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Abstract

Assessment of body composition by means of quantitative methods is an important
aspect for practitioners of medicine when treating patients, both in terms of longitudinal
monitoring to see eventual progression but also in terms of diagnosis with respect to
certain clinical parameters. Especially interesting is the amount of appendicular lean soft
tissue (ALST), as this particular quantity can be compared to certain clinical cut-offs for
classification of disease. There exist many options for assessment of body composition, yet
few have as many positives as bioelectrical impedance analysis (BIA). BIA is an attractive
option for many practitioners due to the simplicity of the method. However, using BIA
for assessment of body composition has it’s downsides; unreliable predictions. BIA has
been reported to be especially unreliable when applied on subjects that are classified as
underweight or obese via body mass index (BMI).

The BIA device outputs several electrical variables in different parts of the body. These
electrical variables are highly influenced by anthropometric variables and are adjusted
accordingly to reduce variability. Several transformations that are common in similar
studies are applied and explained. Additionally, this thesis proposes three novel sugges-
tions of electrical variables for future research. The first is a weight-adjusted angle of two
electrical variables, the second is an entropy-based variable of angles and the third is a
multivariate distance of the second. All three variables are used in the analysis of this
thesis. Further research might reveal a better understanding of how these variables relate
to body composition in theory.

This thesis aims to improve the predictions of BIA via by regressing output of elec-
trical variables to another – more reliable – technique; dual x-ray absorbiometry (DXA).
Furthermore, this thesis aims to investigate if the selected models can generalize well
over all regions of BMI. The methods used are Bayesian hierarchical linear regression
and variational Bayesian neural networks. Fitting of the hierarchical models are ob-
tained via Markov chain Monte Carlo (MCMC) and evaluated using the widely applicable
information criterion (WAIC) as well as graphical checks of the posterior predictive dis-
tribution. Fitting of Bayesian neural networks are obtained using back-propagation of a
two-component loss function consisting of a complexity cost and a likelihood cost and
evaluated via graphical checks. Prior elicitation and prior sensitivity analysis is performed
for the hierarchical linear models and two regularizing prior configurations are tested on
the neural networks.

Results show that improvements have been made for both methods, where the neural
networks are performing best. In both the linear models and neural networks, a regular-
izing Laplace prior gave the best results. Graphical checks shows that both methods have
good generalizing ability, yet concerns can be raised over subjects with very high ALST. In
conclusion, both methods used are adequately able to improve predictions on ALST and
generalize well over different ranges of BMI.
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Glossary

• Body composition - An alternative, more detailed description of the human body than
e.g. weight alone.

• FM - Fat-Mass. The amount of fat mass.

• FFM - Fat-Free Mass. The amount of non-fat mass.

• BM - Bone-Mass. The amount of bone mass.

• MM - Muscle-Mass. The amount of muscle mass.

• LST - Lean Soft Tissue. Fat-free, bone-free mass.

• ALST - Appendicular Lean Soft Tissue. Fat-free, bone-free mass in arms and legs.

• ECW - Extra-Cellular Water. Amount of water that exist outside the cell membrane.

• ICW - Intra-Cellular Water. Amount of water that exist inside the cell membrane.

• TBW - Total-Body Water. Sum of ICW and ECW.

• Body compartment - A single compartment of the human body, e.g. FFM, FM or similar.

• Two-compartment model - Partition of the human body into FM and FFM.

• Three-compartment model - Partition of the human body into FM, BM and LST.

• BIA - Bioelectrical Impedance Analysis. Technique for body composition assessment,
to a degree based on the electrical properties of different compartments in the body.

• BIA device - A device that predicts body composition on the basis of BIA.

• Impedance - Obstruction of flow to an electrical current, denoted Z. Consist of two
components (see below).

• Resistance - Component of impedance, denoted R.

• Reactance - Component of impedance, denoted Xc.

• Impedance variables / electrical variables - Measurements based on the injected cur-
rent, e.g. resistance, reactance or any transformation of the two.

