mostly for understand-
ing and modeling electricity markets e.g. in [55]–[57]. Very recently in 2020, the actor-critic
algorithm A3C has also been successfully applied for electricity trading in [54]. In particular,
it was used for wind power producers to sell electricity but also to buy electricity reserves to
avoid penalties in case of e.g. too little wind energy production. Actor-critic methods have
the main advantage of a more stable training process compared to actor-only methods [17].
With scalable implementations, such as A2C and A3C [23] [4], these methods seem generally
promising for the problem of trading electricity.

3.4 Reinforcement Learning in the Financial Domain

The problem of trading electricity addressed in this thesis resembles the problem of trad-
ing financial products. Generally, the problem is to generate profits by buying and selling
assets (either electricity or financial products). Since this problem has been covered more
extensively in the financial domain than in the electricity domain, the literature about rein-
forcement learning for trading financial products is reviewed shortly.

In the financial domain, reinforcement learning has received noticeable attention for trad-
ing, in particular for trading indices [1], [2], [13], [61]–[65], currencies [16], [31], [36], [66]–[68],
stocks [32]–[34], [69], [70] and other products such as derivatives [8], [71], [72]. While most
papers address the problem of trading single assets (e.g. one single stock or index), some
papers also address the problem of portfolio management, where multiple assets are traded.

Just like in the electricity domain, methods from the field of function approximation are
generally used in the financial domain due to continuous state spaces and just like in the
electricity domain, the focus has been on critic-only and actor-only methods rather than on
actor-critic methods. For instance, critic-only methods were applied in [1], [8], [13], [16], [32]–
[34], [61], [66]–[69], [73], actor-only methods were applied in [1], [2], [8], [13], [31], [36], [61]–
[65], [71]–[73] and actor-critic methods were applied in [8], [65], [70].

One particular algorithm that is commonly used for trading in the financial domain is
called recurrent reinforcement learning or direct reinforcement learning algorithm. This algorithm
has tradition because it was one of the first RL methods applied to the problem of trading
in the financial domain by Moody et al. in [1]. It is generally considered to be an actor-only
algorithm because it directly learns a policy [15], [62]. However, it does not make use of
the policy gradient theorem and it also does not result in a stochastic policy. Instead, there
is a neural network with tanh function in the output layer to map predictions into long or
short positions of fixed volume, represented by values 1 and �1 respectively. The network is
trained with gradient ascent to maximize some utility function. This method was not further
considered in this thesis because of its focus on the financial domain where short positions

28

3.4. Reinforcement Learning in the Financial Domain

are possible (unlike in the electricity domain) and because it is designed for placing trades of
fixed volume (instead of different volumes).

A literature review about trading with reinforcement learning from 2018 concluded that
"there is no comprehensive study benchmarking all three approaches, i.e. actor-only, critic-
only and actor-critic" [15, p. 36]. Further, this review concluded that based on existing papers
it was not possible to judge whether one of the three method is generally better than other
methods. Later in 2019, Zhang et al. applied RL methods from all three categories for trading
in the financial domain [8]. They applied these methods on different static data sets, historic
market price time series of stocks, indices, currencies and more. Critic-only methods were
represented by DQN, actor-only methods by REINFORCE and actor-critic methods by A2C.
Unfortunately, this paper does not focus on thoroughly comparing the performance of these
methods with each other. It only does so briefly, saying that "DQN obtains the best perfor-
mance among all models and the second best is the A2C approach" [8, p. 8]. However, the
reported results show that the conclusions depend on the data sets and on the evaluation
metrics. Importantly, no hypothesis tests were used and no hyperparameter optimization
was conducted for the different methods.

29

4 Data

This chapter introduces the data used in this thesis. Section 4.1 describes how the raw order
book data was converted to market data. Section 4.2 describes which features were con-
structed based on the market data. Section 4.3, describes how the data was split into training,
validation and test data.

The price from the market data described in section 4.1 is the price that was traded by the
RL agent. Therefore, it is essential for computing the rewards and the evaluation metrics (in-
troduced later on in the methods section). The features described in section 4.2 were used to
represent the state space, meaning that the RL agent used these features for decision making.

4.1 Data Preparation

4.1.1 Order Book Data

The raw data consists of order book data. Essentially, the order book data represents the
overall market in the past. In this thesis, the RL agent learns to trade on this historic market.
Before training the RL agent, the raw order book data is, however, transformed as described
in section 4.1.2. Note that none of the agent’s actions are in the order book data. Instead, the
order book data contains orders that were actually placed by market participants in the past,
e.g. electricity producers and consumers.

In particular, there are two order books: one with sell orders and one with buy orders. One
order basically says that a market participant wants to either buy or sell a certain volume of
electricity for a certain price. Not all orders get executed. When an order gets executed, this
means that an actual trade takes place. Simply speaking, a buy order with a certain price
gets executed if there is a sell order with the same or a smaller price and the same or a larger
volume. If a buy order is executed, there is always a corresponding sell order that is executed
as well. However, an executed buy order can also correspond to several executed sell orders
and vice versa. This is illustrated in the schematic figure 4.1, which shows an excerpt of the
buy and sell order book. In the figure and throughout the thesis, volume is measured in
megawatt hours (MWh) and price is measured in EUR. The arrows in the diagram illustrate
which buy and sell orders were executed together and thereby converted to a trade. Hereby,
buy and sell orders come from various different market participants. Note that the data

30

4.1. Data Preparation

displayed in the diagram is simplified and does not correspond to the actual data used in
the thesis.

Price Volume ExecutedTime

Buy Order book Sell Order book

15:00 4 1 True

15:00 1 5 False

15:01 2 1 True

15:02 3 2 True

15:02 2 1 False

15:03 1 1 True

15:03 1 3 True

15:04 2 2 False

15:04 2 1 True

15:05 1 2 True

Price Volume ExecutedTime

15:00 4 1 True

15:00 2 1 False

15:01 2 1 True

15:02 3 1 True

15:02 3 1 True

15:02 4 1 False

15:02 4 3 False

15:03 3 1 False

15:03 3 1 False

15:03 1 4 True

5 subsequent, executed buy orders (in grey) are converted to
1 timestep of market data in the RL environment:

price_min price_max price_delta volume price

1 4 3 8

(4*1+2*1+3*2+1*1+1*3)/8 = 2

2

Figure 4.1: Diagram of order book data. Volume is measured in megawatt hours (MWh)
and price is measured in EUR. This schematic diagram illustrates that buy and sell orders
get executed if they match in their price and volume. One buy order can get executed with
several sell orders and vice versa. The 5 subsequent executed buy orders highlighted in grey
would be aggregated to 1 time step in the RL environment.

4.1.2 Market Data

In this thesis, the agent can buy or sell some volume of electricity at a certain market price.
Whenever the agent chooses to buy or sell a certain volume of electricity, the corresponding
volume is bought or sold at market price. In other words, all orders of the agent get executed,
i.e. converted to a trade. This is a simplification of the real-world scenario, where the agent
does not only need to specify the volume to buy or sell but also the desired price at which to
buy or sell when placing an order. In the real-world scenario, a buy order only gets executed
if there exist corresponding sell orders that match the price and the volume of the buy order.
Reversely, a sell order only gets executed if there exist corresponding buy orders that match
the volume and the price of the sell order.

Since orders in this thesis are executed at market price, this price is relevant for the com-
putation of the rewards and evaluation metrics such as profit. The market price, along with
other market data, was obtained by summarizing every 5 subsequent executed buy orders
from the raw order book data. In other words, every timestep t in the RL environment con-
tains information about a bin of 5 trades, representing the market in their corresponding time
interval. For instance, the 5 buy orders highlighted in grey in figure 4.1 would be converted
to 1 timestep of market data in the RL environment. Note that only the buy order book was
considered (and not the sell order book) since executed buy orders are also represented as

31

4.2. Feature Engineering

executed sell orders in the sell order book. Instead of using the buy order book, the sell order
book could have been used alternatively.

Each bin of 5 executed buy orders was summarized by computing the following features:
the minimum price, the maximum price, the delta between the minimum and the maximum
price, the total volume and the volume weighted average price. These features are also de-
scribed in table 4.1 and an example computation is shown in figure 4.1. Note that the volume
weighted average price for a bin of 5 orders is from here on only called price or market price.
It is the price that is traded by the RL agent. For reference, the formula can be found below.

pricet =

°
jPtt f irst ,...,tlastu

Vj � Pj°
jPtt f irst ,...,tlastu

Vj
, (4.1)

where Vj and Pj are volume and price of order j respectively. Each sum is computed with
5 orders, indexed by j, that fall into the bin represented by timestep t in the RL environment.

4.2 Feature Engineering

Various features were created for the state space. These features can be categorized into
three types: market features (e.g. price and volume), indicator features (e.g. simple moving
average and exponential moving average) and time features (e.g. hour of the day and time
until delivery). An overview of the features can be found in table 4.1.

4.2.1 Feature Overview

The market features, which were mentioned before in section 4.1.2, basically summarize the
5 executed orders at each timestep t. The indicator features are computed based on several
timesteps of market feature data and hence contain information about the market across time.
In the financial domain, such features are generally referred to as technical indicators, which
are commonly used for decision making in trading [80]. They have also been applied in the
context of reinforcement learning for trading [8], [15]. Lastly, the time features are valuable
because of differences in price volatility across the time of the day (e.g. larger volatility in the
evenings when electricity consumption is high).

All features were scaled in some way. Time features were scaled differently than mar-
ket and indicator features. Time features were scaled individually prior to training into the
range [0, 1] by dividing them with their respective maximum values (e.g. hour of the day
was divided by 24). To understand how the market and indicator features were scaled, the
state space of the agent needs to be described shortly: all features were provided to the agent
in form of a sliding window. For research question 1 for instance, the state space contained
information about all 21 features for 10 timesteps (9 past timesteps t � 9, t � 8, ..., t � 1 and
the current timestep t). This means that the state space was a matrix S10�21, where 10 repre-
sents the number of timesteps and 21 the the number of features. In other words, the state
space consisted of 210 values, implying an input dimension D = 210 in figures 2.4 and 2.5.
During training, the market and indicator features were converted to percentage changes rel-
ative to their respective values at the current timestep t. For each of the market and indicator
features, the percentage changes from timesteps t� 9, t� 8, ..., t� 1, t to timestep t were com-
puted respectively. This was done at every timestep t. The resulting percentage changes were
restricted to the range [�10, 10]. For instance, values larger than 10, representing percentage
increases of more than 1000%, were set to 10. Subsequently, all values were divided by 10 to
scale the values into the range [-1, 1].

A correlation plot of the scaled features is displayed in figure 4.2. Visibly, the features that
are computed based on the price feature (most indicators) show relatively strong correlations.
However, also the time features show some small correlation with the other features. The dis-
tributions of market and indicator features before scaling are visualized in figures A.2 and A.3.

32

4.2. Feature Engineering

Table 4.1: Feature overview

Index Feature Type Description

1 price market Volume weighted average price of the exe-
cuted orders in the bin of timestep t

2 price_min market Minimum price of the executed orders in the
bin of timestep t

3 price_max market Maximum price of the executed orders in the
bin of timestep t

4 price_delta market Difference btw. maximum and minimum
price (based on 2, 3)

5 volume market Total volume of the executed orders in the
bin of timestep t

6 VWAP indicator Volume weighted average price of executed
orders from time 1 to t (based on 1, 5) [74]

7 SMA5 indicator Simple moving average of the prices from
the last 5 timesteps (based on 1) [75]

8 SMA10 indicator Simple moving average of the prices from
the last 10 timesteps (based on 1) [75]

9 EMA5 indicator Exponential moving average of the prices
from the last 5 timesteps (based on 1) [76]

10 EMA10 indicator Exponential moving average of the prices
from the last 10 timesteps (based on 1) [76]

11 bollinger10_hband indicator Upper bollinger bands based on 10 timesteps
using factor of 2 (based on 1, 8) [77]

12 bollinger10_lband indicator Lower bollinger bands based on 10 timesteps
using factor of 2 (based on 1, 8) [77]

13 MACD indicator Moving average convergence/divergence,
i.e. EMA12 - EMA 26 (based on 1) [78]

14 RSI indicator Relative strength index based on the prices
from the last 10 timesteps (based on 1) [79]

15 time_e_month time Month of the year / 12
16 time_e_weekday time Weekday / 7
17 time_e_hour time Hour of the day / 24 (when the orders in bin

of timestep t are executed)
18 time_instrument time Hour of the day / 24 (when the traded elec-

tricity is to be delivered)
19 time_delta_delivery_s time Mean time delta (in unix time) btw. order fil-

ing and delivery (divided by max. value)
20 time_delta_delivery_e time Mean time delta (in unix time) btw. or-

der execution and delivery (divided by max.
value)

21 time_delta_e_s time Mean time delta (in unix time) btw. order fil-
ing and execution (divided by max. value)

Furthermore, the distributions of market and indicator features after scaling are visualized in
figures A.4 and A.5 respectively.

4.2.2 Encoding Instruments

4.2.2.1 Instruments and Contracts

An important aspect to consider is that on the hourly intra-day electricity market, instead of
trading one product, 24 different products are traded: one product for each hour of the day.

33

4.2. Feature Engineering

Figure 4.2: Correlation plot of all features after scaling

In other words, electricity producers and consumers sell and buy electricity for a specific hour
in the future. The hourly products are also called instruments, meaning that an instrument is
equivalent to a specific hour of the day.

Instruments are traded for particular dates since electricity is used at a particular hour
on a particular date. The pair of an instrument and a date is called contract. For instance,
one contract could represent electricity to be delivered at 20:00 on June 30, 2016. In other
words, this contract corresponds to the 20:00 instrument to be delivered on June 30, 2016. In
the context of RL, every contract corresponds to one episode. Essentially, the features from
table 4.1 were computed for every contract separately, based on orders for this contract.

Each contract is traded within a single, fixed time period. When this time period is over,
the electricity corresponding to the contract is delivered to the consumer. Afterwards, the
same contract can never be traded again since a particular combination of hour and date can
only occur once. The intra-day market for the a certain date opens at 15:00 on the previous
date. This means that all 24 instruments of a certain date can be traded from 15:00 on the
previous date until an hour before delivery of the respective instrument. Therefore, every
instrument can be traded for a different number of hours. The instrument corresponding
to the first hour of the day can be traded for the least amount of hours and the instrument
corresponding to the last hour of the day can be traded for the largest amount of hours.

34

4.2. Feature Engineering

4.2.2.2 Differences between Instruments

Two main differences between instruments can be found in the amount of traded volume and
in the volatility of prices. This is largely based on the nature of electricity: it is a product that
is consumed by people, organizations etc. As described in section 3.1, unexpected changes
in demand and supply affect electricity prices. Importantly, there are time periods when
electricity demand tends to be larger and more volatile. For instance, demand is much larger
and more volatile in the evenings (e.g. at 20:00) when many people use electricity than at
night (e.g. at 04:00) when most people sleep.

This is reflected by the corresponding instruments: electricity to be delivered in the
evenings (corresponding to e.g. the 20:00 instrument) is generally traded at a much larger
volume and with more volatile prices than electricity to be delivered at night (corresponding
to e.g. the 04:00 instrument). Figure 4.3 illustrates this. It shows the distribution of unscaled
prices by instrument. For example, one can see that the prices for the 04:00 instrument have
smaller extreme values and smaller variation than the prices for the 20:00 instrument.

Figure 4.3: Violin plots of price before scaling for 6 instruments

4.2.2.3 Encoding different Instruments

The question is whether the RL agent should be able to choose which instrument to trade, or
whether it should be given which instrument to trade. While it is possible to trade different
contracts simultaneously, letting the agent choose between trading e.g. the 04:00 and the
20:00 instrument, this was not done for this thesis. Instead, the purpose of this thesis was
to create an agent that can potentially trade any of the 24 products, but only one at a time.
For instance, the agent should be profitable when instructed to trade the 20:00 instrument in
one episode and it should also be profitable when instructed to trade the 04:00 instrument in
another episode. There are two possible approaches for this.

Either 24 individual agents are trained on the different instruments respectively, or one
agent is trained on all 24 instruments and the instrument is encoded in the state space. The
second approach is chosen in this thesis because of its advantage that a) only one agent needs
to be trained (instead of 24 agents) and that b) this agent can learn from a large amount
of data, namely from data of all 24 instruments (instead of just one instrument). While the
electricity market may differ across instruments, for instance in price volatility and amount
of traded volume, the agent can learn to adjust to these differences because the instrument

35

4.3. Data Split

is encoded in the state space and therefore known by the agent. As shown in table 4.1, the
instrument is encoded as the time_instrument feature in the state space.

4.3 Data Split

The data set was split into data sets for training, validation and testing. The split was con-
ducted by time instead of randomly in order to obtain realistic estimates about how the agent
would generalize to future data. Also in real-world applications, future data may differ from
training and validation data due to changes in the electricity market. The time period from
January 2014 to February 2016 was used for training, the time period from March 2016 to June
2016 was used for validation and the time period from July 2016 to December 2016 was used
for testing. In terms of timesteps that can be taken by an agent, this corresponds to a 60%,
21% and 19% split for training, validation and test data respectively as displayed in table 4.2.
This table contains information across all contracts (and hence also across all instruments). As
mentioned in section 4.2.2, one episode in the RL environment corresponds to one contract.
Episodes with fewer than 10 possible timesteps were removed. More information about how
the data sets were used can be found in the method chapter 5.

Table 4.2: Overview of training, testing and validation data

Type Time Period Total Steps % of Steps Total Episodes % of Episodes

Training Jan 2014 - Feb 2016 503,371 59.8 12,557 66.4
Validation Mar 2016 - Jun 2016 161,173 19.2 2,887 15.3
Testing Jul 2016 - Dec 2016 176,600 21.0 3,481 18.4
Total Jan 2014 - Dec 2016 841,144 100.0 18,925 100.0

Figure 4.4: Violin plots of price before scaling by data type

As stated previously, the electricity market does change over time. The reader may there-
fore wonder how the three data sets differ with respect to their distributions of the market
price (before scaling). The distribution of the market price is of relevance because the RL
agent trades the market price and therefore the performance of the RL agent also depends on
the market price distribution. For illustration, the price distributions are illustrated visually
in figure 4.4 across all instruments. Visibly, there are noticeable differences in terms of mean,
standard deviation and extreme values. These differences put a limitation on the results to be
achieved by the RL agent in this thesis. However, to keep the evaluation realistic, the choice
was made not to adjust for differences in prices since this could also not be done in a real-life
application. Splitting the data by time, as in this thesis, is also how it was done by a study
that thoroughly benchmarked models for EPF [81].

36

5 Method

This chapter describes the methodology applied in this thesis. To begin with, section 5.1
summarizes the RL environment, section 5.2 introduces the evaluation metrics (for evaluating
the conducted experiments), section 5.3 describes the approach for hyperparameter tuning
and feature selection, section 5.4 introduces the baseline strategies (for benchmarking the RL
agent) and section 5.5 describes how hypothesis tests were conducted.

The subsequent sections 5.6, 5.8 and 5.7 particularly summarize how training and evalu-
ation were conducted for the research questions: 1) reward function comparison, 2) method
comparison and 3) baseline strategy comparison. An overview of RL method, reward func-
tion, features and hyperparameters used for these research questions is shown in table 5.1.

Table 5.1: Overview of methods by research question

Question Topic Method Reward Features Hyperparameters

1. Reward A2C All All Default
2. Method A2C and DQN Optimized Optimized Optimized
3. Baseline A2C Optimized Optimized Optimized

Moreover, section A.5 in the appendix summarizes the training metrics (for evaluating the
training progress) and section A.6 in the appendix describes how episodes were categorized
according to certain price patterns (spikes, uptrend and downtrend).

5.1 Environment

The first step in reinforcement learning is to define the environment with which the agent
is supposed to interact. Among others, state space, action space and reward function need
to be defined. The state space represents the information available to the agent for decision
making. The action space contains the possible actions that the agent can take at each time
step. The reward function, which is not known to the agent but only to the environment,
determines which feedback the agent gets for its actions. The purpose of this section is to
give a short summary of the RL environment used in this thesis. In particular, episodes,
action space, state space and reward functions are described.

37

5.1. Environment

Time

Data

States

Actions

Rewards

0 1 2 TT-1T-2...

...

...

Figure 5.1: Diagram of RL environment for one episode, where states are based on 10 time
steps. In orange, the first state S0, action A0 and reward R1 are highlighted. In grey, the state
ST�1 and the last action AT�1 and last reward RT of the episode are highlighted.

5.1.1 Episodes

In this thesis, the interaction of the agent with the environment is structured into separate
logical units, called episodes. Each episode corresponds to a particular contract that is traded
by the agent. A contract, as described in section 4.2.2, represents electricity to be delivered at
a specific date and hour (also called instrument). The states of an episode are computed based
on the order book data for the corresponding contract as described in chapter 4.

The length T of an episode, i.e. the number of steps that can be taken by the agent during
the episode, depends on the number of executed buy orders for the corresponding contract
(in the order book data). Since the number of executed buy orders per contract differs, the
episodes also differ in their lengths. The market data of every timestep t is based on 5 exe-
cuted orders as described in section 4.1.2. Therefore, if there were for instance 105 executed
buy orders for a particular contract, then there would be 21 potential timesteps for the corre-
sponding episode. However, because the state space is based on a window of past timesteps
as mentioned before in section 4.2.1, the agent cannot start trading when the market opens.
Instead, it has to wait until sufficient timesteps have passed so that the state space can be
properly represented. If the state space in the above example was based on 10 timesteps,
then the agent could take 11 steps, i.e. actions, during the episode, resulting in an episode
length of T = 11. This is illustrated in figure 5.1.

5.1.2 State Space

Each state St is represented by a matrix of dimensions F � seq_len, where F is the number
of features and seq_len is the number of timesteps used. By default, all F = 21 features
from the overview in table 4.1 were used with seq_len = 10 timesteps corresponding to
t� 9, t� 8, ..., t� 1, t. This results in a total of D = 21 � 10 = 210 input values in figures 2.3, 2.4
and 2.5, which illustrate the neural networks for the action-value function, policy function

38

5.2. Evaluation Metrics

and state-value function respectively. However, different values of seq_len and different sets
of features were tested during hyperparameter tuning and feature selection for the second
research question. All features were scaled: market and indicator features into the range
[�1, 1] and time features into the range [0, 1] as described in section 4.2.1.