• DXA - Dual X-ray Absorbiometry. Technique for body composition assessment.

• DXA device - A device that measures body composition based on two x-ray beams with
different energy levels.

• BIA prediction - Prediction on body compartment(s) based on a built-in regression al-
gorithm of a BIA device.

• BIA equation - An alternative prediction model to body compartment(s) to the BIA
prediction. Typically a linear regression of some shape or form. Variables included are
up to the user.
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1 Introduction

1.1 Commissioner

The commissioner of this thesis is the Clinical Nutrition Unit at Sahlgrenska hospital in
Gothenburg, which comprises of dietitians and physicians. The dietitian’s role at the Clin-
ical Cutrition Unit is to provide medical nutritional therapy to patients who have nutrition
related deceases. Dietitians also take precautionary measures for patients who are at risk
with respect to certain clinical parameters. In order to do so, an accurate assessment of body
composition may be required.

1.2 Background

Body composition is a way to divide the human body into components which collectively
sum up to the total body weight. One way to decompose the human body into components
is to consider the body as a sum of fat-mass (FM), bone mass (BM) and lean soft tissue (LST),
where lean soft tissue is defined as fat-free, bone-free mass. These components combined
constitute a more detailed description of the body than weight or body mass index (BMI),
which does not discriminate the components. Measurements of body composition in health-
care enables practitioners to detect indications of disease, detect signs of aging, monitor
progression of body composition and give advice on nutrition etc [35]. By measuring body
composition using some quantitative technique of choice, a distinct depiction of the different
body compartments can be obtained – as opposed to what a visual inspection would yield.

The Clinical Nutrition Unit at Sahlgrenska utilize two techniques for assessment of body
composition in patients; bioelectrical impedance analysis (BIA) and dual x-ray absorptiom-
etry (DXA). BIA devices operate by sending electrical currents through the human body
via injectors, where a sensor measures the current received in a distant part of the body.
A measurement of how well the body is working as a conductor of electricity is telling of
what medium the current flows through, i.e. the impedance reveals some indication of body
composition [18]. DXA devices operate by sending two beams of different energy levels
through the body, where the medium that the beams flow through absorb different amounts
of energy. The aforementioned amounts of energy allow for differentiation of different com-
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1.3. Motivation

ponents, in an elaborate scheme that is not explained in this thesis.

The BIA device at the Clinical Nutrition Unit outputs several quantities; (1) predictions on
body composition in legs, arms and trunk that are based on a multiple regression algorithm
[34] and (2) impedance variables that reflect electrical properties of the body. The exact
built-in regression algorithm that generates predictions in the BIA device is not disclosed by
the device manufacturer. Questions have been raised over the accuracy in measurements
of the particular device, and extra caution should be taken for patients with extreme BMI
[35], especially for patients with BMI exceeding 34 kg/m2 [23]. A common approach among
researchers aiming to provide more robust outputs is to regress body composition predic-
tions from a reference method (e.g. DXA) to various impedance variables generated from
the BIA device in combination with variables such as age, gender and height [18] [1]. The
aforementioned BIA equations are generally considered to be sample-specific and thus not
advised to use for external samples unless properly validated at such [1].

Evolution of muscle function and muscle mass may be divided into three phases in life
with different goals regarding muscle mass; (1) early life where muscle mass peaks, (2) adult
life where the aim is to maintain muscle mass and (3) older life where focus is to minimize
loss of muscle mass. Low muscle mass is a common factor amongst elderly and malnutri-
tioned patients, and is associated with a higher risk of disease and a deteriorated response
to treatment. Formally, the muscle deterioration of muscle mass and muscle function is a
disease called Sarcopenia. Sarcopenia is common at high ages and costs society as a whole in
terms of both suffering and costs. [6]

Appendicular lean soft tissue (ALST) is a good indicator of total body muscle mass and is
one way to quantify muscle quantity [6]. Clinical assessment of ALST are part of confirma-
tion of Sarcopenia and part of the follow-up procedures that is evaluated in patients that are
considered to be at risk of Sarcopenia. The Clinical Nutrition Unit wishes to further use the
BIA device for assessment of body composition, due to the benefits that BIA offers in terms of
prize and simplicity. However, increased precision in the output is sought, as BIA predictions
on ALST are not of sufficient standard.