5.1.3 Action Space

At the each time t, the agent can trade the market price (in EUR) described in section 4.1.2.
The agent returns a single, discrete action At with value a, where a P t0, 1, 2u. This action
specifies the amount of volume of electricity (in MWh) that the agent chooses to own at the
end of the discrete timestep t. This action is then translated into the amount of volume bought
Vb

t and the amount of volume sold Vs
t by the agent. At least one of these two terms Vb

t and
Vs

t is 0 for each t since the agent either buys or sells (or does none of the two but never both).
If At�1 is the volume owned by the agent at the end of the previous timestep and At is the
volume to be owned at the end of the current timestep, then the corresponding volumes to
be bought and sold by the agent at the end of time t may be summarized as in equation 5.1.

f (At, At�1) =

$'&
'%

buy: Vb
t = At � At�1, if At ¡ At�1

sell: Vs
t = At�1 � At, if At At�1

hold: Vb
t = Vs

t = 0, if At = At�1

(5.1)

In summary, the action At represents the amount of volume that the agent wants to own at
the end of the timestep t. This action is translated into a buy, sell or hold position specifying
the amount of volume that is to be bought or sold, Vb

t and Vs
t , according to equation 5.1. The

specified volume is then bought or sold at the respective market price Pt at time t.
In addition, the agent was subject to further limitations. For instance, it was only allowed

to buy if there was enough cash Ct available, where the initial cash C0 was 1000 EUR at the
beginning of each episode. Furthermore, in the last possible action during an episode, any
volume owned by the agent was forcefully sold because the agent in this thesis was not meant
to get any electricity delivered physically.

5.1.4 Reward Function

Four reward functions were applied during the thesis: Sharpe ratio, absolute return, vwap
delta and log equity ratio. They are described in the equations from the theory section 2.44,
2.47, 2.48 and 2.49 respectively. For the Sharpe ratio, a running average of 5 time steps was
used (L = 4 for 4 past timesteps and 1 current timestep).

5.2 Evaluation Metrics

For this thesis, five metrics were chosen for evaluating and interpreting the performance of
the trained agents. The first metric, profit per volume traded, was used for answering the
research questions and the other four metrics were included for further discussion. Metrics
1-3 were included based on discussions with the commissioner and metrics 4-5 were included
based on previous studies [82] [8].

Essentially, metrics 1 and 2 (profit and profit per volume traded) measure the financial
result, metric 3 (number of trades) measures the activity of the agent, metric 4 (percentage of
positive returns) measures the quality of trades as investments and metric 5 (maximum draw
down) measures worst-case risk. All five evaluation metrics are defined below. The same
notation as in the theory section 2.6.3 about the rewards is used. Note that all metrics are
computed per episode. For instance, if an agent is evaluated on 3481 test episodes, then for
this agent, 3481 values are computed for each of the 5 metrics.

39

5.2. Evaluation Metrics

Importantly, the evaluation metrics are not fully aligned with the target metrics from
section 2.6.2. For instance, the Sharpe ratio and the log equity ratio were not included as
evaluation metrics. This can be explained as follows. First, the evaluation metrics were cho-
sen for all research questions (and not just the first research question where different reward
functions corresponding to the respective target metrics were tested). Second, the Sharpe
ratio and the log equity ratio were not the main objective (which instead was profit per volume
traded). Third, evaluation metrics beyond the target metrics may provide valuable additional
insights, e.g. about risk and activity level. It is important to stress that there is always some
detachment between target metric and what the agent optimizes for, namely the return Gt
(as described in section 2.6.3). With that in mind, purely focussing on the target metric may
give a limited understanding of the agents’ performance. Hence, looking at other evaluation
metrics can help to get a better understanding of the performance.

Metric 1: Profit per volume traded
The main metric used for answering all research questions is profit per volume traded, as
defined in equation 5.2. This metric describes the financial result obtained on average with
each traded volume during an episode. Large values are preferred. For instance, a large profit
per volume traded for a certain episode may indicate that almost every trade resulted in some
noticeable incremental profit during the episode.

M(1)
T =

°T�1
t=0

[
Vs

t � Pt �Vb
t � Pt

]
1
2
°T�1

t=0 Vs
t + Vb

t

(5.2)

Note that at the end of each episode, the total volume bought is equal to the total volume
sold since the agent starts the episode with 0 MWh of electricity and needs too end the
episode with 0 MWh of electricity. Therefore, the volume traded in the denominator can
alternatively be expressed as the total amount of volume bought or as the total amount of
volume sold: 1

2
°T�1

t=0 Vs
t + Vb

t =
°T�1

t=0 Vb
t =

°T�1
t=0 Vs

t

Metric 2: Profit
Profit is defined in equation 5.3 below. This metric describes the financial result obtained with
all trades in a certain episode. Large values are preferred. For instance, a profit of 100 for
a certain episode means that the agent owned 100 EUR more in cash at the end than at the
beginning of the episode, thanks to all its actions taken during the episode.

M(2)
T =

T�1̧

t=0

[
Vs

t � Pt �Vb
t � Pt

]
(5.3)

Metric 3: Number of trades
The number of trades is defined in equation 5.4. This metric describes the level of activity of
the agent. It represents the number of timesteps in an episode where the agent either buys or
sells some volume of electricity, which is the case when At ¡ At�1 or At At�1 respectively.
For instance, if the agent had two timesteps where it bought 2 and 1 volumes of electricity
and three timesteps where it sold 1 volume of electricity each, the number of trades would be
five. A small number of trades (in combination with large profit) is preferred.

M(3)
T =

T�1̧

t=0

1tAt¡At�1 or At At�1u
(5.4)

Metric 4: Percentage of positive returns
The percentage of positive returns is defined in equation 5.5. The returns rt were previously
defined in equation 2.37. To avoid confusion, note that the monetary return rt is meant here
and not the RL return Gt. This metric describes the percentage of timesteps during an episode,

40

5.3. Bayesian Optimization

in which the agent observed an increase in its equity Et. Large values are preferred. For
instance, a value of 0.6 for a certain episode means that during this episode, the equity Et
increased in 60% of the timesteps during the episode. The metric can be seen as a measure
of the quality of trades as investments (with large quality corresponding to episodes where the
agent invests, i.e. owns electricity, whenever the price goes up).

M(4)
T =

1
T

Ţ

t=1

1trt¡0u (5.5)

Metric 5: Maximum draw down
The maximum draw down (MDD) is defined in equation 5.6. MDD describes the largest
percentage decrease in equity Et from one timestep to the subsequent timestep during the
episode. All MDD values are negative, except for episodes in which equity increases across
all timesteps. Large values are preferred, e.g. �0.1 is preferred over �0.5. For instance, a
value of -0.5 for a certain episode means that during the worst timestep of this episode, the
equity of the agent decreased in value by 50%. This metric can be seen as a measure of worst-
case risk since it describes how much equity was lost in the worst timesteps of an episode.

M(5)
T = min

@tPt1,...,Tu

Et � Et�1

Et�1
(5.6)

5.3 Bayesian Optimization

5.3.1 Motivation

Hyperparameters and features have in common that they are generally chosen by the re-
searcher before training a machine learning model. Choosing the optimal hyperparameters
and features can noticeably improve model performance and possibly speed up training by
reducing model complexity [83], [84]. Common approaches to feature selection, originated
in supervised learning, are algorithms such as forward and backward stepwise selection as
well as best subset selection [85]. Common approaches to hyperparameter optimization are
for instance grid search, random search and bayesian optimization [86], [87].

With regards to hyperparameter optimization, Bayesian optimization has become popular
due to its efficiency and its ability to find global optima [84]. It has also been applied in rein-
forcement learning. For instance, Bayesian optimization noticeably contributed to the success
of AlphaGo [88]. With regards to feature selection, certain approaches have been proposed
for the context of reinforcement learning [89]–[91] but these methods are generally designed
for specific use cases, e.g. for certain RL models. Even in academia, successful approaches
for feature selection in reinforcement learning have generally been rather straight-forward:

First, it seems common to use features as they are, e.g. video game images for Atari games
[3] or positions of objects on board games for AlphaGo Zero [88]. Second, it seems common
to use manually handcrafted features and test if they improve performance. For instance,
this was done when applying reinforcement learning for Dota 2 [6] and also when training
AlphaGo [88]. While these approaches obviously worked, they may not be the best method-
ological approaches in scenarios where feature engineering makes sense: in such scenarios
it seems appropriate to optimize features just like hyperparameters are optimized. This mo-
tivates the approach taken in this thesis: for the second research question, hyperparameter
optimization and feature selection and in addition reward function selection, were approached
with Bayesian optimization together.

Detailed introductions to Bayesian optimization can be found in [92] and [93], the main
references for the following short introduction. In Bayesian optimization, we essentially
model an objective function f (x) that is to be optimized. In this thesis for instance, the ob-
jective function takes as input the vector of optimization parameter values x and returns as
output the median of the main evaluation metric, profit per volume traded, based on the

41

5.3. Bayesian Optimization

validation data on which the RL agent is evaluated. In Bayesian optimization, the objective
function is modelled sequentially: in every trial, a vector x is generated, the function f (x)
is evaluated at this x and then the model of the objective function f (x) is updated with the
Bayes theorem based on the observed values of x and f (x). Importantly, the vector of x is gen-
erated in each trial in such a way that the model of f (x) can be improved in regions of high
uncertainty about the values of f (x) and in regions where large values of f (x) are expected.

5.3.2 Implementation

For this thesis, the Optuna framework, introduced in [94], was used for Bayesian optimiza-
tion. Using this framework, the objective function f (x) was approximated with a graphical
model, the Tree Parzen Estimator, explained in [84] and [95]. Essentially, Optuna is a Python
package that allows to apply Bayesian optimization in a very flexible way. With Optuna, it
is not only possible to specify custom optimization parameters whose optimal values are to be
found but also to define a custom objective function that is to be optimized.

Two functions are to be defined by the researcher: a sampling function, which generates
a new set of optimization parameters to be tested in the next trial, and the objective function,
which takes this set of parameters, conducts a trial by evaluating the set of parameters and
returns the metric to be optimized. The complete objective function is implemented by the
researcher. For this thesis, it was defined to do the following: a) prepare the training and
validation data sets, b) prepare the RL environment, c) train the RL agent on training data, d)
evaluate the RL agent on validation data, e) return the median of the main evaluation metric,
profit per volume traded, based on the validation episodes.

Three different categories of optimization parameters were defined: features for the state
space, hyperparameters for the training phase and the reward function for the RL environment.
For the features, 21 binary optimization parameters were defined (one for each feature in
table 4.1): each feature was either used for training and evaluating or not used for training
and evaluating. For the hyperparameters, an overview for A2C is given in tables A.14 and
A.15, and an overview for DQN is given in tables A.12 and A.13 in the appendix. For the
reward function, one categorical variable was defined, which could take four values (one for
each of the four reward functions from section 5.1.4). Note that inside the objective function,
the feature parameters were used in step a) to adjust the training and validation data sets
(subsetting them to the specified features to be used in the respective trial), the reward function
parameter was used in step b) to adjust the RL environment (selecting the specified reward
function for giving feedback to the agent) and the hyperparameters were used in step c) to train
the RL agent (with the specified hyperparameters for A2C or DQN).

The main advantage of the above approach is that it theoretically allows to efficiently find
the globally optimal combination of features, hyperparameters and reward function (for the
validation data). This would not be possible if reward function selection, feature selection
and hyperparameter tuning were conducted in separate stages, consisting of first finding the
best reward function, then the best features and then the best hyperparameters while always
keeping the parameters of the remaining two categories fixed. Lastly, note that applying
Bayesian optimization for feature selection as described above is better than e.g. applying
general approaches such as forward or backward stepwise selection or best subset selection,
which are described in [85]. Forward and backward stepwise selection do not allow for all
feature combinations to be tested but the approach taken here does since every feature can
either be used or not in any trial. Best subset selection is very inefficient because all feature
combinations are tested but with the approach taken here, only promising combinations as
suggested by the Bayesian optimization algorithm are tested.

42

5.4. Baseline Strategies

5.4 Baseline Strategies

Baseline strategies were implemented in order to compare the performance of the RL agent
with simple methods that do not make use of RL. Both, the RL agent and the baseline strate-
gies, represent agents that trade electricity. The action space, described in section 5.1.3, re-
mains the same for the RL agent and the baseline strategies. At every timestep t, the action
At P t0, 1, 2u determines the volume of electricity that the agent will own at the end of this
timestep. The action At is then converted into buy or sell orders depending on At�1, the
amount of electricity owned by the agent at the previous time step.

The four implemented baseline strategies (random trader, forecast trader, moving aver-
age trader and spike trader) are described in the sections below. In short, the random trader
randomly samples an action at every timestep, the forecast trader takes an action based on its
price forecast for the next timestep, the moving average trader owns some electricity when the
price is above the moving average price and owns no electricity otherwise and the spike trader
always owns some electricity but sells when there is a sudden price increase. Importantly, the
spike trader was implemented retrospectively in order to mirror the strategy of the RL agent.

The only baseline strategy that requires a training phase is the forecast trader since its fore-
cast model needs to be trained. The other three baseline strategies are simple algorithms that
can be directly applied to the test data without any prior training phase. Furthermore, note
that the random trader does not use any information from the state space that is available
to the RL agent, the forecast trader uses the exact same state space as the RL agent and both,
moving average trader and spike trader, only use the price from the state space. For simplicity, a
constant volume of 2 MWh (and never 1 MWh) was traded by the forecast, moving average,
and spike trader. However, a volume of 1 MWh would have been possible alternatively.

5.4.1 Random Trader

At every timestep t, the random trader samples an action At P t0, 1, 2u. Each possible action is
sampled with equal probability. Sampling random actions is a widely used baseline strategy
in reinforcement learning, but it generally performs particularly well in trading applications
(from the financial domain). For instance, a comparison of a random trader with four other
trading strategies based on technical indicators has shown that "standard trading strategies
and their algorithms, [...] perform on average not better than the purely random strategy,
which, on the other hand, is also much less volatile." [96, p.11]

5.4.2 Forecast Trader

A forecast trader is a more advanced benchmark than a random trader. Forecast traders
have also been used as baselines for trading RL agents in the financial domain [2], [16]. For
instance, Gao and Chan implemented a forecast trader that would buy if the prediction for
the next timestep corresponded to a price percentage increase ¡ 3%, sell if the prediction for
the next timestep corresponded to a price percentage decrease �3% and keep the current
investment otherwise [16].

A very similar approach is taken for this thesis. A prediction model is trained to perform
a prediction at every timestep t for the next timestep t + 1. In particular, it performs a clas-
sification of three classes, corresponding to a price percentage change of ¡ 3%, �3% or
inbetween. If the model classifies a price percentage increase ¡ 3%, the action is At = 2. In
other words, the forecast trader buys 2 MWh of electricity if it does not own any electricity
and does nothing if it already owns 2 MWh of electricity. If the model classifies a price per-
centage decrease �3%, the action is At = 0. In other words, the forecast trader sells all

43

5.5. Statistical Evaluation

electricity that it owns. If the model classifies a price percentage change between �3% and
¡ 3%, then the trader keeps the current investment.

At =

$'&
'%

0, if forecast is < -3%
2, if forecast is > 3%
At�1, otherwise

(5.7)

The question is which model and which features should be used for the forecast model.
To allow for a fair comparison, forecasts are conducted based on the state space that was
used for the RL agent as described in table 4.1. In other words, each action At is determined
with a forecast that is based on state St. Note that all 21 features were used for the forecast
model, whereas fewer features were used for the RL agent due to Bayesian optimization.
Furthermore, the network architecture used for the forecast model resembled the network
architecture of the RL agent: a neural network with two hidden layers of 64 nodes each, as
shown in figure A.21 in the appendix.

5.4.3 Moving Average Trader

Trading strategies based on moving averages are common in the financial domain [97]. These
trading strategies are based on the "widespread belief that the most recent stock prices con-
tain more relevant information on the future direction of the stock price than earlier stock
prices" [97, p. 5]. The main concept is to compare the price Pt with a moving average of
this price, e.g. the simple moving average of 10 timesteps SMAt =

1
10
°9

j=0 Pt�j. If the price
Pt is larger than the corresponding simple moving average SMAt, a buy signal is given (as-
suming that the price will further increase because the most recent price is above the moving
average computed with older prices). Reversely, if the price Pt is smaller than the correspond-
ing simple moving average SMAt, a sell signal is given (assuming that the price will further
decrease because the most recent price is below the moving average computed with older
prices). For the context of this thesis, the rule can be summarized as in equation 5.8, where
SMAt =

1
10
°9

j=0 Pt�j.

At =

#
0, if Pt ¤ SMAt

2, if Pt ¡ SMAt
(5.8)

5.4.4 Spike Trader

This baseline strategy was included retrospectively, i.e. after understanding the strategy of
the final RL agent. When analyzing the actions of the RL agent, the author found that it
performed so well because it had learned to sell some volume of electricity at sudden price
increases. This motivates the spike trader baseline strategy in equation 5.9, a strategy that was
reverse engineered to mirror the main strategy of the RL agent. Essentially, the action of the
spike trader is always 2, i.e. it always owns 2 MWh of electricity. However, when the price
increases by ¡ 25% from one timestep to another (starting to form a "spike") the action is 0,
i.e. the spike trader sells 2 MWh of electricity.

At =

#
0, if Pt/Pt�1 ¡ 1.25 and abs(Pt�1) ¡ 1
2, otherwise

(5.9)

5.5 Statistical Evaluation

The purpose of the statistical evaluation was to test the hypothesis that the agent with the
best performance with respect to the main evaluation metric M(1)

T , profit per volume traded

44

5.5. Statistical Evaluation

as defined in equation 5.2, achieves significantly better results than the other agents. From
here on, profit per volume traded is referenced as M to simplify the notation.

For each of the three research questions, the best agent was compared against the remain-
ing agents: in the first research question, the RL agent trained with the best reward function
was tested against the three remaining agents trained with different reward functions, result-
ing in three hypothesis tests. In the second research question, the RL agent trained with the
best RL method was tested against another RL agent trained with a different RL method, re-
sulting in one hypothesis test. In the third research question, the RL agent was tested against
four baseline strategies, resulting in four hypothesis tests.

5.5.1 Statistical Method

Various statistical tests were considered before finally choosing bootstrap confidence inter-
vals and bootstrap hypothesis tests because of their interpretability, customizable test statistic
and flexibility with respect to the data distribution [98], [99].

First, it was noted that the samples were not independent since all agents were evaluated
on the exact same 3481 test episodes. Therefore, tests that assume independent samples, such
as the independent two-samples t-test, were excluded [100]. Instead, the paired two-samples
t-test and the paired samples Wilcoxon test were considered [101], [102]. Among others, the
former assumes that the differences of the paired values follow a normal distribution and the
latter assumes that they are symmetrically distributed. (With 3481 test episodes, there were
3481 pairs of values M for the pair of agents to be compared in a particular test.)

Neither of these assumptions seemed to be fulfilled based on Q-Q plots and boxplots of
the differences in paired values (see example plots for the first research question in figure A.6).
Further, the Shapiro-Wilk normality test confirmed that the assumption of normality was not
fulfilled, rejecting the null hypothesis of normal distribution with p<0.0001. Essentially, the
distributions are strongly skewed to the right. Transformations for reducing skewness, such
as log transformations, were not considered in favor of interpretability. Lastly, methods based
on resampling were considered and the final choice fell on bootstrap hypothesis tests and
confidence intervals.

5.5.2 Test Statistic

The test statistic of interest, defined in equation 5.10, is the median of the paired differences
in profit per volume traded M. Each pair corresponds to a specific test episode i on which
both agents, indexed by 1 and 2 below, were evaluated.

θ̂ = median (Mi,1 �Mi,2) , (5.10)

where i P t1, 2, ..., 3481u is the index representing the test episode. The median was cho-
sen due to the large skewness of the paired differences. For the context of trading, it is pre-
ferred that extreme values (of paired differences in profit per volume traded) do not affect
the judgement. Note that the median of the paired difference, i.e. median (Mi,1 �Mi,2), was
chosen instead of the difference of medians, i.e. median (Mi,1)�median (Mi,2), in order to
undoubtedly preserve the paired structure of the data.

5.5.3 Bootstrap Hypothesis Test

In each hypothesis test, two agents were compared: agent 1, the supposedly better perform-
ing agent, and agent 2, the supposedly worse performing agent. The null hypothesis that

45

5.5. Statistical Evaluation

both agents perform equally well was tested against the alternative hypothesis that agent 1
performs better than agent 2:

H0 : θ = 0

H1 : θ ¡ 0
(5.11)

The main idea of bootstrap is to resample with replacement from the original data sam-
ple. Here, the original data sample consists of 3481 paired differences di = (Mi,1 �Mi,2) ,
where i P t1, 2, ..., 3481u is again the index representing the test episode. If we resample from
this data with replacement once, we obtain another 3481 values. However, some di will be
duplicated and some will be missing due to sampling with replacement. Now, multiple such
bootstrap samples, here B = 4999 bootstrap samples, are drawn and for each of them, the
test statistic from equation 5.10 is computed. This gives the bootstrap test statistics θ̂�j , where
j = 1, 2, ..., 4999 is the index for the bootstrap sample.

The main idea of bootstrap hypothesis testing is to compare the test statistic θ̂, computed
based on the original data, with the bootstrap sampling distribution of θ̂� under the H0, i.e.
the sampling distribution of θ̂� if the null hypothesis was true [103]. If θ̂ is large (or small)
enough in comparison with the sampling distribution of θ̂� under the H0, then the H0 is
rejected. For this purpose, either a p-value can be determined and compared to a significance
level α (rejecting the H0 if p α) or critical values θ̂crit, corresponding to the significance level
α, can be compared with the observed value of θ̂ (rejecting the H0 if θ̂ ¡ θ̂crit).