1.3 Motivation

The two body composition techniques provide a quantification of body contents that are not
possible to visually detect and should ideally be as precise as possible. Precision in BIA de-
vices are low in comparison to DXA and other reference methods and give especially unstable
body composition outputs for patients with extreme BMI. Furthermore, BIA predictions has
previously been proved to overestimate muscle mass [35] [27] while underestimating fat-
mass. However, BIA devices are comparatively cheap, not restricted to the clinical environ-
ment, non-invasive and easy to use, and are thus an attractive option. Further usage of BIA,
with a refined output that matches the precision of DXA by means of a predictive equation
would give the best of two worlds; a cheap and accurate way to predict body composition.

1.4 Aim

There is a perceived problem at the Clinical Nutrition Unit when BIA devices are used to
predict body composition in general due to lack of preciseness in the predictions. ALST
is particularly of interest as there exist clear cut-off points for diagnosis of Sarcopenia. A
solution to the problem of non-precise outputs from BIA is to use the electrical measurements
that the device outputs to create more robust predictions for patients in all ranges of BMI.
Thus, the aim can be formulated with the following research questions:

2



1.5. Related work

1. Can predictions on ALST from the impedance device be improved upon using a statis-
tical model?

2. Can predictions from the fitted models generalize over all ranges of BMI?

1.5 Related work

Previous work within the field of evaluating accuracy of predictions generated by BIA de-
vices cross-referenced to an alternative ”golden standard” method is not so common. Tognon
et. al. in [35] compared predictions on FM and ALST in an elderly Swedish sample and con-
cluded that a BIA device is not a valid tool for measurement of body composition due to
overestimation of LST and underestimation of FM. The authors argue for a full disclosure of
the full built-in algorithm that generates predictions on body composition from the device
manufacturer, in order to reliably evaluate any predictions provided. Similar conclusions are
provided by Kyle et. al. in [23], whom report that BIA predictions device is to be interpreted
cautiously, especially for subjects with abnormal hydration status or extreme BMI. As such,
the advice is not to use BIA devices for routine assessment of body composition. The authors
do however argue that a generated equation (model) based on the device output may provide
reliable predictions, yet with a caution for subject with anthropometric abnormalities in e.g.
BMI and body shape.

In contrast to evaluation of the raw predictions generated by BIA devices, the studies
that generate an equation based on electrical outputs of the device in combination with
one or several other variables are in abundance. Bosy-Westphal et. al. in [4] reported that
linear regression with variables selected from a step-wise procedure provide predictions on
skeletal muscle-mass that are more reliable than those of DXA, when magnetic resonance
imaging (MRI) was used as the reference method (ground truth). The authors used a Cau-
casian sample for the development of their equation and validated on a multi-ethnic sample
consisting of roughly equal proportions of Caucasians, Asians, Afro-Americans and Hispan-
ics. Some differences were reported between the ethnic groups as measured by the golden
standard method (MRI), which was reflected by the equations generated. In another study,
Bosy-Westphal et. al. [5] conclude that a BIA device may be used to create an equation that
can adequately predict two-component body composition, yet with caution towards extreme
ranges of BMI, or abnormal states of hydration.

As a testament to the popularity in generating BIA equations, several reviews of such are
available. Beaudart et. al. in [1] provide a systematic review of 25 equations independently
created by a variety of researchers. The review aims to give ”clinicians and researchers the
opportunity to verify the existence of a prediction equation when using a BIA device for esti-
mating muscle mass”. The review also provides all equations for predictions of muscle mass,
what model were used, how variable selection was performed (if any), what frequencies was
used and model performance in terms of mean squared error and coefficient of variation.
From the review, it becomes apparent that researchers are relying on variable selection via the
model itself to a high extent, and that regression equations on average explain approximately
90 % of the variation in the respective regression models.