Two guidelines have been suggested for bootstrap hypothesis testing in [104]. The first
guideline is to compare θ̂ with θ̂� � θ̂ and the second guideline is to compare θ̂/σ̂ with
(θ̂� � θ̂)/σ̂�. According to the authors, the first guideline ensures sufficient power and the
second guideline reduces error in the level of significance. Recall that power is the probability
of rejecting the H0 if the H1 is true and error in the level of significance is the difference in the
significance level that the test actually has and the level that it is supposed to have, namely
the level α set by the researcher.

The first guideline essentially ensures that θ̂ is compared with the sampling dis-
tribution of θ̂ under the H0, represented by θ̂� � θ̂ as mentioned before. Note that
this is equivalent to transforming the paired differences before resampling as follows:
d1i = di � θ̂ = (Mi,1 �Mi,2)�median (Mi,1 �Mi,2). By subtracting the median of the
paired differences from the paired differences, we ensure that the median of the transformed
paired differences (based on which bootstrap sampling is conducted) takes the value 0.
Hence, θ̂�j � θ̂ represents the sampling distribution of θ̂ if the H0 from equation 5.11 is true.

The second guideline accounts for the unknown scale of θ̂, denoted as σ̂, and for the un-
known scale of θ̂�, denoted as σ̂�. In particular if the two scales differ noticeably, the second
guideline should be adhered to. However, this guideline requires estimates of σ̂ and σ̂�. For
clarity, σ̂ and σ̂� denote the standard deviation of θ̂ and θ̂� respectively. They can also be
referred to as standard errors. Unfortunately, there is no appropriate closed-form estimator
of the standard error of medians (if the sampled values, here the differences di, are not nor-
mally distributed). Instead, the standard errors can be estimated with bootstrap, resulting in
the dual bootstrap hypothesis test described in [103]. The dual bootstrap hypothesis test was
used for this thesis in order to adhere to not only the first but also the second guideline from
[104]. The dual bootstrap hypothesis test is summarized in algorithm 1 below.

Finally, Bonferroni adjustment was used to account for multiple hypothesis tests compar-
ing the same agent with several other agents. The significance level was set to α = 0.05. For
the first research question (with three hypothesis tests), α was adjusted to α/3 � 0.017. For
the second research question, there was only one hypothesis and hence no adjustment was
needed. For the third research question (with four hypothesis tests), the α was adjusted to
α/4 � 0.013. Note that the significance levels were rounded to the third digit in order to
fulfill the requirement that α(B + 1) is an integer, where B = 4999 [103].

46

5.6. Reward (Question 1)

Algorithm 1: Dual bootstrap hypothesis test [103]
input : Parameters B1, B2 for the number of bootstraps to be conducted,

original data sample of paired differences di = Mi,1 �Mi,2 for i P t1, ..., Nu
output: Bootstrap p-value

1 Obtain estimate θ̂ = median (di) for i P t1, ..., Nu based on the original data sample
2 Generate B2 bootstrap samples. Compute θ̂�j for each bootstrap sample where

j P 1, ..., B2. Estimate σ̂, the estimate for the standard deviation of θ̂, as the sample
standard deviation of all bootstrap estimates θ̂�j .

3 Calculate the test statistic τ̂ = θ̂/σ̂.
4 Generate B1 bootstrap samples. Compute θ̂�k for each bootstrap sample where

k P 1, ..., B1.
5 For each of the B1 bootstrap samples, perform step 2 exactly as before, obtaining σ̂�k

for k P 1, ..., B1. Compute the bootstrap test statistics as τ�k = (θ̂�k � θ̂)/σ̂�k .
6 Calculate the bootstrap p-value as p = 1

B1

°B1
k=1 1tτ�k ¡τ̂u

5.5.4 Bootstrap Confidence Intervals

In addition to the p-values for the bootstrap hypothesis tests, 95% bootstrap confidence in-
tervals were reported for reference. In particular, bias-corrected and accelerated bootstrap
confidence (BCa) intervals were computed based on B = 4999 bootstrap samples. BCa inter-
vals were introduced under the title "Better bootstrap confidence intervals" in [105] and are
widely used, among others because they also work well when the sampling distribution is
skewed [99]. Since the paired differences di = (Mi,1 �Mi,2) are skewed, as illustrated in the
Q-Q plots in figure A.6, BCa intervals are a suitable choice for this thesis. Importantly, these
intervals were not used for hypothesis testing. Instead, they were only provided as further
reference. Therefore, no Bonferroni adjustment was conducted.

5.6 Reward (Question 1)

For the first research question, the four reward functions described in 5.1.4 were compared.
The underlying purpose was to understand which of the four reward functions results in the
best performance with respect to the main evaluation metric, profit per volume traded.

5.6.1 Training

Four different agents were trained: one agent for each reward function. All agents were
trained using A2C with the same default hyperparameters (as described in table A.15) and
with all 21 features (as described in table 4.1). Both, training and validation data sets, were
used for training and the test data set was used for evaluation (as described in section 4.3).

The policy π̂(a|s, θ) was represented by a neural network as displayed in figure 2.4. The
state-value function v̂(s, wv) was represented by a neural network as displayed in figure 2.5.
Both neural networks consisted of an input layer with 210 nodes (based on 21 features and 10
timesteps for each feature) and two hidden layers with 64 nodes each. For the policy network,
there were 3 output nodes due to 3 possible discrete actions a P t0, 1, 2u. For the state-value
network, there was 1 output node by definition. The tanh activation function was used within
both networks. In the output layer, the softmax activation function was used for the policy
network, and the linear activation function was used for the state-value network.

47

5.7. Methods (Question 2)

5.6.2 Evaluation

The evaluation, conducted on the test data, can be structured into three parts: a statistical
evaluation, a descriptive evaluation and a training evaluation.

In the statistical evaluation, three hypothesis tests were conducted as described before
in section 5.5 to test whether the supposedly best agent performs significantly better than
the remaining three agents. The corresponding hypotheses are listed below in equation 5.12.
Index 1 corresponds to the best performing agent (with the supposedly best reward function),
and indices 2-4 correspond to the remaining agents (with the remaining reward functions).
For instance, test 1 below compares the agent with index 1 against the agent with index 2.

Test 1 : H0 : θ1,2 = 0, H1 : θ1,2 ¡ 0

Test 2 : H0 : θ1,3 = 0, H1 : θ1,3 ¡ 0

Test 3 : H0 : θ1,4 = 0, H1 : θ1,4 ¡ 0

(5.12)

The purpose of the descriptive evaluation was to further compare the performance and
the actions of the different agents on the test episodes. First, the distributions of the evalua-
tion metrics described in section 5.2 were visualized with boxplots for each reward function.
Second, three episodes with different price patterns (uptrend, downtrend, spikes) were vi-
sualized for each of the four agents to illustrate the different decision policies of the agents.
Episodes were categorized according to these price patterns by using the rules from section
A.6 in the appendix.

The purpose of the training evaluation was to check whether the agents were able to im-
prove their performance across the training period. Hence, the training metrics from section
A.5.1 were plotted across the steps of the training period for each of the four agents. The met-
rics were z-scaled for each agent to allow for comparisons across agents. Because of strong
variation in the z-scaled metric values across timesteps, the moving averages of 1000 steps
were plotted (instead of the z-scaled metrics for each individual timestep).

5.7 Methods (Question 2)

Two methods were compared: A2C and DQN. The purpose of this was to understand poten-
tial differences in performance between RL methods. Hereby, A2C was chosen as represen-
tative of actor-critic methods and DQN was chosen as representative of critic-only methods.
For the method comparison, Bayesian optimization was applied to find an optimal set of fea-
tures, hyperparameters and reward function for A2C and DQN. Note that A2C was also used
in the first research question, however without Bayesian optimization.

5.7.1 Training

Two different agents were trained: one agent for each method. For A2C, the same network
architecture as for the first research question was used (see section 5.6.1). For DQN, the action-
value function q̂(s, a, wq) was represented by a dueling neural network (see section 2.5.3).
Each of the two streams of this network, the state-value stream and the advantage stream,
consisted of two hidden layers with 64 neurons each. The ReLU activation function was used
inside the streams and the linear activation function was used for their output layers. The
output layer of the dueling network, computed based on the outputs of the two streams,
consisted of three output nodes representing q̂(s, a1), q̂(s, a2), q̂(s, a3), just like the in the Q-
network displayed in figure 2.3. Note that the number of input nodes of the networks was
smaller than 210 for both final models, DQN and A2C, since fewer than 21 features were
selected during feature selection with Bayesian optimization.

For both models, the features, hyperparameters and reward function were selected using
Bayesian optimization as described in section 5.3. In particular, 600 trials were conducted for
each model, A2C and DQN. In each trial, an RL agent was trained with a set of optimization

48

5.8. Baseline (Question 3)

parameters (features, hyperparameters and a reward function) as suggested by the Bayesian
optimization algorithm. The training data was used for training and the validation data set
was used for evaluating each set of optimization parameters. The best set of parameters was
selected as the set corresponding to the trial where the RL agent performed best on the val-
idation data, as measured by median profit per volume traded computed on the validation
episodes. For clarity, the best set was determined for DQN and A2C separately (from their
respective 600 trials). The final models for DQN and A2C were each trained on training and
validation data together using their respective best set of optimization parameters. Subse-
quently, these final models were evaluated on the test data to answer the research question.

5.7.2 Evaluation

The evaluation, conducted on the test data, can be structured into three parts: a statistical
evaluation, a descriptive evaluation and a training evaluation.

In the statistical evaluation, one hypothesis test was conducted as described before in sec-
tion 5.5. The purpose was to test whether the supposedly better agent, indexed by 1, performs
significantly better than the remaining agent, indexed by 2:

Test 1 : H0 : θ1,2 = 0, H1 : θ1,2 ¡ 0 (5.13)

The purpose of the descriptive evaluation was to further compare the performance and
the actions of the A2C and DQN agents on the test episodes. Just like for the first research
question, the distributions of the evaluation metrics described in section 5.2 were visualized
with boxplots for DQN and A2C. Furthermore, the exact same three episodes from the first
and second research question were visualized for the RL agent and for the baseline strategies.

The purpose of the training evaluation was, just like in research question 1, to check
whether the agents were able to improve their performance across the training period. Hence,
the training metrics described in section A.5 were plotted across the steps of the training pe-
riod for both, A2C and DQN. In particular, the moving averages (of 1000 timesteps) based on
the unscaled training metric values were visualized.

5.8 Baseline (Question 3)

The optimized A2C agent from the second research question was compared with four base-
line strategies: the random, forecast, moving average and spike trader (as described in section
5.4). The purpose of this was to investigate whether the optimized RL agent can perform bet-
ter than simple alternative solutions, which do not make use of reinforcement learning.

5.8.1 Training

No new RL agent was trained. Instead, the A2C agent from the second research question was
re-used. Only one of the four baseline strategies required training, namely the forecast trader.
The other three trading stratgies, i.e. the random, moving average and spike traders as well as
the already trained RL agent could directly be evaluated on the test data (without training).

The forecast trader was already introduced in section 5.4.2. It is based on a neural network
as shown in figure A.21, which predicts the percentage change of the market price (from
t to t + 1) based on the state St, consisting of all 21 features given for 10 timesteps each.
In particular, this was framed as a classification problem with three classes represented by
percentage changes: ¡ 3%, �3% and inbetween. The network consisted of 210 input nodes,
two hidden layers with 64 nodes each and 3 output nodes. The ReLU activation function was
used within the network and the softmax activation function was used for the output layer.

The forecast model was trained with the Python package Keras, using a batch
size of 128 for the weight updates and using cross-entropy as loss function (called

49

5.9. Software

categorical_crossentropy in Keras; see [106] for reference). Dropout was used with p = 0.5
for both hidden layers to prevent overfitting as recommended in [107].

First, the appropriate number of epochs was determined. For this purpose, a model was
trained on the training data and evaluated on the validation (and training) data after every
epoch. In particular, this model was trained until the loss on the validation data did not
further improve by at least 0.0001 during a window of 25 epochs. This happened after 162
epochs. Plots of accuracy and loss by training epoch can be found in figure A.22.

Subsequently, the final model was trained on training and validation data together for the
previously determined number of 162 epochs. The model’s classification performance on the
test data was analyzed before subsequently using the model for trading by means of the
forecast baseline (as described in section 5.4.2) along with the other baseline strategies. The
classification performance on the test data is described in table A.7 and the subsequent tables
on the same page in the appendix.

5.8.2 Evaluation

The evaluation, conducted on the test data, can be structured into two parts: a statistical
evaluation and a descriptive evaluation. The purpose of the evaluation was to compare the
RL agent with the four baseline strategies.

In the statistical evaluation, four hypothesis tests were conducted as described before in
section 5.5 to test whether the RL agent performs significantly better (or worse) than the
four baseline strategies. Since the agent did perform worse than one baseline strategy, the
following hypothesis tests were conducted, where index 1 corresponds to the RL agent and
indices 2-5 correspond to the four baseline strategies. In test 1, the agent is compared with the
baseline strategy that seemed to perform better than the agent based on descriptive statistics,
in particular median profit per volume traded.

Test 1 : H0 : θ1,2 = 0, H1 : θ1,2 0

Test 2 : H0 : θ1,3 = 0, H1 : θ1,3 ¡ 0

Test 3 : H0 : θ1,4 = 0, H1 : θ1,4 ¡ 0

Test 4 : H0 : θ1,5 = 0, H1 : θ1,5 ¡ 0

(5.14)

The purpose of the descriptive evaluation was to further compare the performance and the
actions of the agent and the baseline strategies on the test episodes. Just like for the previous
research questions, the distributions of the evaluation metrics described in section 5.2 were
visualized with boxplots for the RL agent and the four baseline strategies. Furthermore, the
exact same three example episodes from the previous research questions were visualized for
the RL agent and the baseline strategies. For reference, the rewards received by the RL agent
for its actions and the rewards that the baseline strategies would have received (if they were
RL agents) were plotted as well.

5.9 Software

For this thesis, a custom environment was written in Python, following the environment
requirements the gym library by OpenAI [23]. Subsequently, this environment was used for
training with implementations of the algorithms A2C and DQN by stable-baselines [108]. For
hyperparameter tuning, the Optuna framework was used, which approaches hyperparameter
tuning as an Bayesian optimization problem [94].

50

6 Results

Overall, the results are promising in regards to the underlying purpose of this thesis to create
a RL agent that can profitably trade electricity. The final RL agent learned to buy and sell elec-
tricity in a way that resulted in profits. In particular, the agent learned to sell at sudden price
increases and to buy again after subsequent price decreases, making use of the volatility in
electricity prices. The agent achieved a median profit per volume traded of 4.02 EUR across
all test episodes. Importantly, these results are optimistic because of the simplified environ-
ment. In this thesis, all orders of the RL agent are executed at market price and the market
price is known to the agent. In a real-world application, these conditions are not given. The
final RL agent, compared with baseline strategies in section 6.3, was trained with A2C and
the vwap delta reward function. Features, hyperparameters and the reward function of this
agent were optimized with Bayesian optimization on the validation episodes.

Detailed descriptions of the results for each of the three research questions follow be-
low. Section 6.1 addresses the first research question about the reward function comparison,
section 6.2 is dedicated to the second research question about the method comparison and
section 6.3 focuses on the third research question about the baseline strategy comparison.

6.1 Reward (Question 1)

6.1.1 Statistical Evaluation

The distributions of profit per volume traded in EUR, based on 3841 test episodes, are de-
scribed for each agent and its respective reward function in table 6.1. The agents trained with
profit based reward functions, vwap delta and absolute return, achieved larger mean and
median profits per volume traded than the agents trained with reward functions that adjust
for risk, Sharpe ratio and log equity. However, the results achieved by the profit based agents
also have a larger standard deviation. The agent trained with the vwap delta reward function
achieves the best results in terms of median and mean profit per volume traded.

The question is whether the median differences of profit per volume traded θ between the
best reward function, vwap delta, and the remaining three reward functions are significantly
larger than 0. The bootstrap p-values for the corresponding three hypothesis tests are shown
in table 6.2. The H0 : θ = 0 was rejected in favor of the H1 : θ ¡ 0 when comparing the
vwap delta with the Sharpe ratio and the log equity ratio reward functions since p 0.017.

51

6.1. Reward (Question 1)

Table 6.1: Distribution of profit per volume traded by reward function (test data, n = 3481)

Reward Type Episodes Mean Std. Dev. Min 25% Median 75% Max

vwap_delta 3481 10.09 52.82 -57.66 -0.40 2.83 9.77 1957.21
abs_return 3481 6.94 47.20 -50.54 -0.16 1.91 6.48 1957.21
sharpe_ratio 3481 1.77 15.13 -48.29 -0.41 0.34 1.77 712.21
log_equity 3481 0.51 8.22 -88.71 -0.57 0.05 0.91 325.17

However, the test failed to reject the H0 when comparing the vwap delta with the absolute
return reward function since p ¡ 0.017. Hence, it can be concluded that the profit based
reward function vwap delta significantly outperforms both risk-adjusted reward functions,
Sharpe ratio and log equity. However, it cannot be concluded that it significantly outperforms
the other profit based reward function absolute return.

Table 6.2: Bootstrap hypothesis tests and confidence intervals for the median differences of
profit per volume traded (test data, n = 3481, R = 4999)

Agent1 Agent2 median(d1,2) Boot. 95% CI Boot. SE p-value
vwap_delta abs_return 0.10 (0.00, 0.20) 0.05 0.0314
vwap_delta sharpe_ratio 2.00 (1.80, 2.30) 0.13 0.0000
vwap_delta log_equity 2.48 (2.22, 2.78) 0.14 0.0000

6.1.2 Descriptive Evaluation

6.1.2.1 Example Episodes

Among all test episodes, there were 40% spike episodes, 11% uptrend episodes, 14% down-
trend episodes and 35% no trend episodes, where the test episodes had been categorized as
described in section A.6. To provide an insight into the behavior of the agents, the actions of
all four agents are visualized for exemplary episodes, namely for an episode with spikes, an
episode with uptrend and an episode with downtrend. The visualization of the episode with
spikes can be found below in figure 6.1 and the visualizations of episodes with uptrend and
downtrend can be found in figures A.12 and A.13 in the appendix.

Figure 6.1 shows an episode with spikes. The figure illustrates that the agents trained with
reward functions based on profit learn to sell when the electricity price spikes up and to buy
right after spike is over, resulting in large profits. In contrast, the agents trained with reward
functions that account for risk do not primarily tend to sell at the spikes.

Figure A.12 shows an episode with uptrend. The figure illustrates that all agents tend
to generate profits in case of an uptrend. However, it seems as if the agents trained with
profit based reward functions do particularly well because they buy a large volume early. For
instance, they buy 2 MWh of electricity at the beginning of the episode instead of 1 MWh.

Figure A.13 shows an episode with downtrend. The figure illustrates that, in case of a
downtrend, the agents trained with profit based reward functions do not perform as well as
the agents trained with reward functions that account for risk. This is because they tend to
buy a large amount of volume at the beginning of the episode when the price is large and to
sell it at the end of the episode when the price is small, resulting in a large loss.

In addition, tables A.1 and A.2 in the appendix show the distributions of profit and of per
volume traded by reward function and episode type, where the test episodes were categorized
as described in section A.6. These tables back up the main conclusions drawn from the vi-
sualizations of example episodes above: the profit based reward functions (vwap delta and
absolute return) outperform the risk-adjusted reward functions (Sharpe ratio and log equity)
in episodes with spikes and uptrend but they are outperformed in episodes with downtrend.

52

6.1. Reward (Question 1)

Figure 6.1: Question 1 - Example of episode with spikes for all 4 reward functions (test data).
The figure illustrates that the agents trained with profit based reward functions (vwap delta
and absolute return) tend to sell at the spikes, whereas the agents trained with risk-adjusted
reward functions (Sharpe ratio and log equity) do not primarily tend to sell at the spikes.

53

6.1. Reward (Question 1)

Figure 6.2: Question 1 - Distribution of evaluation metrics by reward type (test data)

54

6.2. Methods (Question 2)

6.1.2.2 Evaluation Metrics

Boxplots of the five evaluation metrics for all four agents are shown in figure 6.2. The white
dots and black lines inside the boxes indicate means and medians respectively. The lower
and upper ends of each box indicate the 25th and 75th percentiles respectively. The whiskers
outside the boxes are based on a 1.5 interquartile range as described in [109].

Representing the financial result, the distributions of profit and profit per volume traded
are more skewed to the right for the profit based reward functions than for the risk-adjusted
reward functions. This illustrates that, compared to the risk-adjusted reward functions, the
profit based reward functions had noticeably more episodes where they achieved a large fi-
nancial result. Representing the level of activity, the distributions of the number of trades
illustrate that the profit based reward functions result in fewer trades than the risk-adjusted
reward functions. Representing quality of trades as investment, the distributions of the per-
centage of positive returns show that the profit based reward functions generally have a
larger percentage of timesteps where their equity value increases than the risk-adjusted re-
ward functions. Representing worst-case risk, the distributions of MDD show that the worst
timesteps per episode (in terms of the percentage of equity value lost) are generally not worse
for the profit based reward functions than for the risk-adjusted reward functions. Rather, the
worst-case risks seems to be slightly smaller for the profit based reward functions.

6.1.3 Training Evaluation

The training metrics to evaluate the learning progress during training are defined in section
A.5 in the appendix. Figure A.7 shows the training metrics during the 500K steps of train-
ing for the first research question. Overall, the training metrics imply that the agents for all
reward functions show similar convergence: they learn action preferences that increase their
respective rewards. This implies that differences in performance across these agents exist be-
cause the agents’ reward functions incentivize different actions and not because of differences
in the training progress of the agents.

Most importantly, the first plot in figure A.7 illustrates that the discounted rewards increase
across the training period for all four reward functions. This implies that all agents manage
to learn a policy that increases their respective discounted rewards. Recall that each agent
has a different reward function and hence each agent learns to increase discounted rewards
from a different reward function.

The second plot in figure A.7 illustrates that the entropy decreases across the training pe-
riod for all four reward functions. This implies that the policies of all agents change over
time so that the agents prefer to take certain actions in certain states. In other words, the
policies change over time so that the agents are not indifferent about their actions anymore
but instead have a preference for certain actions.

The third and the fourth plots in figure A.7, displaying the policy gradient loss and the state-
value loss, do not show a clean decrease as under simplified circumstances in figure A.8. The
policy loss does seem to decrease over time for all reward functions. However, the decreasing
trend is disrupted in some steps, where the loss goes up again. The state-value loss seems
particularly noisy. For the absolute return and the log equity reward functions, the state-
value loss decreases quite steadily over time. For the vwap delta and the Sharpe ratio reward
functions, however, there are periods where the state-value loss increases noticeably, followed
by periods where the loss decreases noticeably again.

6.2 Methods (Question 2)

6.2.1 Bayesian Optimization

As described in section 5.7, 600 optimization trials were conducted for both, A2C and DQN,
in order to find an optimal combination of optimization parameters (reward function, hy-

55

6.2. Methods (Question 2)

perparameters and features) for each of the two methods. The trained RL agent of each trial
was evaluated by computing the median profit per volume traded on the validation data set,
which is visualized in figure 6.3, for both methods and all their respective trials. The best
set of optimization parameters was selected as the set corresponding to the trial where the
RL agent performed best on the validation data, as measured by median profit per volume
traded computed on the validation episodes. In particular, the best set was found at trial 178
for A2C and at trial 599 for DQN. The corresponding median profit per volume traded on the
validation data was 5.16 for A2C and 5.67 for DQN.

Figure 6.3: Median profit per volume traded by trial for A2C and DQN (validation data)

For both, A2C and DQN, the reward function vwap delta was selected in the best trial. This
supports the conclusion from the first research question that the vwap delta reward function
leads to better results with respect to the main evaluation metric, profit per volume traded.
The hyperparameters for A2C and DQN that were selected in the best trial can be found in the
appendix in tables A.15 and A.13 respectively. Lastly, the features selected for A2C and DQN
in the best trial can be found in the table A.16. In total, 8 out of 21 features were selected for
A2C, and 14 out of 21 features were selected for DQN. For both methods, features from all
three categories (market, indicator and time features) were selected.

6.2.2 Statistical Evaluation

The distributions of profit per volume traded in EUR, based on 3841 test episodes, are de-
scribed for the A2C agent and for the DQN agent in table 6.3. On the one hand, the A2C
agent achieved a slightly larger median of profits per volume traded than the DQN agent,

56

6.2. Methods (Question 2)

along with a larger minimum and 25th percentile of profit per volume traded. On the other
hand, the DQN agent achieved a larger mean profit per volume traded than the A2C agent,
along with a larger maximum and 75th percentile of profit per volume traded.

Table 6.3: Distribution of profit per volume traded by model type (test data, n = 3481)

Model Type Episodes Mean Std. Dev. Min 25% Median 75% Max

A2C 3481.00 12.20 55.90 -36.69 -0.22 4.02 12.52 1957.21
DQN 3481.00 15.71 81.55 -92.36 -2.09 3.89 16.42 2521.85

The question is whether the median difference of profit per volume traded θ between the
agent trained with A2C and the agent trained with DQN is significantly larger than 0. In fact,
the two agents achieved the exact same profit per volume traded in 44% of the test episodes
(1529 of 3481), resulting in differences of 0 for these episodes. With 1529 differences of 0,
all boostrapped test statistics θ̂�j took the value 0. Consequently, there was no variation in
the bootstrapped test statistics and hence, neither the bootstrap confidence interval, nor the
p-value for the boostrap hypothesis test could be computed as intended. Nevertheless, the
finding that θ̂�j = 0 for all j P t1, ..., 4999u implies that we fail to reject the H0 : θ = 0. Hence,
there is not sufficient evidence to conclude that the median differences of profit per volume
traded between A2C and DQN is larger than 0. In other words, it is not possible to conclude
that A2C outperforms DQN with respect to the test statistic.

Table 6.4: Bootstrap hypothesis tests and confidence intervals for the difference in medians of
profit per volume traded (test data, n = 3481, B = 4999)

Strategy1 Strategy2 median(d1,2) Boot. 95% CI Boot. SE p-value
a2c dqn 0.00 - 0.00 -

6.2.3 Descriptive Evaluation

6.2.3.1 Example Episodes

To provide an insight into the behavior of the agents trained with A2C and DQN, their actions
are visualized for exemplary episodes, namely for an episode with spikes, an episode with
an uptrend and an episode with a downtrend. The visualization of the episodes with spikes,
uptrend and downtrend can be found in figures A.14 A.16 and A.17 in the appendix. In
addition, tables A.3 and A.4 show the distributions of profit and of per volume traded by
model type and episode type. The test episodes were categorized as described in section A.6.

Overall, the actions of the A2C and DQN agents trained with Bayesian optimization re-
semble the actions of the best A2C agent trained trained without Bayesian optimization from
the first research question. In other words, the agents learn to sell at spikes. If there are no
spikes, then the agents keep their volume until the end of the episode, selling it at the last
timestep. The latter tactic is also called buy-and-hold strategy [110].

With Bayesian optimization, the performance of the A2C agent from the first research
question could be improved in regards to mean and median profit per volume traded. While
the A2C agent without Bayesian optimization sometimes fails to sell at spikes, the A2C agent
with Bayesian optimization only rarely fails to sell at spikes, which explains the improvement
in profit per volume traded.

Comparing the A2C agent with the DQN agent, both after Bayesian optimization, the A2C
agent seems to sell at more spikes than the DQN agent. For instance, in the example episode
A.14, the DQN agent does not sell at any of the spikes whereas A2C does. This explains the
slightly larger median profit per volume traded for A2C in table 6.3. In the vast majority of

57

6.2. Methods (Question 2)

Figure 6.4: Question 2 - Distribution of evaluation metrics by model type (test data)

episodes however, both agents sell at all spikes and may even take the exact same actions like
in the additional example episode A.15.

6.2.3.2 Evaluation Metrics

Overall, the performance of the A2C and DQN agents is very similar with respect to the eval-
uation metrics, as visualized in figure 6.4. The two main differences are the following: first,
the A2C agent generally places more trades per episode than the DQN agent. For instance,
it sells more often at the spikes as mentioned previously. Second, the A2C agent seems to

58

6.3. Baseline (Question 3)

have slightly better MDD values than the DQN agent, which means that it generally looses a
smaller percentage of equity value in the worst timesteps of the episodes.

6.2.4 Training Evaluation

The training metrics for the training period of the A2C agent and the DQN agent are dis-
played in figures A.9 and A.10 respectively. For reference, all training metrics are described
in section A.5.1 in the appendix. The training metrics for A2C look as expected. Just like for
the first research question, the A2C agent develops a preference for certain actions in certain
states and thereby manages to increase its discounted rewards over time, which is shown
by decreasing entropy and increasing discounted rewards. In addition, both policy loss and
state-value loss decrease across the training period after increasing at first.

The training metrics for DQN show that the DQN agent manages to increase its rewards
during the training period as well. However, along with increasing rewards also the action-
value loss increases until the end of the training period. This suggests that further improve-
ments may be possible with respect to the hyperparameters, e.g. the number of training
steps. However, no further adjustments were made in this regard because the hyperparame-
ters had been systematically determined with Bayesian optimization. Due to time consuming
Bayesian optimization trials, no more than 600 trials were conducted.

6.3 Baseline (Question 3)

6.3.1 Statistical Evaluation

The distributions of profit per volume traded in EUR, based on 3841 test episodes, are de-
scribed for each trading strategy in table 6.5. The RL agent is the optimized agent trained
with A2C from section 6.2. This final RL agent outperforms the random, forecast and moving
average trader baseline strategies in terms of median and mean profit per volume traded.
However, it is outperformed by the spike trader baseline strategy. Nevertheless, the spike
trader has a noticeably smaller minimum profit per volume traded than the RL agent.

Table 6.5: Distribution of profit per volume traded by trading strategy (test data, n = 3481)

Strategy Episodes Mean Std. Dev. Min 25% Median 75% Max

RL agent 3481.00 12.20 55.90 -36.69 -0.22 4.02 12.52 1957.21
Spike 3481.00 14.18 66.10 -161.46 -1.26 4.60 15.45 2250.00
Random 3481.00 0.17 9.14 -316.68 -0.66 0.00 0.76 250.00
Forecast 3481.00 0.70 11.73 -77.20 -0.87 0.00 0.99 344.51
Moving avg. 3481.00 -2.15 12.44 -171.55 -2.76 -0.61 0.69 216.64

The question is whether the median differences of profit per volume traded θ between the
RL agent and the four baseline strategies are significantly larger or smaller than 0. The boot-
strap p-values for the corresponding four hypothesis tests are shown in table 6.6. All p-values
are smaller than the significance level (with p 0.013) for the tests comparing the agent with
the forecast, random and moving average trader. Hence all null hypotheses are rejected in
favor of the alternative hypotheses for these tests. This means that the RL agent significantly
outperforms the random, forecast and moving average trader baseline strategies.

Recall that the spike trader was implemented retrospectively in order to mirror the main
strategy of the RL agent. When comparing the RL agent with the spike trader, neither the
bootstrap confidence interval, nor the p-value for the boostrap hypothesis test could be com-
puted as intended. This was because the agent and the spike trader achieved the exact same
profit per volume traded in 45% of the test episodes (1579 of 3481), resulting in differences of 0
for these episodes. With 1579 differences of 0, all boostrapped test statistics θ̂�j took the value

59

6.3. Baseline (Question 3)

0. The finding that θ̂�j = 0 for all j P t1, ..., 4999u implies that we fail to reject the H0 : θ = 0.
Hence, there is not sufficient evidence to conclude that the median differences of profit per
volume traded between the spike trader and the RL agent is larger than 0. In other words, it
is not possible to conclude that the spike trader outperforms the RL agent with respect to the
test statistic.

Table 6.6: Bootstrap hypothesis tests and confidence intervals for the difference in medians of
profit per volume traded (test data, n = 3481, R = 4999)

Strategy1 Strategy2 median(d1,2) Boot. 95% CI Boot. SE p-value
RL agent Spike 0.00 - 0.00 -
RL agent Forecast 3.55 (3.23, 3.84) 0.14 0.0014
RL agent Random 3.75 (3.47, 4.10) 0.17 0.0000
RL agent Moving avg. 3.94 (3.60, 4.29) 0.19 0.0000

6.3.2 Descriptive Evaluation

6.3.2.1 Example Episodes

To compare the actions of the RL agent with the actions of the four baseline strategies, three
exemplary episodes are visualized: an episode with spikes, an episode with an uptrend and
an episode with a downtrend. The visualization of the episodes with spikes, uptrend and
downtrend can be found in figures A.18 A.19 and A.20 in the appendix.

Figure A.18 shows an episode with spikes. The figure illustrates that both, the RL agent and
the spike trader, sell at the spikes and buy after the spikes. The random trader sometimes sells
at the spikes by chance. The forecast trader tends not sell at the spikes because of inaccurate
price forecasts. The moving average trader tends to buy at the spikes, assuming that the price
will further increase, which however almost never happens.

Figure A.19 shows an episode with uptrend. The figure illustrates that both, the RL agent
and the spike trader, buy some volume at the beginning and hold it until the end of the
episode, using a buy-and-hold strategy [110]. The random trader again places random trades
throughout the episode. In this episode, the forecast trader does not trade because all fore-
casts are in the range [�3%, 3%]. In other episodes with uptrend however, it does trade oc-
casionally if forecasts are ¡ 3% or �3%. In this episode, the moving average trader buys
some volume at the beginning of the episode and holds it until the end of the episode, simi-
lar to the RL agent and spike trader. However, the moving average trader would sell in the
middle of an uptrend if there were timesteps with decreasing price during the uptrend.

Figure A.20 shows an episode with downtrend. The figure illustrates that both, the RL
agent and the spike trader, again use the buy-and-hold strategy. While this strategy leads to
profits in episodes with uptrend, it results in a loss for episodes with downtrend. The random
trader places random trades throughout the episode. The forecast trader occasionally places
trades if forecasts are ¡ 3% or �3%. The moving average trader does not trade during
downtrends unless there are timesteps with increasing price during the downtrend.

In addition, tables A.5 and A.6 in the appendix show the distributions of profit and of per
volume traded by trading strategy and episode type, where the test episodes were categorized
as described in section A.6. These tables back up the main conclusions drawn from the visu-
alizations of example episodes above: the RL agent and spike trader outperform the baseline
strategies in episodes with spikes and uptrend because they sell at spikes and hold their in-
vestments during uptrends, which results in profits. However, they are outperformed by
the baseline strategies during downtrends because they again hold their investments, which
results in losses.

60

6.3. Baseline (Question 3)

Figure 6.5: Distribution of evaluation metrics by baseline strategy (test data)

61

6.3. Baseline (Question 3)

6.3.2.2 Evaluation Metrics

Boxplots of the five evaluation metrics for all four agents are shown in figure 6.5. Repre-
senting the financial result, the distributions of profit and profit per volume traded are more
skewed to the right for the RL agent and the spike trader. This illustrates that, compared to
the other baseline strategies, the RL agent and the spike trader had noticeably more episodes
where they achieved a large financial result.

Representing the level of activity, the distributions of the number of trades illustrate that
the spike trader generally takes the smallest number of trades per episode. Hereby, the spike
trader is followed closely by the RL agent, the forecast and the moving average trader.

Representing quality of trades as investment, the distributions of the percentage of positive
returns show that the RL agent and the spike trader generally have a larger percentage of
timesteps where their equity value increases than the other baseline strategies.

Representing worst-case risk, the distributions of MDD show that the worst timesteps per
episode (in terms of the percentage of equity value lost) are generally not worse for the RL
agent and the spike trader than for the other baseline strategies. Rather, the opposite seems
to be the case since the distributions seem slightly less skewed to the left for the RL agent and
the spike trader than for the other baseline strategies.

62

7 Discussion

In this chapter, the results and methods are discussed for each of the three research questions.
Above all, the three research questions are answered. Section 7.1 addresses the first research
question about the reward function comparison, section 7.2 is dedicated to the second re-
search question about the method comparison and section 7.3 focuses on the third research
question about the baseline strategy comparison. Importantly, the conclusions are limited to
the problem of intra-day trading in the electricity domain, which was addressed in this thesis.

7.1 Reward (Question 1)

Reward: Is the Sharpe ratio, a prevalent reward function from the financial domain, the best reward
function for intra-day trading in the electricity domain?

To answer this research question, four agents were trained with different reward functions.
In particular, two risk-adjusted reward functions (Sharpe ratio and log equity ratio) and two
profit based reward functions (vwap delta and absolute return) were implemented. The cor-
responding four agents were all trained under the same circumstances (e.g. default hyperpa-
rameters and features), however with different reward functions. Each agent was evaluated
on the same 3481 test episodes. The performance of the four agents was compared based on
the main evaluation metric (profit per volume traded), computed for each test episode.

7.1.1 Results

Based on the results, the above research question can be answered with no. The best results
in terms of median profit per volume traded were obtained with the profit based reward
function vwap delta, followed by the absolute return, Sharpe ratio and log equity ratio reward
functions (in this order). Moreover, the vwap delta reward function was found to signifi-
cantly outperform the Sharpe ratio and the log equity ratio. Since the Sharpe ratio is clearly
outperformed by the vwap delta reward function, it does not seem to be the best reward func-
tion for intra-day trading in the electricity domain. Overall, the profit based reward functions
(vwap delta and absolute return) led to better results in regards to the main evaluation met-
ric, profit per volume traded, than the risk-adjusted reward functions (Sharpe ratio and log
equity ratio).

63

7.1. Reward (Question 1)

This raises the question why reward functions that adjust for risk, such as the Sharpe ratio,
seem less appropriate for intra-day trading in the electricity domain. After all, the Sharpe
ratio has been a popular reward function in the financial domain [2]. The answer may lie
in the properties of electricity. While financial assets such as stocks, indices and funds are
investments that are expected to increase in value over a rather long time period, electricity
is a product with a very volatile price that heavily depends on the supply and demand for a
given time period such as the hour of the day. If the supply exceeds the demand, e.g. due
to unexpectedly large production of wind energy, the prices may become negative. If the
demand exceeds the supply, e.g. due to people and companies using more electricity, prices
may spike up massively. In summary, unexpected variations in supply and demand result in
price volatility. Trading agents that learn to make use of this volatility can be very successful.
As illustrated in figure 6.1, the agents trained with the profit based reward functions, vwap
delta and absolute return, learned to sell electricity when the price spikes up. Thereby, they
learned to make use of the price volatility. This was possible because their reward functions
gave large positive rewards for selling when the price spikes up, reinforcing such behavior.

The reward functions that adjust for risk, in contrast, did not reward such behavior in the
same way. Recall that the Sharpe ratio reward function is defined as the ratio of the running
sample mean of returns over the running sample standard deviation of returns as defined
in equation 2.44. If the agent sells when the price spikes up, the mean in the numerator
increases. However, also the standard deviation in the denominator increases. Therefore,
selling at spikes generally does not result in large rewards, which means that the Sharpe ra-
tio does not encourage the behavior of selling at spikes. The log equity ratio reward function,
defined in equation 2.49, is considered a risk-adjusted reward function because of its convex
shape corresponding to a risk-avoiding utility function (illustrated in figure 2.6). Due to its
shape, this reward function strongly punishes actions followed by a large percentage decrease
in equity. Importantly, it gives very similar rewards to actions followed by some small per-
centage increase and some small percentage decrease in equity. In other words, this reward
function does not give a strong enough incentive to avoid small percentage decreases in eq-
uity. It seems like this causes not only a smaller percentage of timesteps with positive returns
but also a larger number of trades as shown in figure 6.2. This has a negative impact on the
main evaluation metric, which is high if large profits are obtained with a small traded volume.

7.1.2 Method

Three methodological aspects need to be discussed: the lack of hyperparameter optimization
and feature selection, the specific implementation of the reward functions and the choice of
the main evaluation metric.

The four agents were trained with their respective reward functions using all features
from table 4.2.1 and default hyperparameters from table A.15. Ideally, each agent should
have been trained with features and hyperparameters optimized for the respective reward
function to ensure that each agent achieves its full potential. However, the training metrics
for the agents help to alleviate concerns. They do not seem to indicate that the agents trained
with risk-adjusted reward functions (Sharpe ratio and log equity) were put at a disadvantage
due to the default features and hyperparameters. The learning curves in figure A.7, in par-
ticular the curves showing the entropy loss and the discounted rewards, show that all agents
developed a preference for certain actions and thereby increased their respective discounted
rewards over the training period. Hence, the fact that all agents were trained with default
features and hyperparameters does not seem to diminish the credibility of the results.

Furthermore, small adjustments in the reward functions might have possibly led to differ-
ent results. For instance, the Sharpe ratio reward function was computed based on running
averages of mean and standard deviation across 5 timesteps. Using a different number of
timesteps could have resulted in a different performance of the Sharpe ratio reward function.
However, different studies also made similar choices. For instance [32] and [33] used 5 and 21

64

7.1. Reward (Question 1)

(or 22) timesteps for the number of days in a week and month. Similarly, note that it would
have been possible to compute the log equity ratio reward function and the profit based re-
ward functions with moving averages. Understanding how different modifications of each
of the reward functions affect the performance (and possibly training stability) would make
for an interesting research question in the future. In the scope of this thesis, however, only
one version of each reward function was implemented.

Lastly, note that the main evaluation metric of this thesis, profit per volume traded, was
based on profit. The reward functions that performed particularly well on this metric were
profit based as well. Whether a certain reward function is considered suitable or not de-
pends on the chosen evaluation metric. For instance, profit based reward functions might
have shown a worse performance compared to risk-adjusted reward functions if different
evaluation metrics had been used for the comparison. Hence, it is important to stress that the
experiments found profit based reward functions to perform better than risk-adjusted reward
functions, not universally but with respect to the evaluation metric profit per volume traded.

7.1.3 Outlook

Future research could investigate specific characteristics of the reward functions, in particular
the implications of using moving averages in reward functions, of using sparse rewards in form
of the main evaluation metric at the end of an episode and of applying methods for improving
performance if rewards are sparse. These three suggestions are discussed below.

First, one should understand whether reward functions based on moving averages can gen-
erally increase training stability and improve results. Note that the best reward function in
this thesis, vwap delta, is based on the difference between two cumulative moving averages:
the volume weighted average selling price and the volume weighted average buying price.
Thereby, the reward at a given timestep is dependent on past timesteps as well since the
moving average is also computed with past metrics. Hence, if an outstandingly good (or
bad) action is taken in one timestep, this will result in large (or small) rewards for not only
this action but also for subsequent actions. This is illustrated in figure 6.1, where the orange
dotted lines show the rewards. Note that the vwap delta rewards resemble a staircase: after
successful actions, the rewards stay large for several timesteps. This is different for the re-
wards of the remaining reward functions, in particular absolute return and log equity, which
do not use any moving averages.

Second, one should consider giving non-informative constant rewards during the episode
and only a single non-constant reward at the end of the episode. This resembles the simplistic
maze problem, where the agent receives constant negative rewards at each step, except for the
last timestep at which it receives a single positive reward for finding its way out of the maze.
In this thesis for instance, one could give zero valued rewards during the episode, except for
the last timestep where the main evaluation metric, profit per volume traded, would be given
as reward. On the one side, this will make it more difficult to learn which actions affected the
main evaluation metric positively and to reinforce these actions accordingly. In other words,
the credit assignment problem will be harder to solve. On the other side, this might help to
actually learn actions that maximize the main evaluation metric as desired. Recall that RL
agents learn to optimize return, i.e. the sum of discounted future rewards shown in equation
2.4, which can be very different than the main evaluation metric depending on the chosen
reward function. If the main evaluation metric is only given at a single timestep at the end of
the episode (possibly even with a discount factor of 1), then the true sum of future expected
rewards is equal to the main evaluation metric. Consequently, the agent will directly optimize
for the main evaluation metric.

Lastly, if only single non-constant rewards are given as described above, one may ap-
ply and further develop methods that improve training if rewards are sparse. For instance,
hindsight experience replay was introduced for exactly this issue [111]. However, hindsight ex-
perience replay cannot be applied as is for the context of this thesis. It was mainly developed

65

7.2. Method (Question 2)

for environments, where there is a particular goal state (e.g. a location on the map that the
agent needs to reach). Unfortunately, there is generally no particular goal state in the con-
text of trading. Instead, the goal is to maximize a certain metric such as profit per volume
traded. Nevertheless, it may be possible to adjust the idea of hindsight experience replay for
environments without a particular goal state.