Although the interest in creating new BIA equations is seemingly an interesting topic
for many researchers, nearly all models are linear. However, some more advanced or more
elaborate (machine learning) approaches are available. Kuen-Chang et. al. in [16] applied a
step-wise variable selection in a multiple linear regression to obtain a baseline performance.
The selected variables were then used in a single-layer neural network and a comparison was
performed. Results showed that the neural network outperformed the linear regression, and
the authors concluded that a neural network is more suitable for estimation of FFM. Lu, Hahn
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1.6. Ethical aspects

and Zhang in [24] predict pixel-level body composition obtained by three-dimensional body
scans using an elaborate modelling scheme involving Bayesian networks. When considering
time-series, Tronstad and Strand-Amundsen in [36] applied both a single-layer artificial neu-
ral network and a multi-layer long-short term memory neural network to monitor changes
in a biological process over time.

Hinton and van Camp in [14] introduced a theoretical foundation on minimum-
description-length (MDL) to impose regularization on the weights of a neural network via
Kullback-Leibler (KL) divergence. Graves [13] built upon this framework to formalize a vari-
ational inference (VI) approach for Bayesian neural networks, formalising a cost function that
is splitted into a KL cost and a likelihood cost. Subsequently, Blundell et. al. in [2] present a
framework based on VI that learns a probability distribution over the weights of a neural net-
work using back propagation, referred to as Bayes By Backprop. By continuously evaluating an
unbiased objective function with samples from the variational posterior, the KL divergence
need not be evaluated in closed form, allowing for flexibility in prior and posterior selection
as well as speed. The proposed method was tested in a regression setting, where predic-
tions in sparse data regions resulted in uncertainty, as opposed to conventional (frequentist)
methods.

1.6 Ethical aspects

The data obtained for this thesis contain measurements on weight, height, BMI etc. as well
as information about how many visits to the Clinical Nutrition Unit a given subject has. This
may be regarded as sensitive information for the subjects involved. However, the only iden-
tification available about subjects are transformed such that the author is not able to obtain
for instance city of residence or personal code numbers of the subjects involved. Thus, no
sensitive information can be spread on the basis of the data obtained.

1.7 Delimitations

Body composition was measured by DXA (Lunar Prodigy, Scanex, Sweden, software version
8.70.005) and BIA (MC-180MA, Tanita, Japan). The output given by these two devices allows
for modelling of lean soft tissue in individual components of the body, yet the delimitation of
modelling the sum of LST (i.e. ALST) was decided. The delimitations described essentially
means that a one-component output is modelled, instead of a four-component output, as
there are four limbs in the human body.
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2 Theory

2.1 Fundamentals of bioelectrical impedance analysis

Impedance (Z) is a measurement on the obstruction to alternating electrical currents (AC)
flow, which in bioelectrical impedance corresponds to the obstruction of an alternating electri-
cal current caused by the human body. Notably, impedance is a complex equation; Z P C. An
analogy to the Cartesian plane is a valid representation of the two components of impedance;
resistance (R) and reactance (Xc).

Z(Ω) = R(Ω) + i ¨ Xc(Ω) (2.1)

The two components R and Xc in equation 2.1 are measurements of two different kinds of
resistance and have physiological interpretations. Resistance is regulated by the conductive
ability of the biological tissue (fluid level) which the current flows through. Reactance is
regulated by the capacitive ability of the cell membrane (healthiness of cell membrane). The
two components are mathematically defined below. [18]

R(Ω) = ρ(Ω¨m) ¨
L(m)

A(m2)
(2.2)

Xc(Ω) =
1

2 ¨ π ¨ f(kHz) ¨ C(Farad)
(2.3)

Above, L is length of the cylinder, A is the cylinder cross-sectional area, ρ is a resistivity
constant, C denotes capacitance and f denotes the frequency applied. In electrical circuits,
some amount of electrical charge can be stored using a capacitor, giving rise to a lag between
current and voltage. In the human body, capacitance (C) is caused by the cell membrane hold-
ing onto the electrical charge applied from the injector, causing a lag in the voltage applied
and the current received by the sensor [18]. The lag between current applied and current
measured is referred to as phase shift [18], or an angle in the Cartesian plane;