7.2 Method (Question 2)

Method: Does the RL agent achieve a better performance when trained with an actor-critic method
than when trained with a critic-only method?

To answer this research question, two agents were trained with different RL methods. In par-
ticular, one agent was trained with the actor-critic method A2C and another agent was trained
with the critic-only method DQN. Both agents were trained with features, hyperparameters
and reward function selected by Bayesian optimization. The agents were each evaluated on
the same 3481 test episodes. The performance of the two agents was compared based on the
main evaluation metric (profit per volume traded), computed for each test episode.

7.2.1 Results

Based on the results, the above research question has to be answered with no. In this thesis,
A2C was used as representative for actor-critic methods and DQN was used as representa-
tive for critic-only methods. The agents trained with A2C and DQN both learned to sell at
the spikes and to use a buy-and-hold strategy if there are no spikes. Both agents achieved
the exact same profit per volume traded in 44% of the test episodes. As for the statistical
evaluation, there was not sufficient evidence to conclude that the A2C agent outperforms the
DQN agent with respect to profit per volume traded. Importantly, these findings are limited
to the RL environment of this thesis. Possibly, different conclusions might be reached with
different, for instance more complex environments.

Beyond performance, other factors may be considered for the choice of the RL method.
For instance, A2C may be preferred because of its stochastic policy and its support for both,
discrete and continuous, action spaces. In contrast, DQN uses a deterministic policy and
is limited to discrete action spaces. Moreover, finding an optimal set of reward function,
features and hyperparameters was faster for A2C than for DQN (as shown in figure 6.3).

7.2.2 Method

Three methodological aspects need to be discussed: the issue of overfitting the validation
data during Bayesian optimization, the possibility of better DQN performance after even
more Bayesian optimization trials and the interpretation of the results with respect to actor-
critic versus critic-only methods.

First, there might be some concern about the use of validation data for Bayesian optimiza-
tion. Recall that each set of optimization parameters (features, hyperparameters and reward
function) was assessed by evaluating the corresponding agent on the validation data. More-
over, the best set of optimization parameters was selected as the set that performed best on
the validation data. This approach entails the risk that the selected parameters do not gener-
alize well to unseen test data. This risk might have been reduced by using cross validation
instead. Although no cross validation was applied in this thesis, it seems like the selected
optimization parameters generalized quite well to the test data. For A2C, the median profit
per volume traded was 5.16 on the validation and 4.02 on the test data. For DQN it was 5.67
on the validation data and 3.89 on the test data. Figure 4.4 shows that the price distributions
of the validation and test data are similar, which may explain the decent generalization to the

66

7.2. Method (Question 2)

test data. Nevertheless, it would be better to conduct optimization with cross validation, in
particular for RL agents that will be used in real-world applications.

Second, one should point out that 600 trials of Bayesian optimization may not have been
sufficient for DQN. The following observations support this concern: first, the best trial was
the second to last trial (trial 599 of 600 trials in total). Second, figure 6.3 shows that for DQN
the validation performance was improving throughout the whole training period, whereas
for A2C it was only improving until trials 150-200 and remaining stable from thereon. Third,
the action-value loss was increasing for DQN throughout the whole training period as shown
in figure A.10. Therefore, it is possible that a better set of optimization parameters, result-
ing in better performance on validation and test data, could have been identified with more
Bayesian optimization trials. For this thesis, no further trials were conducted because of time
reasons. One trial took approximately between 5 and 75 minutes depending on the optimiza-
tion parameters selected for the trial.

Lastly, the relevance of the three method classes (critic-only, actor-only and actor-critic)
needs to be discussed. While it is possible to categorize RL methods as critic-only, actor-only
and actor-critic, it is important to note that certain methods became successful and popular
because of additional ideas that go beyond this categorization. For instance, the success of the
critic-only method DQN did not come because of its nature of being critic-only. Instead, its
success in playing Atari Games was due to experience replay and a separate target network
[24]. Later, DQN was further improved by additional ideas such as prioritized experience
replay [25], dueling networks [26] and double Q-learning [27]. Similarly, the success of A2C
did not come because of its nature of being actor-critic. Instead, its success came with the
idea of letting multiple agents gain experience on different copies of the environment simul-
taneously [4]. As a result, it may not be appropriate to attribute differences in performance
between certain RL methods to their nature of being critic-only, actor-only or actor-critic.
Instead, it may be more appropriate to look at RL methods as individual methods, not as
representatives of these method categories. For instance, it may be more suitable to compare
A2C with DQN instead of comparing actor-critic methods represented by A2C with critic-only
methods represented by DQN.

7.2.3 Outlook

In this thesis, there was not sufficient evidence to show that A2C outperforms DQN. Interest-
ingly, a survey about reinforcement learning for trading in the financial domain also came to
the conclusion that there is "no clear winner" [15, p. 36] among any of the three RL method
categories (critic-only, actor-only, actor-critic). This conclusion was, among others, based on
the fact that different reviewed papers reported different method categories to be superior.

Among others, differences in performance may be explained with the following reasons:
first, it is possible that differences in performance were found only in descriptive statistics but
not with inferential methods such as hypothesis tests, which could have shown differences to
be insignificant. Second, it is possible that performance differences between RL methods were
due to insufficient optimization of features, hyperparameters and rewards, putting certain RL
methods at a disadvantage. Third, it is possible that certain RL methods systematically work
better for certain RL environments. Clearly, future research is needed to better understand
differences in performance of certain RL methods for trading.

First, research is needed to establish a standard for hypothesis testing in reinforcement
learning for trading. In particular, with actions coming from a stochastic policy in some RL
methods, it is not sufficient to plainly compare RL methods based on descriptive statistics.
Nevertheless, most studies do exactly that. Clear guidelines for robust hypothesis testing in
reinforcement learning would help to improve this status quo. Hereby, resampling methods
such as bootstrap hypothesis tests might be a good starting point.

Second, studies are needed to exhaustively benchmark RL methods with Bayesian optimiza-
tion on the exact same RL environments. Bayesian optimization of features, hyperparameters

67

7.3. Baseline (Question 3)

and reward functions will ensure that each RL method can realize its full potential, allowing
for a fair comparison of different RL methods. The findings of this thesis suggest that differ-
ences in performance between RL methods may be insignificant: the two applied methods
A2C and DQN learned very similar strategies, resulting in an insignificant performance dif-
ference. Moreover, this thesis has shown that successful strategies in the context of trading
may be simple, as reflected by the spike trader, which always holds some volume of electricity
and sells at spikes. Such simple strategies may be discovered by various different RL meth-
ods after sufficient optimization of their hyperparameters, features and reward functions.
If different RL methods are able to learn these strategies, there may not be any significant
difference in performance between these RL methods.

Third, studies are needed that systematically compare RL methods on multiple environ-
ments, which are similar in nature but differ in their level of complexity. Such a comparison
will help to better understand if there are certain characteristics of an RL environment for
which specific RL methods are more or less suitable. For instance, level of complexity might be
adjusted by varying episode length, size of the action space, size of the state space and ran-
domness in the environment. Different characteristics may be compared as well, e.g. whether
the environment is dynamic or static (with next states s1 depending on action a or not).

7.3 Baseline (Question 3)

Baseline: Does the RL agent achieve a better performance in trading electricity than baseline strate-
gies that are commonly used for trading?

To answer this research question, the optimized A2C agent from the second research ques-
tion was compared with four trading strategies of different nature: a random trader, a forecast
trader, a moving average trader and a spike trader. The spike trader was implemented retro-
spectively to match the A2C agent’s strategy of selling at price spikes. All trading strategies
were each evaluated on the same 3481 test episodes. Their performance was compared based
on the main evaluation metric (profit per volume traded), computed for each test episode.

7.3.1 Results

Based on the results, this question can be answered with yes. The RL agent was able to sig-
nificantly outperform the random, forecast and moving average baseline strategies in terms
of profit per volume traded. There was not sufficient evidence to conclude that the RL agent
is better or worse than the spike trader. However, the spike trader was designed retrospec-
tively to match the behavioral strategy of the RL agent, after analyzing its actions. Therefore,
the spike trader itself does not actually represent a common baseline strategy. Although the
spike trader resembles the general idea of "Buy low, sell high" [112], it differs from this idea
because the spike trader only tries to sell high and is indifferent about the buying price.

Nonetheless, the great performance of the spike trader illustrates that successful strate-
gies may be quite simple in the context of trading. Furthermore, this thesis illustrates that
reinforcement learning may be used to identify such trading strategies: after understanding
the strategy of a successful RL agent, this strategy may be converted to a rule-based algo-
rithm just like the spike trader. Converting the RL agent to a rule-based algorithm reduces
complexity. This may result in better generalization to unseen data, better interpretability,
and easier deployment to real-world trading applications. In the context of neural networks,
it has been shown that the knowledge of complex and ensemble models can be transferred
to simpler models [113]. Converting the strategy of an RL agent to a rule-based algorithm
resembles this idea. While in this thesis, the rules were simply identified based on visual
inspection, it would be better to make use of a systematic approach for converting the RL
agent’s trading strategy into rules. A particularly promising approach might be to train a
decision tree that predicts the actions taken by the RL agent [114].

68

7.3. Baseline (Question 3)

Although the spike trader attempts to mirror the RL agent’s strategy of selling at spikes,
both trading strategies still differ in certain aspects. This is because the spike trader was not
designed to exactly match the policy of the RL agent but only to match the particular strategy
of selling at large price increases. It is of particular interest to compare the RL agent with
the spike trader since this may help to understand advantages and disadvantages of the RL
agent. For this purpose, all test episodes for RL agent and spike trader were visualized. This
was done in an exploratory manner, without quantifying the results. The main objective was
to understand why the RL agent performs better or worse in certain cases. As a result, two
aspects in favor of the RL agent and two aspects in favor of the spike trader were identified.

7.3.1.1 Advantages of RL agent

As shown in tables A.5 and A.4 in the appendix, the RL agent outperforms the spike trader
in no trend episodes. As described in section A.6, these episodes correspond to episodes that
were not categorized as spike, uptrend or downtrend episodes. Importantly, these episodes
may still contain some form of spikes, uptrend or downtrend. For instance, no trend episodes
may contain small spikes with a percentage increase ¤ 25% or spikes with a pique that lasts
over several timesteps. This is because such spikes would not meet the categorization rules
for spike episodes from section A.6 and may therefore be categorized as no trend episodes
instead. Note that according to the categorization rules, an episode is categorized as spike
episode if it contains at least 1 sequence of 3 timesteps t� 1, t, t + 1, where the price increases
by¥ 25% from t� 1 to t and decreases by¤ �25% from t to t + 1. There are two reasons why
the RL agent is generally superior in the no trend episodes.

First, the RL agent also sells at spikes that correspond to a percentage increase 25%,
whereas the spike trader only sells at percentage increases ¥ 25%. Although percentage
increases ¥ 25% also exist in no trend episodes, they are rather rare. In particular, such
percentage increases can only occur in no trend episodes if they are not directly followed by
a percentage decrease of � ¤ 25% in the subsequent timestep. Otherwise, the corresponding
episodes would be categorized as spike episodes. In conclusion, the RL agent learned to sell
not only at large price increases but also at small price increases. This puts the RL agent at
an advantage in episodes with only small price increases because the RL agent sells at these
small price increases, whereas the spike trader does not.

Second, after selling at a price increase, the RL agent generally waits until the price de-
creases before buying again, whereas the spike trader immediately buys after selling. There
exist episodes, where the price further increases or stays approximately the same after a
¥ 25% price increase. Few timesteps later however, the price generally decreases strongly.
Visually, one may think of this as an extended spike or a spike that stays at its pique for sev-
eral timesteps. Since the spike trader buys directly after it sells, it buys when the price is high
in such scenarios. This generally gives poor results because the price tends to drop shortly
after. In conclusion, the spike trader sometimes buys electricity at a high price, whereas the
RL agent makes an effort to buy electricity at a low price: the RL agent waits until the price
decreases and then it buys some volume of electricity.

7.3.1.2 Advantages of spike trader

As shown in table A.5, the spike trader slightly outperforms the RL agent in regards to the
main evaluation metric on episodes with spike and with uptrend . There are two reasons why
the spike trader is generally superior in these episodes.

First and most importantly, the spike trader places very few trades, fewer trades than
the RL agent. This is illustrated by the third plot in figure 6.5, showing the distribution of
the number of trades per episode across all test episodes. The spike trader places fewer trades
because it only sells when the price increases by ¥ 25%, whereas the RL agent also sells when
the price increases by a smaller percentage. Due to fewer trades, the denominator in the main

69

7.3. Baseline (Question 3)

evaluation metric, profit per volume traded, displayed in equation 5.2 is generally smaller for
the spike trader than for the RL agent. If the RL agent places the exact same trades as the spike
trader but in addition sells at a small spike, then the profit per volume traded will be smaller
for the RL agent than for the spike trader. This is because the additional trade will result in
only a small profit relative to its volume, decreasing the overall profit per volume traded for
the episode. In other words, the RL agent achieves worse results because of taking additional
appropriate actions (selling at small spikes). Mainly, this issue illustrates a limitation of the
main evaluation metric: it puts strong emphasis on the amount of volume traded, which in
some cases punishes actions even though they result in incremental profit. Perhaps, it might
be good to revise the main evaluation metric profit per volume traded in future research so
that additional trades are rewarded, not punished, if they result in some small but noticeable
incremental profit.

Secondly, the spike trader performs better in some episodes with spikes because the spike
trader always sells at the spikes whereas the RL agent sometimes misses out on selling at
spikes. This happens rather rarely however.

7.3.2 Method

The issue of the main evaluation metric has already been addressed when discussing the
advantages of the spike trader in section 7.3.1.2. From a methods view, two further aspects
might be discussed. First, the choice of the baseline strategies and second the implementation
of the baseline strategies.

First, there may be some concern that these baseline strategies are not appropriate for the
given problem of trading volatile electricity prices. In particular the performance of the ran-
dom, forecast and moving average trader was rather poor. However, the amount of possible
baseline strategies from the financial domain is large and not all baseline strategies could be
considered. The forecast trader was selected because it had been applied as baseline strate-
gies in previous studies about reinforcement learning for trading, for instance in [16]. The
random trader was selected because in the financial domain, it was shown to give a similar
performance as several other baseline strategies based on indicators [96]. The moving aver-
age trader was selected as a particular representative of indicator based trading strategies.

Second, there may be some concern about the implementation of the baseline strategies.
In regards to the forecast trader from section 5.4.2, one may question why it buys when the
price is predicted to increase by ¡ 3% and not by for example ¡ 5% or any other percentage.
In regards to the moving average trader from section 5.4.3, one may question why the mov-
ing average was computed based on 10 timesteps and not any other number of timesteps.
Also in regards to the spike trader, on may question why this trader only sells when the price
increases by ¥ 25%. Ultimately, the answer is that alternative implementations would have
well been possible. However, it would have been out of scope to optimize the baseline strate-
gies with respect to their implementational details. At last, the main limitation of baseline
strategies for trading is that they are based on simple heuristics and therefore generally not
optimal for the problem at hand.

7.3.3 Outlook

Future research about converting policies of successful RL agents into rule-based algorithms
would be very valuable. In particular in the context of trading, such an approach would make
sense. This is because of the following reasons. First, it seems realistic that successful trading
strategies can be expressed as rule-based algorithms, mainly because they may be relatively
simple (unlike the strategies of RL agents that play Go, Dota 2 and StarCraft II [5]–[7]). Sec-
ond, speed of execution matters in real-world trading applications and rule-based algorithms
may be faster than complex RL agents based on neural networks. Third, interpretability is im-
portant because it may help to manage risk of a real-world trading application. For instance,

70

7.4. Transfer into practice

if a black-box RL agent suddenly starts taking losses several episodes in a row, it may be
difficult to understand why that is. If a rule-based algorithm starts taking losses, one may
immediately understand the reasons for the losses and make a judgement whether the agent
should keep trading or not. In future research, different approaches for converting successful
RL agents into rule-based algorithms should be considered. A promising approach may be to
train decision trees that predict the actions of the RL agents. Complexity might, for instance,
be regulated by pruning the decision trees and by using a reduced state space.

Furthermore, different baseline strategies may be applied. In particular, baseline strate-
gies in accordance to the idea "Buy low, sell high" [112] may be suitable because such strate-
gies would make use of the volatility in the electricity market. These strategies are based on
the assumption that the price is mean-reverting, which means that the price will always come
back to its mean after an increase or a decrease [115]. Modeling electricity prices as mean-
reverting processes was done before, for instance in [116]. Such models might helpful for
designing baseline trading strategies that buy when the price is low and sell when it is high.

7.4 Transfer into practice

Overall, the results of this thesis seem promising because the final RL agent was able to learn a
successful, profitable trading strategy. This implies that reinforcement learning is particularly
suitable for identifying successful trading strategies. In contrast, supervised learning is not
predestined for identifying new trading strategies. Supervised methods perform predictions,
without addressing the question how these predictions should be turned into actions.

While the performance of the final agent, achieving a median profit per volume traded
of 4.02 EUR on test data, seems impressive, it is not representative of the performance that
can be achieved in a real-world application. It is important to consider overall limitations
of this thesis when attempting to apply RL for a real-world trading application. Therefore,
this section addresses these limitations. In particular, limitations of the environment, the
evaluation and the model are discussed.

The environment of this thesis was simplified in several aspects. First and foremost, every
order of the agent was guaranteed to be executed in this thesis. The agent only had to specify
the volume that it wanted to buy or sell and this volume was then bought or sold at the
current market price, known to the agent. In a real world application, the agent would need to
specify the volume that it intends to buy or sell and the price at which it intends to buy or sell.
Moreover, the resulting order may or may not get executed, depending on the other market
participants. Second, the environment of this thesis assumed that the agent’s actions do not
have any effect on the market. Although only small volumes of electricity were traded by the
agent, it is still possible that the agent’s actions have an effect on the market price in a real-
world application. Third, the representation of the market price in this thesis assumed very
fast response times of the agent. Every subsequent 5 executed buy orders were aggregated to
1 timestep in the RL environment. In time periods with high order density, multiple timesteps
in the RL environment therefore occurred within a second of real time. Such fast reaction
times may not be possible in a real world application. Lastly, it is noteworthy that the data of
this thesis was from 2014 to 2016. Today, the market may behave differently. Therefore, more
up-to-date order data should be used for training and evaluating a real-world RL application.

The evaluation of this thesis, although exhaustive, can be improved to account better for
randomness. There are several sources of randomness in the context of reinforcement learn-
ing: randomness in the actions taken by the agent (during training and evaluation) and ran-
domness of the environment (since the market is not fully predictable). During training, RL
methods generally make use of random sampling to allow for exploration. Furthermore, RL
methods with stochastic policies, such as A2C, make use of sampling during evaluation as
well. To really account for randomness in training and evaluation, multiple agents should be
trained and evaluated with different random seeds although this is very time consuming. In

71

7.5. Ethical considerations

this thesis, only one agent was trained instead and a bootstrap hypothesis test was used for
inference. For a real-world application however, it may be better to take the time consum-
ing approach in order to mitigate risk. In this context, stochastic weight averaging (SWA)
might be an efficient alternative to account for volatility during training [117]. For this thesis,
first experiments indicated that offline SWA can be used to reduce variation in performance
across different seeds without compromising training time. With offline SWA, the final model
weights are computed as an average of the weights across the training period. During train-
ing, the RL agent makes use of weights without averaging, as usual. Offline SWA does not
affect the training phase as the weight averaging only occurs retrospectively, after training.

Lastly, limitations of the model should be discussed. In this thesis, the RL agent was based
on neural networks. Neural networks are the most common model type in reinforcement
learning, among others because they allow to fit complex, non-linear functions. However,
neural networks have been called black box models before for a reason [118]. Interpreting and
explaining the outputs of neural networks can be difficult. In the context of trading, however,
risk management is very important. Understanding why an automatic trading system takes
certain actions can be invaluable to manage risk. For example, a thorough understanding
may shine light on the weaknesses of the model. This would help to answer questions such
as: in which market conditions would the RL agent perform poorly? Knowing about the
weaknesses of the RL agent, one can take precautions accordingly. This thesis has shown that
successful trading strategies may be simple, as illustrated by the spike trader. Converting suc-
cessful trading strategies of RL agents to simple rule-based algorithms therefore seems like a
realistically possible approach. Therefore, the ideal steps for a real-world application might
be the following: first, RL agents should be trained to identify successful trading strategies
and second, these RL agents should be converted to interpretable rule-based algorithms.

7.5 Ethical considerations

It is important to consider the work of this thesis from an ethical and societal viewpoint.
Hereby, emphasis is put on reinforcement learning for trading in particular. Beyond trading,
it is noteworthy that reinforcement learning has the potential to be abused for autonomous
weapon systems. Although leading research institutions in the field of reinforcement learn-
ing, such as OpenAI and Google DeepMind, have pledged against such work [119], this risk
remains and it may grow with further advancements in this field.

In regards to trading in general, one may argue that RL agents may be converted into
rule-based algorithms. For instance, in this thesis the spike trader was used to represent
the strategy of the RL agent to sell at large price spikes. This leads to the question whether
algorithmic trading is ethical. This question has been discussed by Wellman et al. in [120] for
the financial domain. The authors state that algorithmic trading may actually contribute to
more efficient markets. In the context of trading electricity for instance, if multiple RL agents
attempted to sell at price spikes, this would decrease the size of the spikes due to increased
supply provided by the agents. Recall that prices spike up when the demand exceeds the
supply and if there is plenty of supply (with several RL agents trying to sell at a spike), the
price may not actually spike up. In other words, RL agents may help to reduce volatility.
However, Wellman et al. highlight that the effects of algorithmic trading systems on the
overall market are still poorly understood and that concerns remain.

While the effects of algorithmic trading in the financial domains seem poorly understood,
the effects of algorithmic trading in the electricity domain seem even more poorly under-
stood. Nevertheless, one may argue that trading electricity does not work without a certain
degree of automation. The interplay of supply and demand are central in the domain of elec-
tricity because electricity is a good that is actually consumed (unlike financial products such
as stocks). Producers have to adjust to the demand and consumers have to adjust to the sup-
ply. Hereby, forecasts play an essential role for both producers and consumers. They use

72

7.5. Ethical considerations

forecasts to plan ahead in order to be able to meet the actual demand and supply. Recall that
the electricity contracts traded in this thesis are contracts for electricity at a certain hour in the
future. Producers and consumers reduce their financial risk by making good forecasts and by
trading accordingly. Hence, a certain degree of automation seems required and appropriate
in the domain of electricity trading.

However, while automation seems to make sense for electricity producers and consumers,
one may be concerned about agents in the market that neither produce nor consume electric-
ity but only trade electricity for profits. It may also be possible that producers and consumers
trade electricity for profits in addition to their main activity of fulfilling their supply and de-
mand. Generally only companies that fulfill certain conditions are allowed to trade electricity
on European Energy Exchange markets [121]. It yet remains to be seen how future applica-
tions of reinforcement learning used by these companies will affect the market. For instance,
it might be possible that RL agents learn to manipulate markets: in the context of trading
electricity, agents may try to manipulate the market by creating spikes. Clear is that the im-
pact of such applications has to be carefully studied and monitored and that limitations will
be required if these applications affect the market negatively.

73

8 Conclusion

The purpose of the thesis was to create a RL agent that can profitably trade electricity on the
continuous hourly intra-day market in Germany. In particular, the RL agent was supposed
to maximize profit per volume traded. This means that each volume of electricity traded by
the agent should result in large incremental profits. To approach this problem, a custom RL
environment was implemented, in which the RL agent had to make trading decisions not
only about whether to buy or sell but also about the volume to buy or sell.

Emphasis was put on a) finding a suitable reward function, b) finding a suitable RL
method and c) comparing the final RL agent to baseline strategies. In regards to reward func-
tions, a new reward function vwap delta was introduced. This reward function was the best
performing reward function in terms of the main evaluation metric, profit per volume traded.
It significantly outperformed risk-adjusted reward functions such as the Sharpe ratio and the
log equity ratio. In regards to RL methods, the actor-critic method A2C was compared with
the critic-only method DQN. For both methods, Bayesian optimization was applied to se-
lect an optimal combination of features, hyperparameters and reward function. Both agents
learned very similar behavioral strategies and there was not sufficient evidence to conclude
that they differed significantly in their performance. In regards to baseline strategies, the RL
agent was able to significantly outperform a random trader, a forecast trader and a moving
average trader. However, its performance was very similar to a custom rule-based algorithm,
which was reverse engineered to match the behavioral strategy of the RL agent. This algo-
rithm was called spike trader due to its approach to always hold some volume of electricity
and to sell when there is sudden price increase. There was not sufficient evidence to conclude
that the RL agent and the spike trader differed significantly in their performance.

Importantly, the RL agent in this thesis was trained in a simplified RL environment, which
means that the agent cannot be used for real-world trading at this point. Two major simplifi-
cations were made. First, the agent was trained on a static data set of historic market orders.
Therefore, the actions of the agent did not have any effect on the market price since the his-
toric market price time series were given as fixed input to the RL environment. Second,
the historic market orders were converted to market prices, which the agent then learned to
trade. Thereby, the action space was simplified because instead of placing bids for electricity,
the agent could simply buy or sell electricity at the given market price of each timestep. While
bids may or may not be converted to actual trades in the real world, all buy and sell orders
by the RL agent in this thesis were guaranteed to be executed.

74

In spite of these simplifications, this thesis has shown that reinforcement learning does
not only have the potential to create profitable trading agents but also that it can be used
to identify optimal trading strategies by learning from these agents. In the context of trad-
ing, these optimal strategies may then be converted to rule-based algorithms that are inter-
pretable, computationally efficient and simple to deploy in real-world trading applications.

75

A Appendix

A.1 Static data for RL environments

As mentioned in the introduction section 1.1, RL environments can be represented with a
dynamic simulation or with a static data set. In a dynamic simulation, the action a causally
affects the next state s1. This causal relationship is illustrated with an arrow pointing from a
to s1 in the left diagram of figure A.1. Video game RL environments are a good example of this
scenario: if the RL agent attacks its virtual opponents in Dota 2 (corresponding to action a),
then the opponents will defend themselves (reflected in the next state s1).

s

a

s'

RL environment based on
dynamic simulation

s

a

s'

RL environment based on
static data

Figure A.1: Causal relationships in an RL environments based on a dynamic simulation (left)
and static data (right). Arrows represent causal relationships. The arrows from state s to ac-
tion a are due to the RL agent’s action policy π(a|s) described in section 2.1.4. The remaining
arrows are due to the probability distribution p(s1, r|s, a) described in section 2.1.1. The figure
does not display the reward r for simplicity.

76

A.2. RL Algorithms

If static data is used to represent the states in the RL environment, then the action a does
not causally affect the next state s1. This is because the next state s1 is already given due to the
static data. The lack of a causal relationship is illustrated in the right diagram of figure A.1,
where there is no arrow pointing from a to s1. Trading RL environments are a good example
of this scenario. For instance, the states of a trading RL environment may be represented
with historic market price time series. Obviously, the actions of the agent cannot affect the
historic market prices since these are given as fixed input to the RL environment. Essentially,
the agent iterates over predetermined states, traversing the historic market data across time.

If the RL environment is represented with static data, the joint probability p(s1, r|s, a) from
section 2.1.2 can be represented as p(s1|s) and p(r|s, a). The next state s1 only depends on the
previous state s whereas the reward r depends on both, state s and action a. Importantly, this
does not mean that RL is more or less suitable. All RL methods can be applied regardless of
whether the RL environment is represented with static data or with a dynamic simulation. In
both cases, the RL agent explores different actions a in different states s and thereby learns
to take actions that maximize the sum of future discounted rewards, i.e. the return Gt from
section 2.1.3. This makes sense in both cases because in both environment types, the reward r
depends on action a and state s, reflected by p(r|s, a). This allows the RL agent to learn which
action to take in any given state in order to maximize future discounted rewards.

However, not all RL environments may be represented with static data. Static data only
makes sense when action a can be assumed not to affect the next state s1. In the context of
trading, this is the case because an individual agent can be assumed to have a negligible
effect on the overall market, in particular if the agent only trades small volumes relative to
the overall market volume. In contrast, using static data does not make sense in the context
of video games since it lies in the nature of video games to react to the player’s actions.

A.2 RL Algorithms

Algorithm 2: Critic-only pseudocode (1-step Q-learning) [17]

1 //Assume a differentiable action-value function parameterization q̂(s, a, w)
2 //Assume some step size α ¡ 0 for gradient descent
3 //Initialize the weights w
4 for episode P t1, ..., Mu do
5 for t P t0, ..., T � 1u do
6 Take action At as argmaxa q̂(St, At = a, w)
7 Get reward Rt+1 and next state St+1 from the environment
8 Update the weights w with gradient descent:
9 Gt Ð Rt+1 + γ maxa1 q̂(St+1, At+1 = a1, w)

10 w Ð w + α [Gt � q̂(St, At, w)]∇q̂(St, At, w)

11 end
12 end

77

A.2. RL Algorithms

Algorithm 3: Actor-only pseudocode (with Monte Carlo) [17]

1 //Assume a differentiable policy function parameterization π̂(a|s, θ)
2 //Assume some step size α ¡ 0 for gradient ascent
3 //Initialize the weights θ
4 for episode P t1, ..., Mu do
5 Collect an episode S0, A0, R1, ..., ST�1, AT�1, RT , ST according to policy π̂(a|s, θ):
6 for t P t0, ..., T � 1u do
7 Take action At according to the policy π̂(At|St, θ)
8 Get reward Rt+1 and next state St+1 from the environment
9 end

10 Update the weights θ with gradient ascent:
11 GT Ð 0
12 for t P tT � 1, ..., 0u do
13 Gt Ð Rt+1 + γGt+1
14 θ Ð θ+ αGt∇ ln π̂(At|St, θ)

15 end
16 end

Algorithm 4: Actor-only with baseline pseudocode (with Monte Carlo) [17]

1 //Assume a differentiable state-value function parameterization v̂(s, w)
2 //Assume a differentiable policy function parameterization π̂(a|s, θ)

3 //Assume step sizes αw ¡ 0 and αθ ¡ 0 for gradient descent and ascent
4 //Initialize the weights w and θ
5 for episode P t1, ..., Mu do
6 Collect an episode S0, A0, R1, ..., ST�1, AT�1, RT , ST according to policy π̂(a|s, θ):
7 for t P t0, ..., T � 1u do
8 Take action At according to the policy π̂(At|St, θ)
9 Get reward Rt+1 and next state St+1 from the environment

10 end
11 Update the weights w and θ:
12 GT Ð 0
13 for t P tT � 1, ..., 0u do
14 Gt Ð Rt+1 + γGt+1
15 δ Ð Gt � v̂(St, w)
16 w Ð w + αwδ∇v̂(St, w)

17 θ Ð θ+ αθδ∇ ln π̂(At|St, θ)

18 end
19 end

78

A.2. RL Algorithms

Algorithm 5: Actor-critic pseudocode [17]

1 //Assume a differentiable state-value function parameterization v̂(s, w)
2 //Assume a differentiable policy function parameterization π̂(a|s, θ)

3 //Assume step sizes αw ¡ 0 and αθ ¡ 0 for gradient descent and ascent
4 //Initialize the weights w and θ
5 for episode P t1, ..., Mu do
6 for t P t0, ..., T � 1u do
7 Take action At according to the policy π̂(At|St, θ)
8 Get reward Rt+1 and next state St+1 from the environment
9 Update the weights w and θ:

10 δ Ð Rt+1 + γv̂(St+1, w)� v̂(St, w)
11 w Ð w + αwδ∇v̂(St, w)

12 θ Ð θ+ αθδ∇ ln π̂(At|St, θ)

13 end
14 end

Algorithm 6: A2C pseudocode for each agent thread

1 //Assume a differentiable state-value function parameterization v̂(s, w)
2 //Assume a differentiable policy parameterization π̂(a|s, θ)
3 //Assume globally shared weights θ, w and globally shared counter T
4 //Assume thread-specific weights θ1, w1 and thread-specific counter t
5 //Assume globally shared indicator I which is true if all agents finished collecting

their batch of experiences for a parameter update and false otherwise
6 Initialize thread step counter t Ð 0
7 while T = Tmax do
8 // Step 1: Collect experience
9 Set indicator globally: I Ð f alse

10 Synchronize thread-specific weights θ1 = θ and w1 = w
11 Reset gradients: dθ Ð 0 and dwÐ 0
12 tstart = t
13 Get state St
14 while St not terminal and t� tstart = tmax do
15 Perform At according to policy π̂(At|St, θ1)
16 Receive reward Rt+1 and new state St+1
17 t Ð t + 1
18 T Ð T + 1
19 end

20 Gt =

#
0, if St is terminal
v̂(St, w1)), if St is not terminal

21 for i P tt� 1, ..., tstartu do
22 Gi Ð Ri+1 + γGi+1
23 δ Ð Gi � v̂(Si, w1)
24 Accumulate gradients wrt w1: dw Ð dw + δ∇v̂(St, w1)
25 Accumulate gradients wrt θ1: dθ Ð dθ+ δ∇ ln π̂(Ai|Si, θ1)

26 end
27 // Step 2: Update weights
28 Wait until indicator is globally set to true: I Ð true
29 Send the gradients dθ and dw to global worker, where the gradients of all agents

are used together to perform synchronous update of θ and w
30 end

79

A.3. Feature Distributions

A.3 Feature Distributions

Figure A.2: Violin plots of market features before scaling. N = 841144 is the total number of
timesteps across all episodes as described in table 4.2.

Figure A.3: Violin plots of indicator features before scaling. N = 841144 is the total number of
timesteps across all episodes as described in table 4.2.

80

A.3. Feature Distributions

Figure A.4: Violin plots of market features after scaling. N = 822219 is the total number of
timesteps after removing the 1st timestep of each episode to compute the percentage changes.

Figure A.5: Violin plots of indicator features after scaling. N = 822219 is the total number of
timesteps after removing the 1st timestep of each episode to compute the percentage changes.

81

A.4. Q-Q Plots

A.4 Q-Q Plots

Figure A.6: Question 1 - Q-Q Plots and Boxplots of Paired Differences in Profit per Volume
Traded

82

A.5. Training Metrics

A.5 Training Metrics

Various training metrics were tracked to evaluate the the learning progress during training.
This was mainly done to check whether the agents did learn something during the training
period. The metrics used to evaluate A2C are described in section A.5.1 and the training
metrics used to evaluate DQN are described in section A.5.2 below. All metrics are computed
per timestep and not per episode.

A.5.1 A2C

In order to evaluate the A2C learning progress during training, the following four learning
metrics were plotted: discounted rewards, entropy loss, state-value loss, policy loss. The
paper about A3C [4], the text book by Sutton and Barto [17] and the source code of A2C [108]
were used as reference for formulating these learning metrics.

To illustrate the expected behaviors of the four learning metrics across the training pe-
riod, the agents were trained on a single episode, i.e. on one single contract. This scenario is
much simpler than the actual scenario of this thesis, where numerous different contracts are
traded. Due to this simple scenario, the learning curves are very clean, representing a good
reference for how the loss functions should look like under ideal, simplified circumstances.
The visualizations of these exemplary, ideal learning curves can be found in figure A.8.

Metric 1: Discounted rewards
Discounted rewards are large when the observed reward values in the current batch of (s, a, r)
tuples collected by the agent are large. Since the rewards are expected to increase over time
with the agent learning which actions to take, the discounted rewards are also expected to
increase over time across the training period. Note how the equation below resembles the
return Gt in the episodic case from equation 2.4. The difference is that here not the rewards
until time T, the last timestep of the episode, are used but only the rewards until tend, the last
timestep of the current batch of (s, a, r) tuples collected by the agent.

L(1)
t =

tend�t�1¸
k=0

γkRt+k+1 (A.1)

Metric 2: Entropy loss
The entropy loss is largest when the agent takes all actions with equal probability and small-
est (taking the value of 0) when the agent takes one action with probability 1 and all other
actions with probability 0. At the beginning of the learning phase, entropy is generally large
because the agent does not have any reason to prefer any action over other actions, not having
learned anything yet. However, over the course of the training period, entropy is expected to
decrease with the agent having learned to prefer certain actions over others in certain states.
Furthermore, the entropy loss is generally expected not to reach the value 0 because this could
mean that the agent always takes the exact same action, which is likely not optimal.

L(2)
t =

¸
aPA(St)

�π̂(At|St, θ) ln π̂(At|St, θ), (A.2)

where the sum is over all possible actions a that can be taken in state St.

Metric 3: State-value loss
The state-value loss is small when the observed rewards correspond to a return Gt that
matches with the expected return predicted by the state-value function v̂(St, w). In contrast,
the state-value function loss is large when unexpected rewards are observed. For instance,
unexpected rewards may occur when the agent sells or buys electricity when the price spikes

83

A.5. Training Metrics

up. Overall, the state-value loss is expected to decrease, assuming that the state-value func-
tion gets better at predicting the future expected return. In practice, one may observe that the
state-value loss first increases (in the time period when the policy keeps changing) and then
decreases (when the policy does not change anymore).

L(3)
t = (Gt � v̂(St, w))2 , (A.3)

where Gt is computed as a combination of the discounted rewards and the future ex-
pected return from thereon based on the state-value function: Gt = L(1)

t + γtend�tv̂(Stend , w).

Metric 4: Policy loss
The policy loss is large when the policy receives a major update and small when the policy
does not change. For instance, a major update can be caused by a large state-value function
loss. The absolute value of the policy loss is expected to decrease across the training period.

L(4)
t = (Gt � v̂(St, w)) ln π̂(At|St, θ) (A.4)

The policy loss is based on the policy gradient theorem. However, instead of the gradient,
the corresponding loss is expressed. In the implementation of A2C, TensorFlow is used
which requires a loss function instead of a gradient function. For reference, the gradient
according to the policy gradient theorem is formulated as (Gt � v̂(St, w))∇ln π̂(At|St, θ).

A.5.2 DQN

In order to evaluate the DQN learning progress during training, the following two learning
metrics were plotted: rewards and action-value loss. The source code of DQN [108] and the
paper about prioritized experience replay [25] were used as main reference for formulating
these learning metrics below.

Metric 1: Rewards
Rewards are simply defined as the rewards Rt+1 returned by the environment in response to
the corresponding action At. Rewards are expected to increase across the training period.

L(1)
t = Rt+1 (A.5)

Metric 2: Action-value loss
This is the loss used for updating the Q-network weights. Note that instead of using
the squared error loss function, the Huber loss function is used because it is more robust
with respect to outliers (see [122] for reference). Similar to the state-value loss of A2C, the
action-value loss of DQN reflects how well the model can predict the expected future return
qπ(s, a) = Eπ [Gt|St = s, At = a].

Note that the return would be 0 if no trades are taken by the agent (and hence the action-
value loss would also be zero). Placing no trades would not be optimal with respect to the
return Gt however. In contrast, the return Gt would be large if the agent does place trades,
in particular if it sells when prices spike up. In this particular case however, the expected
future return is more difficult to predict and consequently, the losses may go up. Therefore, the
action-value loss should be interpreted only along with the rewards from A.5 since the main
purpose of training is that the rewards increase over time.

L(2)
t =

#
1
2 a2, if |a| ¤ 1
|a| � 1

2 , otherwise.
(A.6)

Here, a is defined as the weighted TD-error previously explained in section 2.5.2 about
experience replay: a = wtδt, where wt is the weight and δt is the TD-error (computed with
the target network as in 2.33).

84

A.5. Training Metrics

Figure A.7: Question 1 - Learning curves from training phase (training data)

85

A.5. Training Metrics

Figure A.8: Question 1 - Learning curves from training with 1 single contract (training data)

86

A.5. Training Metrics

Figure A.9: Question 2 - A2C learning curves from training phase (training data)

87

A.5. Training Metrics

Figure A.10: Question 2 - DQN learning curves from training phase with 250K steps for the
final model (training data)

88

A.6. Episode Categorization

A.6 Episode Categorization

The test episodes were categorized into groups of episodes with different price patterns
(spikes, uptrend, downtrend, no trend) in order to gain a deeper understanding of the behav-
ioral strategies of the RL agents. The following rules were used to categorize the episodes.
These rules were chosen by the author because they seemed to categorize episodes appropri-
ately based on visual inspection: figure A.11 in the appendix shows 10 randomly sampled test
episodes for each of the four categories (where all test episodes were categorized according
to the rules below).

1. Episodes were categorized as episodes with spike if they contained at least 1 sequence of
3 timesteps t� 1, t, t + 1

• where the price increased by ¥ 25% from t� 1 to t, and

• where the price decreased by ¤ �25% from t to t + 1, and

• where the absolute value of the price at t� 1 was larger than 1.

2. Episodes were categorized as episodes with uptrend

• if they were not categorized as episodes with spike, and

• if the last price of the episode is larger than the first price, i.e. P0 PT , and

• if in more than 2/3 of the timesteps t of the episode, the price is larger than the
simple moving average price based on 10 timesteps, i.e. Pt ¡

Pt�9+...+Pt�1+Pt
10

3. Episodes were categorized as episodes with downtrend

• if they were not categorized as episodes with spike, and

• if the last price of the episode is smaller than the first price, i.e. P0 ¡ PT , and

• if in more than 2/3 of the timesteps t of the episode, the price is smaller than the
simple moving average price based on 10 timesteps, i.e. Pt

Pt�9+...+Pt�1+Pt
10

4. Episodes were categorized as episodes with no trend

• if they were not categorized as episodes with spike, uptrend or downtrend.

89

A.7. Example Episodes

A.7 Example Episodes

Figure A.11: 10 randomly sampled test episodes for each episode type: spike, uptrend, down-
trend and no trend (from the leftmost to the rightmost column respectively)

90

A.7. Example Episodes

Figure A.12: Question 1 - Example of episode with increasing trend for all 4 reward functions
(test data). The figure illustrates that the agents trained with profit based reward functions
(vwap delta and absolute return) tend to buy a large volume early (allowing for larger profits
in episodes with uptrend), whereas the the agents trained with risk-adjusted reward func-
tions (Sharpe ratio and log equity) tend not to buy a large volume early.

91

A.7. Example Episodes

Figure A.13: Question 1 - Example of episode with decreasing trend for all 4 reward functions
(test data). The figure illustrates that the agents trained with profit based reward functions
(vwap delta and absolute return) tend to hold their volume in case of a downtrend (resulting
in larger losses), whereas the the agents trained with risk-adjusted reward functions (Sharpe
ratio and log equity) keep trading during the downtrend.

92

A.7. Example Episodes

Figure A.14: Question 2 - Example of episode with spikes for RL agents trained with A2C and
DQN (test data). This figure illustrates that in some cases, DQN does not sell at the spikes
when A2C does. This episode can be considered an outlier because here, DQN does not sell
at any spikes at all.

Figure A.15: Question 2 - Additional example of episode with spikes for RL agents trained
with A2C and DQN (test data). This figure illustrates that in most cases both agents, trained
with A2C and DQN, sell at the spikes and even take the exact same actions doing so.

93

A.7. Example Episodes

Figure A.16: Question 2 - Example of episode with increasing trend for RL agents trained with
A2C and DQN (test data). This figure illustrates that the actions of both agents, trained with
A2C and DQN, are generally very similar for episodes with uptrend.

Figure A.17: Question 2 - Example of episode with decreasing trend for RL agents trained with
A2C and DQN (test data). This figure illustrates that the actions of both agents, trained with
A2C and DQN, are generally very similar for episodes with downtrend.

94

A.7. Example Episodes

Figure A.18: Question 3 - Example of episode with spikes for RL agent and 4 baseline
strategies (test data). The figure illustrates that the RL agent and spike trader sell at
spikes, the random trader may sell at spikes by chance, the forecast trader tends not
to sell at spikes and the moving average trader tends to buy at spikes.