ϕ(0) = tan´1
(Xc(Ω)

R(Ω)

)
¨

(180
π

)
, (2.4)

commonly referred to as phase angle, where (180/π) converts radians into degrees.
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2.2. Shortcomings of bioelectrical impedance analysis

2.2 Shortcomings of bioelectrical impedance analysis

The four representations of impedance; R, Xc, Z and ϕ presented in section 2.1 combined
constitute the representation of impedance in the Cartesian plane, and have different roles
and shortcomings in bioelectrical impedance analysis. Simplification of the human body
as a cylinder expressed by equation 2.2 – which is mathematically described as a uniform
cylinder multiplied with a resistivity constant (ρ(Ω¨m)) – acts as the basis of body composition
assessment, using height as a proxy for cylinder length [35]. However, identifying body
composition on the basis of resistance alone fails, and only accounts for a small proportion
in coefficient of correlation (R2) in various applied equations [8]. An attractive solution is to
define an alternative representation, where equation 2.2 is extended to express volume [18]:

V(m3) = ρ(Ω¨m) ¨
(L(m))

2

R(Ω)
(2.5)

Equation 2.5 gives an empirical relationship between subject volume, resistance and
height. However, expressing volume through equation 2.5 requires knowledge of the re-
sistivity constant, which is medium-dependent, and likely subject-dependent. A solution is
to disregard the constant, and use the remaining parts of equation 2.5 under the assumption
of proportionality:

V9
L2

R
(2.6)

The representation in equation 2.6 is commonly referred to as resistance index (Rindex),
and is a common variable in BIA equations [1]. Neither equation 2.5 nor Rindex account for
variations in body shapes that can stem from variations in ethnicity or natural variations
among individuals of the same ethnicity. The shortcomings of BIA is further complicated
as differently shaped objects with an identical height may have identical resistance [8]. To
account for the aforementioned variations in body shape, two new variables are proposed
by [5], where a fraction of segmental resistance and reactance measurements in trunk and
extremities is used to distinguish body shapes of subjects:

RShape =
RTrunk

mean(RArms) + mean(RLegs)
(2.7)

XcShape =
XcTrunk

mean(XcArms) + mean(XcLegs)
(2.8)

The proposed indices RShape and XcShape was proved in [5] to correlate with circumfer-
ence of arms, trunk and trunk length. It should be noted that measurements of resistance
and reactance in the trunk is unstable, as the trunk constitutes a large proportion of body
mass, yet constitutes a small proportion of resistance due to the large cross-sectional area
in comparison to its length [22]. Thus, the indices in equation 2.7 and 2.8 may be contain
a degree of noise that is undesirable. While the assumption of shape constitutes one major
shortcoming of bioelectrical impedance analysis, the assumption of a constant hydration in
subjects likely equally as flawed. A BIA device may be able to detect longitudinal changes in
a subject [34], yet it is recommended to measure during normal hydration levels [22].

The phase angle given in equation 2.4 is variously suggested as a variable that can deter-
mine levels of hydration or malnutrition in subjects [29] [27] [22].
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3 Data

3.1 Data source

The data obtained for this thesis is partly collected from routine medical examinations and
partly from several research studies ([35], [3], [17], [26], [7]) at the Clinical Nutrition Unit at
Sahlgrenska University Hospital between 2007-2016. Below, the total number of patient visits
to the Clinical Nutrition Unit are plotted over year.

Figure 3.1: Number of patient visits per year.

Note that the sum of patient visits from figure 3.1 corresponds to the cleaned data de-
scribed in section 3.3. Predictions from the two techniques (BIA and DXA) are not limited to
MM and LST. As both techniques attempt to predict the full body composition, there are pre-
dictions of the other components of the body as well; bone mass (BM) and fat-mass (FM) in
legs, trunk and arms. The predictions of BM and FM are irrelevant for the aims of this thesis
and will only be used in the context of filtering for outliers in data, as described in section 3.3.