95

A.7. Example Episodes

Figure A.19: Question 3 - Example of episode with increasing trend for RL agent and
4 baseline strategies (test data). The figure illustrates that RL agent, spike trader and
moving avg. trader use the buy-and-hold strategy for episodes with uptrend. The
random trader places random trades and the forecast trader may not trade at all.

96

A.7. Example Episodes

Figure A.20: Question 3 - Example of episode with decreasing trend for RL agent and
4 baseline strategies (test data). The figure illustrates that RL agent and spike trader use
a buy-and-hold strategy for episodes with downtrend. The random trader places trades
randomly and the forecast trader occasionally based on forecasts. The moving avg.
trader may buy some volume at price increases but it never holds the volume long.

97

A.8. Results by Episode Type

A.8 Results by Episode Type

Table A.1: Question 1 - Profit per volume traded by episode and reward type (test data)

Episode Type Reward Type Episodes Mean Std. Dev. Min 25% Median 75% Max

Spike vwap_delta 1402 23.53 80.91 -57.66 4.58 10.62 23.42 1957.21
abs_return 1402 16.11 73.11 -50.54 2.88 6.90 15.24 1957.21
sharpe_ratio 1402 3.93 23.52 -48.29 -0.12 1.20 4.58 712.21
log_equity 1402 1.10 12.55 -77.59 -0.82 0.21 1.99 325.17

Uptrend vwap_delta 374 5.92 8.09 -4.48 2.18 3.99 7.67 111.42
abs_return 374 4.30 5.51 -3.65 1.39 3.05 5.38 62.76
sharpe_ratio 374 1.78 2.35 -3.59 0.52 1.27 2.36 18.83
log_equity 374 1.09 1.64 -3.87 0.28 0.72 1.53 11.96

Downtrend vwap_delta 478 -3.85 5.57 -27.74 -6.08 -3.18 -0.72 22.10
abs_return 478 -2.74 4.89 -27.74 -4.17 -1.73 -0.25 23.67
sharpe_ratio 478 -0.89 1.86 -8.63 -1.45 -0.58 -0.14 24.78
log_equity 478 -0.69 4.29 -88.71 -0.96 -0.44 -0.05 23.07

No trend vwap_delta 1227 1.45 6.77 -39.75 -1.02 0.75 3.13 120.88
abs_return 1227 1.04 5.17 -19.63 -0.56 0.53 2.22 104.64
sharpe_ratio 1227 0.33 2.01 -8.48 -0.35 0.14 0.77 22.11
log_equity 1227 0.12 1.60 -10.48 -0.39 0.01 0.47 21.01

Table A.2: Question 1 - Profit by episode and reward type (test data)

Episode Type Reward Type Episodes Mean Std. Dev. Min 25% Median 75% Max

Spike vwap_delta 1402 135.10 440.06 -461.29 27.99 65.24 138.37 9000.00
abs_return 1402 126.51 416.48 -454.88 25.86 61.54 134.43 9000.00
sharpe_ratio 1402 54.85 260.99 -478.22 -1.72 18.59 62.66 7834.30
log_equity 1402 20.20 157.48 -775.88 -17.04 4.39 40.41 3392.52

Uptrend vwap_delta 374 22.98 35.88 -24.51 7.63 14.90 25.99 445.70
abs_return 374 22.07 35.95 -20.08 7.06 13.38 25.06 439.35
sharpe_ratio 374 13.34 22.58 -21.76 3.39 8.28 15.55 300.51
log_equity 374 10.23 18.73 -91.26 2.35 6.65 14.35 175.48

Downtrend vwap_delta 478 -8.41 16.72 -55.49 -14.37 -9.07 -2.85 154.73
abs_return 478 -7.24 15.68 -55.49 -13.60 -7.99 -1.44 142.05
sharpe_ratio 478 -5.03 12.24 -50.56 -9.90 -4.82 -1.06 173.47
log_equity 478 -5.01 15.29 -177.42 -9.29 -4.66 -0.51 161.52

No trend vwap_delta 1227 8.60 26.10 -79.50 -3.65 3.27 14.41 305.75
abs_return 1227 9.38 26.55 -43.58 -3.46 3.75 14.39 316.15
sharpe_ratio 1227 4.61 23.04 -121.78 -3.31 1.48 7.72 336.93
log_equity 1227 2.87 25.19 -196.39 -4.69 0.12 6.25 334.20

98

A.8. Results by Episode Type

Table A.3: Question 2 - Profit per volume traded by episode and model type (test data)

Episode Type Model Type Episodes Mean Std. Dev. Min 25% Median 75% Max

Spike A2C 1402 27.76 85.12 -35.08 6.29 13.69 28.28 1957.21
DQN 1402 36.01 124.76 -81.02 6.44 17.56 37.49 2521.85

Uptrend A2C 374 7.68 8.42 -4.48 3.29 5.63 9.25 77.56
DQN 374 11.00 16.65 -4.48 3.96 7.45 12.32 210.25

Downtrend A2C 478 -4.32 6.08 -36.69 -6.62 -3.84 -0.94 35.73
DQN 478 -5.90 7.47 -88.71 -8.18 -5.16 -2.58 46.75

No trend A2C 1227 2.24 8.05 -22.70 -1.03 1.33 4.10 143.42
DQN 1227 2.36 12.08 -92.36 -2.54 0.59 4.25 143.42

Table A.4: Question 2 - Profit by episode and model type (test data)

Episode Type Model Type Episodes Mean Std. Dev. Min 25% Median 75% Max

Spike A2C 1402 141.33 440.45 -210.46 31.81 69.95 148.43 9000.00
DQN 1402 142.37 453.72 -204.37 18.94 64.00 151.31 9000.00

Uptrend A2C 374 24.65 37.30 -8.96 8.59 15.86 28.03 465.38
DQN 374 22.44 33.99 -8.96 7.92 14.91 24.72 420.51

Downtrend A2C 478 -8.28 16.15 -73.37 -14.81 -8.48 -2.61 142.91
DQN 478 -11.07 18.79 -177.42 -16.36 -10.33 -5.15 187.02

No trend A2C 1227 10.67 28.82 -55.70 -2.98 4.22 16.26 308.94
DQN 1227 6.58 30.80 -184.73 -5.10 1.21 9.20 385.68

99

A.8. Results by Episode Type

Table A.5: Question 3 - Profit per volume traded by episode type and trading strategy (test
data)

Episode Type Strategy Episodes Mean Std. Dev. Min 25% Median 75% Max

Spike RL agent 1402 27.76 85.12 -35.08 6.29 13.69 28.28 1957.21
Spike 1402 32.82 100.10 -161.46 7.95 16.56 34.32 2250.00
Random 1402 0.38 14.10 -316.68 -1.16 0.07 1.60 250.00
Forecast 1402 1.56 17.80 -77.20 -0.91 0.03 1.39 344.51
Moving avg. 1402 -6.15 17.50 -171.55 -8.35 -2.33 0.00 216.64

Uptrend RL agent 374 7.68 8.42 -4.48 3.29 5.63 9.25 77.56
Spike 374 10.81 17.88 -4.48 3.88 7.25 12.19 248.46
Random 374 1.07 1.60 -4.24 0.20 0.72 1.50 11.93
Forecast 374 2.27 5.23 -5.82 0.00 0.77 2.79 61.34
Moving avg. 374 5.04 9.28 -5.46 0.76 2.56 6.10 102.49

Downtrend RL agent 478 -4.32 6.08 -36.69 -6.62 -3.84 -0.94 35.73
Spike 478 -6.00 6.50 -88.71 -8.05 -5.08 -2.43 5.22
Random 478 -0.81 4.15 -88.71 -1.02 -0.49 -0.12 4.26
Forecast 478 -1.15 3.21 -41.19 -1.80 -0.44 0.00 20.36
Moving avg. 478 -1.67 4.90 -88.71 -2.12 -1.02 -0.16 13.17

No trend RL agent 1227 2.24 8.05 -22.70 -1.03 1.33 4.10 143.42
Spike 1227 1.75 11.10 -92.36 -2.44 0.58 3.96 152.80
Random 1227 0.03 1.36 -11.38 -0.41 -0.02 0.44 12.97
Forecast 1227 -0.03 3.51 -32.55 -0.83 0.00 0.75 47.49
Moving avg. 1227 0.03 3.83 -16.44 -1.35 -0.34 0.72 35.84

Table A.6: Question 3 - Profit by episode type and trading strategy (test data)

Episode Type Strategy Episodes Mean Std. Dev. Min 25% Median 75% Max

Spike RL agent 1402 141.33 440.45 -210.46 31.81 69.95 148.43 9000.00
Spike 1402 148.63 447.16 -645.83 36.18 72.57 151.95 9000.00
Random 1402 16.70 288.46 -774.37 -23.14 1.32 32.14 9000.00
Forecast 1402 13.14 196.70 -926.41 -6.85 0.21 10.06 5512.09
Moving avg. 1402 -54.29 131.05 -910.61 -73.61 -24.82 0.00 1733.13

Uptrend RL agent 374 24.65 37.30 -8.96 8.59 15.86 28.03 465.38
Spike 374 23.59 37.53 -8.96 7.89 14.76 26.54 496.91
Random 374 10.43 26.20 -144.29 1.58 6.32 13.69 321.98
Forecast 374 8.07 15.00 -20.46 0.00 3.32 10.91 122.69
Moving avg. 374 15.36 32.65 -68.01 3.40 9.43 19.21 409.98

Downtrend RL agent 478 -8.28 16.15 -73.37 -14.81 -8.48 -2.61 142.91
Spike 478 -12.27 13.52 -177.42 -16.96 -10.51 -5.06 20.89
Random 478 -6.29 14.86 -177.42 -9.98 -4.99 -1.57 144.75
Forecast 478 -4.01 14.49 -145.25 -7.54 -1.98 0.00 162.84
Moving avg. 478 -7.30 15.74 -177.42 -8.70 -3.33 -0.46 131.68

No trend RL agent 1227 10.67 28.82 -55.70 -2.98 4.22 16.26 308.94
Spike 1227 4.77 25.95 -184.73 -5.24 1.21 9.73 305.60
Random 1227 0.48 19.19 -194.59 -5.59 -0.24 5.62 156.00
Forecast 1227 0.84 18.82 -170.46 -4.15 0.00 3.98 284.93
Moving avg. 1227 -2.31 31.31 -193.68 -8.85 -1.85 3.62 679.89

100

A.9. Forecast Baseline

A.9 Forecast Baseline

To compare the approach of reinforcement learning with supervised learning, the neural net-
work used by the forecast trader is displayed in figure A.21. This network is not based on re-
inforcement learning. Instead, it is based on supervised learning. Nevertheless, it resembles
the other three reinforcement learning based networks from figures 2.3, 2.5 and 2.4. How-
ever, instead of giving an expected return or a policy as output, this network returns a price
forecast as described in section 5.4.2.

...

...
...

s1

s2

s3

sD

h(1)1

h(1)M

h(2)1

h(2)Q

increase

neutral

decrease

Input Layer
(State)

Hidden
Layer 1

Hidden
Layer 2

Ouput Layer
(Price Forecast)

Figure A.21: NN for classifying price percentage changes from time t to t + 1 into three
classes: increase, decrease, neutral. In this thesis, these classes correspond to price percentage
changes of ¡ 3%, �3% or inbetween. This forecast model is trained with supervised learn-
ing, not with reinforcement learning. Forecasts can be mapped to trading actions explicitly,
forming the baseline trading strategy called forecast trader.

101

A.9. Forecast Baseline

Figure A.22: Question 3 - Learning curves of the forecast model for the forecast baseline
strategy (training data)

102

A.9. Forecast Baseline

Table A.7: Question 3 - Classification accuracy of forecast model and majority classifier

Forecast model Majority classifier

Training 0.64 0.59
Test 0.73 0.70

Table A.8: Question 3 - Forecast confusion matrix (training data)

Predicted
decr same incr Total

True decr 0.05 0.14 0.02 0.21
same 0.01 0.57 0.01 0.59
incr 0.02 0.17 0.02 0.20
Total 0.08 0.88 0.04 1.00

Table A.9: Question 3 - Forecast classification report (training data)

Precision Recall F1-score Support

decr 0.64 0.26 0.37 21133
incr 0.43 0.07 0.13 21809
same 0.75 0.98 0.85 98848
Macro avg. 0.61 0.44 0.45 141790

Table A.10: Question 3 - Forecast confusion matrix (test data)

Predicted
decr same incr Total

True decr 0.04 0.10 0.01 0.15
same 0.01 0.68 0.01 0.70
incr 0.01 0.13 0.01 0.15
Total 0.06 0.91 0.03 1.00

Table A.11: Question 3 - Forecast classification report (test data)

Precision Recall F1-score Support

decr 0.62 0.24 0.35 105394
incr 0.45 0.09 0.15 104563
same 0.65 0.97 0.78 300147
Macro avg. 0.57 0.43 0.43 510104

103

A.10. Hyperparameters

A.10 Hyperparameters

Table A.12: Overview of hyperparameters (DQN)

Parameter Symbol Description

seq_len - Number of past timesteps used in the state space
total_timesteps - Number of steps taken during training phase in total
double_q - Indicator specifying if Double-Q learning is used
prioritized_replay - Indicator specifying if prioritized replay buffer is used
prioritized_replay_alpha - Parameter for prioritized replay sampling
prioritized_replay_beta0 - Parameter for prioritized replay sampling
prioritized_replay_eps - Epsilon to add to TD errors in priorized replay
gamma γ Discount factor
learning_rate α Learning rate
exploration_fraction ε Proportion of randomly sampled actions for exploration
buffer_size - Size of the replay buffer
target_network_update_freq - Number of steps before every update of target network
train_freq - Number of steps before every update
batch_size - Size of batched sample from replay buffer for update
learning_starts - Number of steps before the first update

Table A.13: Search space of hyperparameters (DQN)

Parameter Default Best Search Space Type

seq_len 10 10 {10, 15, 20} categorical
total_timesteps 500K 250K {25K, 50K, 100K, 250K, 500K, 750K} categorical
double_q True False {True, False} categorical
prioritized_replay False True {True, False} categorical
prioritized_replay_alpha 0.6 0.28 [0.01, 0.99] float
prioritized_replay_beta0 0.4 0.74 [0.01, 0.99] float
prioritized_replay_eps 1e-06 0.01 [1e-08, 0.01] float
gamma 0.99 0.94 [0.9, 1] float
learning_rate 0.0005 0.006 [5e-05, 0.01] float
exploration_fraction 0.1 0.15 [5e-05, 0.2] float
buffer_size 50000 32497 [10, 100000] integer
target_network_update_freq 500 1744 [100, 2000] integer
train_freq 1 8 [1, 10] integer
batch_size 32 22 [5, 45] integer
learning_starts 1000 795 [10, 3000] integer

104

A.10. Hyperparameters

Table A.14: Overview of hyperparameters (A2C)

Parameter Symbol Description

seq_len - Number of past timesteps used in the state space
total_timesteps - Number of steps taken during training phase in total
lr_schedule - Type of learning rate update during training
learning_rate η Learning rate
gamma γ Discount factor
alpha α Decay parameter for parameter updates with RMSProp
epsilon ε Proportion of randomly sampled actions for exploration
ent_coef - Entropy coefficient for loss calculation
vf_coef - State-value function coefficient for loss calculation
n_steps - Number of steps to run for each environment per update

Table A.15: Search space of hyperparameters (A2C)

Parameter Default Search Space Type

seq_len 10 {10, 15, 20} categorical
total_timesteps 500K {25K, 50K, 100K, 250K, 500K, 750K} categorical
lr_schedule constant {linear, constant, middle_drop} categorical
learning_rate 0.0007 [0.0001, 0.01] float
gamma 0.99 [0.9, 1] float
alpha 0.99 [0.9, 1] float
epsilon 1e-05 [1e-06, 0.01] float
ent_coef 0.01 [0.001, 1] float
vf_coef 0.25 [0.001, 1] float
n_steps 5 [1, 10] integer

105

A.11. Selected Features

A.11 Selected Features

Table A.16: Question 3 - Selected features with Bayesian optimization (for A2C and DQN)

Index Feature Type Selected for DQN Selected for A2C

1 price market 3 3
2 price_min market 7 7
3 price_max market 7 3
4 price_delta market 3 7
5 volume market 3 7
6 VWAP indicator 3 3
7 SMA5 indicator 3 7
8 SMA10 indicator 3 7
9 EMA5 indicator 3 7
10 EMA10 indicator 3 7
11 bollinger10_hband indicator 3 3
12 bollinger10_lband indicator 7 7
13 MACD indicator 7 3
14 RSI indicator 3 7
15 time_e_month time 3 3
16 time_e_weekday time 3 7
17 time_e_hour time 7 7
18 time_instrument time 7 7
19 time_delta_delivery_s time 7 3
20 time_delta_delivery_e time 7 7
21 time_delta_e_s time 7 7

106

Bibliography

[1] J. E. Moody, M. Saffell, Y Liao, and L Wu, “Reinforcement Learning for Trading Sys-
tems and Portfolios.”, in KDD, 1998, pp. 279–283.

[2] J. Moody, L. Wu, Y. Liao, and M. Saffell, “Performance functions and reinforcement
learning for trading systems and portfolios”, Journal of Forecasting, vol. 17, no. 5-6,
pp. 441–470, 1998.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning”, arXiv preprint
arXiv:1312.5602, 2013.

[4] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu, “Asynchronous methods for deep reinforcement learning”, in Interna-
tional conference on machine learning, 2016, pp. 1928–1937.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and others, “Mastering the
game of Go with deep neural networks and tree search”, nature, vol. 529, no. 7587,
p. 484, 2016, Publisher: Nature Publishing Group.

[6] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fis-
cher, S. Hashme, C. Hesse, and others, “Dota 2 with Large Scale Deep Reinforcement
Learning”, arXiv preprint arXiv:1912.06680, 2019.

[7] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.
Choi, R. Powell, T. Ewalds, P. Georgiev, and others, “Grandmaster level in StarCraft
II using multi-agent reinforcement learning”, Nature, vol. 575, no. 7782, pp. 350–354,
2019, Publisher: Nature Publishing Group.

[8] Z. Zhang, S. Zohren, and S. Roberts, “Deep Reinforcement Learning for Trading”,
arXiv preprint arXiv:1911.10107, 2019.

[9] G. Bertrand and A. Papavasiliou, “Reinforcement-Learning Based Threshold Policies
for Continuous Intraday Electricity Market Trading”, in IEEE PES General Meeting,
Atlanta, 2019.

[10] A. Weidlich and D. Veit, “Bidding in interrelated day-ahead electricity markets: In-
sights from an agent-based simulation model”, in Proceedings of the 29th IAEE interna-
tional conference, Potsdam, Citeseer, 2006.

107

Bibliography

[11] A. Rahimi-Kian, B. Sadeghi, and R. J. Thomas, “Q-learning based supplier-agents for
electricity markets”, in IEEE Power Engineering Society General Meeting, 2005, IEEE,
2005, pp. 420–427.

[12] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, 10. Springer
series in statistics New York, 2001, vol. 1.

[13] J. Moody and M. Saffell, “Learning to trade via direct reinforcement”, IEEE transactions
on neural Networks, vol. 12, no. 4, pp. 875–889, 2001.

[14] I. Boukas, D. Ernst, A. Papavasiliou, and B. Cornélusse, “Intra-day Bidding Strategies
for Storage Devices Using Deep Reinforcement Learning”, in International Conference
on the European Energy Market, \Lódź 27-29 June 2018, 2018, p. 6.

[15] T. G. Fischer, “Reinforcement learning in financial markets - a survey”, Friedrich-
Alexander University Erlangen-Nuremberg, Institute for Economics, FAU Discussion
Papers in Economics 12/2018, 2018. [Online]. Available: https://ideas.repec.
org/p/zbw/iwqwdp/122018.html.

[16] X. Gao and L. Chan, “An algorithm for trading and portfolio management using Q-
learning and sharpe ratio maximization”, in Proceedings of the international conference
on neural information processing, 2000, pp. 832–837.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[18] M. Gail, K. Krickeberg, J Samet, A. Tsiatis, and W. Wong, Statistics for biology and health.
Springer, 2007.

[19] R. L. Winkler, An introduction to Bayesian inference and decision. Probabilistic Pub., 2003,
ISBN: 0-9647938-4-9. [Online]. Available: https://login.e.bibl.liu.se/
login?url=https://search.ebscohost.com/login.aspx?direct=true&
AuthType=ip,uid&db=cat00115a&AN=lkp.992737&lang=sv&site=eds-
live&scope=site.

[20] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[21] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning”, arXiv preprint
arXiv:1811.03378, 2018.

[22] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms”, in Advances in neural infor-
mation processing systems, 2000, pp. 1008–1014.

[23] OpenAI Baselines: ACKTR & A2C, en, Aug. 2017. [Online]. Available: https : / /
openai.com/blog/baselines-acktr-a2c/ (visited on 02/10/2020).

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, and others, “Human-level con-
trol through deep reinforcement learning”, Nature, vol. 518, no. 7540, pp. 529–533,
2015, Publisher: Nature Publishing Group.

[25] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay”, arXiv
preprint arXiv:1511.05952, 2015.

[26] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling
Network Architectures for Deep Reinforcement Learning”, en, arXiv:1511.06581 [cs],
Apr. 2016, arXiv: 1511.06581. [Online]. Available: http://arxiv.org/abs/1511.
06581 (visited on 04/11/2020).

[27] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning”, in Thirtieth AAAI conference on artificial intelligence, 2016.

[28] R. Neuneier, “Enhancing Q-learning for optimal asset allocation”, in Advances in neural
information processing systems, 1998, pp. 936–942.

108

https://ideas.repec.org/p/zbw/iwqwdp/122018.html
https://ideas.repec.org/p/zbw/iwqwdp/122018.html
https: / /login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.992737&lang=sv&site=eds-live&scope=site
https: / /login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.992737&lang=sv&site=eds-live&scope=site
https: / /login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.992737&lang=sv&site=eds-live&scope=site
https: / /login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.992737&lang=sv&site=eds-live&scope=site
https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581

Bibliography

[29] W. F. Sharpe, “Mutual fund performance”, The Journal of business, vol. 39, no. 1,
pp. 119–138, 1966.

[30] M. Bendtsen and J. M. Peña, “Learning gated Bayesian networks for algorithmic trad-
ing”, in European Workshop on Probabilistic Graphical Models, Springer, 2014, pp. 49–64.

[31] C. Gold, “FX trading via recurrent reinforcement learning”, in 2003 IEEE Interna-
tional Conference on Computational Intelligence for Financial Engineering, 2003. Proceed-
ings., IEEE, 2003, pp. 363–370.

[32] M. Corazza and F. Bertoluzzo, “Q-learning-based financial trading systems with ap-
plications”, University Ca’Foscari of Venice, Dept. of Economics Working Paper Series No,
vol. 15, 2014.

[33] F. Bertoluzzo and M. Corazza, “Testing different reinforcement learning configura-
tions for financial trading: Introduction and applications”, Procedia Economics and Fi-
nance, vol. 3, pp. 68–77, 2012.

[34] A. A. Sherstov and P. Stone, “Three automated stock-trading agents: A compara-
tive study”, in International Workshop on Agent-Mediated Electronic Commerce, Springer,
2004, pp. 173–187.

[35] O. Jin and H. El-Saawy, “Portfolio management using reinforcement learning”, Stan-
ford University, 2016.

[36] Z. Jiang and J. Liang, “Cryptocurrency portfolio management with deep reinforce-
ment learning”, in 2017 Intelligent Systems Conference (IntelliSys), IEEE, 2017, pp. 905–
913.

[37] J. Lago, F. De Ridder, and B. De Schutter, “Forecasting spot electricity prices: Deep
learning approaches and empirical comparison of traditional algorithms”, Applied En-
ergy, vol. 221, pp. 386–405, 2018, Publisher: Elsevier.

[38] T. Jamasb and M. Pollitt, “Electricity market reform in the European Union: Review of
progress toward liberalization & integration”, The Energy Journal, vol. 26, no. Special
Issue, 2005, Publisher: International Association for Energy Economics.

[39] F. Ziel, “Modeling the impact of wind and solar power forecasting errors on intraday
electricity prices”, in 2017 14th International Conference on the European Energy Market
(EEM), IEEE, 2017, pp. 1–5.

[40] Why does the electricity grid have to stay in balance?, en, Library Catalog:
www.energuide.be. [Online]. Available: https : / / www . energuide . be / en /
questions-answers/why-does-the-electricity-grid-have-to-stay-
in-balance/2136/ (visited on 05/14/2020).

[41] M. Sewalt and C. De Jong, “Negative prices in electricity markets”, Commodities Now,
vol. 7, pp. 74–77, 2003.

[42] Y. Zhou, A. Scheller-Wolf, N. Secomandi, and S. Smith, “Electricity trading and nega-
tive prices: Storage vs. disposal”, Management Science, vol. 62, no. 3, pp. 880–898, 2016,
Publisher: INFORMS.

[43] I. Richardson, M. Thomson, D. Infield, and C. Clifford, “Domestic electricity use: A
high-resolution energy demand model”, Energy and buildings, vol. 42, no. 10, pp. 1878–
1887, 2010, Publisher: Elsevier.

[44] R. Weron, “Electricity price forecasting: A review of the state-of-the-art with a look
into the future”, International journal of forecasting, vol. 30, no. 4, pp. 1030–1081, 2014,
Publisher: Elsevier.

[45] R. Huisman, C. Huurman, and R. Mahieu, “Hourly electricity prices in day-ahead
markets”, Energy Economics, vol. 29, no. 2, pp. 240–248, 2007, Publisher: Elsevier.

109

https://www.energuide.be/en/questions-answers/why-does-the-electricity-grid-have-to-stay-in-balance/2136/
https://www.energuide.be/en/questions-answers/why-does-the-electricity-grid-have-to-stay-in-balance/2136/
https://www.energuide.be/en/questions-answers/why-does-the-electricity-grid-have-to-stay-in-balance/2136/

Bibliography

[46] N. V. Karakatsani and D. W. Bunn, “Modelling the volatility of spot electricity prices”,
in 2nd Energy Risk Management Seminar, 2004.

[47] R. Kiesel and F. Paraschiv, “Econometric analysis of 15-minute intraday electricity
prices”, Energy Economics, vol. 64, pp. 77–90, 2017, Publisher: Elsevier.

[48] A. Ciarreta and A. Zarraga, “Modeling realized volatility on the Spanish intra-day
electricity market”, Energy Economics, vol. 58, pp. 152–163, 2016, Publisher: Elsevier.

[49] S. Hagemann, “Price determinants in the german intraday market for electricity: An
empirical analysis”, Journal of Energy Markets, 2015.

[50] N. V. Karakatsani and D. W. Bunn, “Fundamental and behavioural drivers of electric-
ity price volatility”, Studies in Nonlinear Dynamics & Econometrics, vol. 14, no. 4, 2010,
Publisher: De Gruyter.

[51] ——, “Intra-day and regime-switching dynamics in electricity price formation”, En-
ergy Economics, vol. 30, no. 4, pp. 1776–1797, 2008, Publisher: Elsevier.

[52] K. Maciejowska and R. Weron, “Short-and mid-term forecasting of baseload electricity
prices in the UK: The impact of intra-day price relationships and market fundamen-
tals”, IEEE Transactions on power systems, vol. 31, no. 2, pp. 994–1005, 2015.

[53] G. Bertrand and A. Papavasiliou, “Adaptive Trading in Continuous Intraday Electric-
ity Markets for a Storage Unit”, IEEE Transactions on Power Systems, 2019, Publisher:
IEEE.

[54] D. Cao, W. Hu, X. Xu, T. Dragičević, Q. Huang, Z. Liu, Z. Chen, and F. Blaabjerg,
“Bidding strategy for trading wind energy and purchasing reserve of wind power
producer–A DRL based approach”, International Journal of Electrical Power & Energy
Systems, vol. 117, p. 105 648, 2020, Publisher: Elsevier.

[55] B. M. Radhakrishnan, D. Srinivasan, Y. F. A. Lau, B. G. Parasumanna, A. K. Rathore,
S. K. Panda, and A. Khambadkone, “A reinforcement learning algorithm for agent-
based computational economics (ACE) model of electricity markets”, in 2015 IEEE
Congress on Evolutionary Computation (CEC), IEEE, 2015, pp. 297–303.

[56] H. Zhao, Y. Wang, S. Guo, M. Zhao, and C. Zhang, “Application of a gradient descent
continuous actor-critic algorithm for double-side day-ahead electricity market model-
ing”, Energies, vol. 9, no. 9, p. 725, 2016, Publisher: Multidisciplinary Digital Publishing
Institute.

[57] H. Zhao, Y. Wang, M. Zhao, C. Sun, and Q. Tan, “Application of Gradient Descent Con-
tinuous Actor-Critic Algorithm for Bilateral Spot Electricity Market Modeling Consid-
ering Renewable Power Penetration”, en, Algorithms, vol. 10, no. 2, p. 53, May 2017,
ISSN: 1999-4893. DOI: 10.3390/a10020053. [Online]. Available: http://www.
mdpi.com/1999-4893/10/2/53 (visited on 03/27/2020).

[58] M. Peters, W. Ketter, M. Saar-Tsechansky, and J. Collins, “Autonomous data-driven
decision-making in smart electricity markets”, in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2012, pp. 132–147.

[59] ——, “A reinforcement learning approach to autonomous decision-making in smart
electricity markets”, Machine learning, vol. 92, no. 1, pp. 5–39, 2013, Publisher: Springer.

[60] S. Vandael, B. Claessens, D. Ernst, T. Holvoet, and G. Deconinck, “Reinforcement
learning of heuristic EV fleet charging in a day-ahead electricity market”, IEEE Trans-
actions on Smart Grid, vol. 6, no. 4, pp. 1795–1805, 2015, Publisher: IEEE.

[61] X. Du, J. Zhai, and K. Lv, “Algorithm trading using q-learning and recurrent reinforce-
ment learning”, positions, vol. 1, p. 1, 2016.

[62] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct reinforcement learning for
financial signal representation and trading”, IEEE transactions on neural networks and
learning systems, vol. 28, no. 3, pp. 653–664, 2016.

110

https://doi.org/10.3390/a10020053
http://www.mdpi.com/1999-4893/10/2/53
http://www.mdpi.com/1999-4893/10/2/53

Bibliography

[63] D. Gorse, “Application of stochastic recurrent reinforcement learning to index trad-
ing”, ESANN, 2011.

[64] F. Bertoluzzo and M. Corazza, “Making Financial Trading by Recurrent Reinforcement
Learning”, 2007, pp. 619–626. DOI: 10.1007/978-3-540-74827-4_78.

[65] S. D. Bekiros, “Heterogeneous trading strategies with adaptive fuzzy actor–critic rein-
forcement learning: A behavioral approach”, Journal of Economic Dynamics and Control,
vol. 34, no. 6, pp. 1153–1170, 2010, Publisher: Elsevier.

[66] M. A. Dempster, T. W. Payne, Y. Romahi, and G. W. Thompson, “Computational
learning techniques for intraday FX trading using popular technical indicators”, IEEE
Transactions on neural networks, vol. 12, no. 4, pp. 744–754, 2001.

[67] R. G. Bates, M. A. Dempster, and Y. S. Romahi, “Evolutionary reinforcement learn-
ing in FX order book and order flow analysis”, in 2003 IEEE International Conference
on Computational Intelligence for Financial Engineering, 2003. Proceedings., IEEE, 2003,
pp. 355–362.

[68] Y. Dai, C. Wang, I. Wang, and Y. Xu, “Reinforcement Learning for FX trading”, en,
Tech. Rep., 2019, p. 14.

[69] O Jangmin, J. Lee, J. W. Lee, and B.-T. Zhang, “Adaptive stock trading with dynamic
asset allocation using reinforcement learning”, Information Sciences, vol. 176, no. 15,
pp. 2121–2147, 2006.

[70] Y. Shen and Y. Zhao, “Deep Reinforcement Learning for Pairs Trading Using Actor-
critic”, en, Tech. Rep., 2017, p. 7.

[71] Y. Deng, Y. Kong, F. Bao, and Q. Dai, “Sparse coding-inspired optimal trading system
for HFT industry”, IEEE Transactions on Industrial Informatics, vol. 11, no. 2, pp. 467–
475, 2015.

[72] W. Si, J. Li, P. Ding, and R. Rao, “A multi-objective deep reinforcement learning ap-
proach for stock index future’s intraday trading”, in 2017 10th International symposium
on computational intelligence and design (ISCID), vol. 2, IEEE, 2017, pp. 431–436.

[73] J. E. Moody and M. Saffell, “Reinforcement learning for trading”, in Advances in Neural
Information Processing Systems, 1999, pp. 917–923.

[74] C. Mitchell, Volume Weighted Average Price (VWAP) Definition, en. [Online]. Avail-
able: https://www.investopedia.com/terms/v/vwap.asp (visited on
02/16/2020).

[75] A. Hayes, Simple Moving Average (SMA) Definition, en. [Online]. Available: https:
//www.investopedia.com/terms/s/sma.asp (visited on 02/16/2020).

[76] ——, Exponential Moving Average - EMA, en. [Online]. Available: https://www.
investopedia.com/terms/e/ema.asp (visited on 02/16/2020).

[77] ——, Bollinger Band®, en. [Online]. Available: https://www.investopedia.com/
terms/b/bollingerbands.asp (visited on 02/16/2020).

[78] ——, Moving Average Convergence Divergence – MACD Definition, en. [Online]. Avail-
able: https://www.investopedia.com/terms/m/macd.asp (visited on
02/16/2020).

[79] J. Chen, Relative Strength Index – RSI, en. [Online]. Available: https : / / www .
investopedia.com/terms/r/rsi.asp (visited on 02/16/2020).

[80] R. W. Colby and T. A. Meyers, The encyclopedia of technical market indicators. Dow Jones-
Irwin Homewood, IL, 1988.

[81] R. Weron and A. Misiorek, “Forecasting spot electricity prices: A comparison of para-
metric and semiparametric time series models”, International journal of forecasting,
vol. 24, no. 4, pp. 744–763, 2008, Publisher: Elsevier.

111

https://doi.org/10.1007/978-3-540-74827-4_78
https://www.investopedia.com/terms/v/vwap.asp
https://www.investopedia.com/terms/s/sma.asp
https://www.investopedia.com/terms/s/sma.asp
https://www.investopedia.com/terms/e/ema.asp
https://www.investopedia.com/terms/e/ema.asp
https://www.investopedia.com/terms/b/bollingerbands.asp
https://www.investopedia.com/terms/b/bollingerbands.asp
https://www.investopedia.com/terms/m/macd.asp
https://www.investopedia.com/terms/r/rsi.asp
https://www.investopedia.com/terms/r/rsi.asp

Bibliography

[82] B. Lim, S. Zohren, and S. Roberts, “Enhancing time-series momentum strategies using
deep neural networks”, The Journal of Financial Data Science, vol. 1, no. 4, pp. 19–38,
2019.

[83] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection”, Journal
of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[84] T. Yu and H. Zhu, Hyper-Parameter Optimization: A Review of Algorithms and Applica-
tions. 2020, _eprint: 2003.05689.

[85] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning.
Springer, 2013, vol. 112.

[86] S. Khan, What is the best ways to tune multiple parameters? - Quora, 2016. [Online]. Avail-
able: https://www.quora.com/What- is- the- best- ways- to- tune-
multiple-parameters (visited on 02/16/2020).

[87] M. Feurer and F. Hutter, “Hyperparameter optimization”, in Automated Machine Learn-
ing, Springer, 2019, pp. 3–33.

[88] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, and others, “Mastering the game of go without human
knowledge”, Nature, vol. 550, no. 7676, pp. 354–359, 2017, Publisher: Nature Publish-
ing Group.

[89] L. Li, J. D. Williams, and S. Balakrishnan, “Reinforcement learning for dialog manage-
ment using least-squares policy iteration and fast feature selection”, in Tenth Annual
Conference of the International Speech Communication Association, 2009.

[90] D.-R. Liu, H.-L. Li, and D. Wang, “Feature selection and feature learning for high-
dimensional batch reinforcement learning: A survey”, International Journal of Automa-
tion and Computing, vol. 12, no. 3, pp. 229–242, 2015.

[91] T. Nguyen, Z. Li, T. Silander, and T. Y. Leong, “Online feature selection for model-
based reinforcement learning”, in International Conference on Machine Learning, 2013,
pp. 498–506.

[92] P. I. Frazier, “A tutorial on bayesian optimization”, arXiv preprint arXiv:1807.02811,
2018.

[93] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human
out of the loop: A review of Bayesian optimization”, Proceedings of the IEEE, vol. 104,
no. 1, pp. 148–175, 2015, Publisher: IEEE.

[94] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-generation
hyperparameter optimization framework”, in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2623–2631.

[95] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization”, in Advances in neural information processing systems, 2011, pp. 2546–2554.

[96] A. E. Biondo, A. Pluchino, A. Rapisarda, and D. Helbing, “Are random trading strate-
gies more successful than technical ones?”, PloS one, vol. 8, no. 7, e68344, 2013.

[97] V. Zakamulin, “Market timing with moving averages: Anatomy and performance of
trading rules”, Available at SSRN 2585056, 2016.

[98] A. C. Davison and D. V. Hinkley, Bootstrap methods and their application. Cambridge
university press, 1997, vol. 1.

[99] T. Hesterberg, D. S. Moore, and S. Monaghan, “Bootstrap Methods and Permutation
Tests* 14.1 the Bootstrap Idea 14.2 First Steps in Using the Bootstrap 14.3 How Accu-
rate Is a Bootstrap Distribution? 14.4 Bootstrap Confidence Intervals 14.5 Significance
Testing Using Permutation Tests Introduction”, 2004.

112

https://www.quora.com/What-is-the-best-ways-to-tune-multiple-parameters
https://www.quora.com/What-is-the-best-ways-to-tune-multiple-parameters

Bibliography

[100] Unpaired Two-Samples T-test in R - Easy Guides - Wiki - STHDA, en. [Online]. Available:
http://www.sthda.com/english/wiki/unpaired-two-samples-t-test-
in-r (visited on 03/02/2020).

[101] Paired Samples Wilcoxon Test in R - Easy Guides - Wiki - STHDA, en. [Online]. Available:
http://www.sthda.com/english/wiki/paired- samples- wilcoxon-
test-in-r (visited on 03/02/2020).

[102] Paired Samples T-test in R - Easy Guides - Wiki - STHDA, en. [Online]. Available: http:
//www.sthda.com/english/wiki/paired-samples-t-test-in-r (visited
on 03/02/2020).

[103] J. G. MacKinnon, “Bootstrap hypothesis testing”, Handbook of computational economet-
rics, vol. 183, p. 213, 2009, Publisher: Wiley Online Library.

[104] P. Hall and S. R. Wilson, “Two guidelines for bootstrap hypothesis testing”, Biometrics,
pp. 757–762, 1991, Publisher: JSTOR.

[105] B. Efron, “Better bootstrap confidence intervals”, Journal of the American statistical As-
sociation, vol. 82, no. 397, pp. 171–185, 1987.

[106] M. A. Nielsen, Neural networks and deep learning. Determination press San Francisco,
CA, USA: 2015, vol. 2018.

[107] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting”, The journal
of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014, Publisher: JMLR. org.

[108] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C.
Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y.
Wu, Stable Baselines. GitHub, 2018. [Online]. Available: https://github.com/
hill-a/stable-baselines.

[109] Interquartile range, en. Apr. 2020, Publication Title: Wikipedia. [Online]. Available:
https : // en .wikipedia . org /w / index .php ? title =Interquartile _
range&oldid=953495961 (visited on 05/15/2020).

[110] B. Beers, How a Buy-and-Hold Strategy Works, en, Library Catalog:
www.investopedia.com. [Online]. Available: https : / / www . investopedia .
com/terms/b/buyandhold.asp (visited on 05/07/2020).

[111] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight experience replay”, in Advances in
neural information processing systems, 2017, pp. 5048–5058.

[112] Investopedia, A Look at the Buy Low, Sell High Strategy, en, Library Catalog:
www.investopedia.com. [Online]. Available: https://www.investopedia.com/
articles/investing/081415/look-buy-low-sell-high-strategy.asp
(visited on 04/28/2020).

[113] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network”,
arXiv preprint arXiv:1503.02531, 2015.

[114] T. Hailesilassie, “Rule extraction algorithm for deep neural networks: A review”, arXiv
preprint arXiv:1610.05267, 2016.

[115] H. Zhang and Q. Zhang, “Trading a mean-reverting asset: Buy low and sell high”,
Automatica, vol. 44, no. 6, pp. 1511–1518, 2008, Publisher: Elsevier.

[116] A. Cartea and M. G. Figueroa, “Pricing in electricity markets: A mean reverting jump
diffusion model with seasonality”, Applied Mathematical Finance, vol. 12, no. 4, pp. 313–
335, 2005, Publisher: Taylor & Francis.

113

http://www.sthda.com/english/wiki/unpaired-two-samples-t-test-in-r
http://www.sthda.com/english/wiki/unpaired-two-samples-t-test-in-r
http://www.sthda.com/english/wiki/paired-samples-wilcoxon-test-in-r
http://www.sthda.com/english/wiki/paired-samples-wilcoxon-test-in-r
http://www.sthda.com/english/wiki/paired-samples-t-test-in-r
http://www.sthda.com/english/wiki/paired-samples-t-test-in-r
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://en.wikipedia.org/w/index.php?title=Interquartile_range&oldid=953495961
https://en.wikipedia.org/w/index.php?title=Interquartile_range&oldid=953495961
https://www.investopedia.com/terms/b/buyandhold.asp
https://www.investopedia.com/terms/b/buyandhold.asp
https://www.investopedia.com/articles/investing/081415/look-buy-low-sell-high-strategy.asp
https://www.investopedia.com/articles/investing/081415/look-buy-low-sell-high-strategy.asp

Bibliography

[117] E. Nikishin, P. Izmailov, B. Athiwaratkun, D. Podoprikhin, T. Garipov, P. Shvechikov,
D. Vetrov, and A. G. Wilson, “Improving stability in deep reinforcement learning with
weight averaging”, in Uncertainty in Artificial Intelligence Workshop on Uncertainty in
Deep Learning, vol. 5, 2018.

[118] J. E. Dayhoff and J. M. DeLeo, “Artificial neural networks: Opening the black box”,
Cancer: Interdisciplinary International Journal of the American Cancer Society, vol. 91,
no. S8, pp. 1615–1635, 2001, Publisher: Wiley Online Library.

[119] Lethal Autonomous Weapons Pledge - Future of Life Institute. [Online]. Available: https:
/ / futureoflife . org / lethal - autonomous - weapons - pledge / ?cn -
reloaded=1 (visited on 04/28/2020).

[120] M. P. Wellman and U. Rajan, “Ethical issues for autonomous trading agents”, Minds
and Machines, vol. 27, no. 4, pp. 609–624, 2017, Publisher: Springer.

[121] How to start trading. [Online]. Available: https://www.eex.com/en/access/
admission-neu/how-to-start-trading (visited on 04/29/2020).

[122] Huber loss, en, Page Version ID: 950230412, Apr. 2020. [Online]. Available: https://
en.wikipedia.org/w/index.php?title=Huber_loss&oldid=950230412
(visited on 04/16/2020).

114

https://futureoflife.org/lethal-autonomous-weapons-pledge/?cn-reloaded=1
https://futureoflife.org/lethal-autonomous-weapons-pledge/?cn-reloaded=1
https://futureoflife.org/lethal-autonomous-weapons-pledge/?cn-reloaded=1
https://www.eex.com/en/access/admission-neu/how-to-start-trading
https://www.eex.com/en/access/admission-neu/how-to-start-trading
https://en.wikipedia.org/w/index.php?title=Huber_loss&oldid=950230412
https://en.wikipedia.org/w/index.php?title=Huber_loss&oldid=950230412

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Reinforcement Learning Symbols
	Trading Symbols
	Introduction
	Theory
	Literature Review
	Data
	Method
	Results
	Discussion
	Conclusion
	Appendix
	Bibliography