3.2 Data description

Each patient has undergone assessments of body composition using the two techniques;
DXA and BIA. A distinction should be made clear early on about the variables meaning
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3.2. Data description

and their naming conventions to avoid confusion; both techniques predict body composition,
where predictions from BIA are called Muscle Mass (MM) and predictions from DXA are
called Lean Soft Tissue (LST). In line with the discussion in [35], the predictions from BIA are
assumed to be predictions on LST, rather than MM. In other words, despite the confusing
naming conventions, the two methods aim to predict the same quantity, i.e. MM and LST
are in reality the same thing. The naming conventions provided are kept throughout this
chapter as it allows for a clear distinction between quantities generated by the two techniques.

Furthermore, the BIA device outputs two kinds of electrical measurements – resistance
and reactance – in different parts of the body. These are different from the predictions
mentioned above in the sense that they are purely measured. Exactly how a BIA device
transforms a current into electrical variables depends upon the device in question, as there
are several methods [27]. Despite being measured, electrical variables are inevitably noisy.
Outside factors such as hydration status, contact with the devices electrodes and fasting sta-
tus of subjects may cause two subjects that are identical w.r.t anthropometry, age and similar
to have non-identical measurements of resistance and reactance [23]. Thus, the variations
in electrical variables corresponds to a high degree to epistemic uncertainty, i.e. ”unknown
unknowns”. It is not possible to completely single out the underlying factors leading to
noisy measurements and obtain perfect predictors. Noise can however be reduced slightly,
by creating new variables that are based on the confounding factors given by other variables,
as will be discussed in section 3.5.

The obtained data is arranged in such a way that one row corresponds to a measurement
of one subject. However, subjects are not restricted to have a single measurement (visit),
and in cases where several measurements have taken place on one subject, the subject in
question will appear in several rows. The total amount of subjects in the data are 3746, and
with some subjects re-visiting the Clinical Nutrition Unit, the total number of measurements
are 5760. Each row contains outputs from BIA and DXA, combined with information about
the patient’s anthropometry, electrical variables and date of hospital visit etc. Below, a table
of variables are shown, where variables of similar kind are grouped together. The column
ngroup reveals how many variables that can be found within the corresponding group.

Variables ngroup Type

LSTRightArm, LSTLe f tArm, LSTRightLeg, LSTLe f tLeg 4 Continuous

MMRightArm, MMLe f tArm, MMRightLeg, MMLe f tLeg 4 Continuous

Resistance, Reactance 48 Continuous

Date, Visit, ID 3 Mixed

Age, Height, Weight 3 Continuous

Gender, Model_Gender, Tanita_BodyType 3 Factor

Table 3.1: Variable overview, prior to data manipulation and data cleaning.

With the device operating on 4 frequencies (5 kHz, 50 kHz, 250 kHz, 500 kHz), measuring
both resistance and reactance in 6 body sections (right arm, left arm, right leg, left leg, left
side, both legs), the total number of variables impedance-related variables in table 3.1 are 48,
where half are variables of resistance, half are variables of reactance. Note that the measure-
ment of segment ”both legs” is a separate measurement that is not deterministically obtained
ny adding ”left leg” + ”right leg”. However, such addition approximates the segment ”both
legs” fairly well. Model_Gender and Tanita_BodyType are input variables fed to the impedance
device prior to measurement. Visit is a counter for the cumulative number of visits each pa-
tient has, ordered by the Date variable. Gender is a variable provided directly to the database
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3.3. Data cleaning

by the practitioner who is overseeing the procedure. Model_Gender is provided by selecting
either "Male" or "Female" when standing on the BIA device, and Tanita_BodyType is provided
by selecting one of "Standard", "Athletic" or "Obese" when standing on the BIA device.

3.3 Data cleaning

All data reductions on the original data supplied by the commissioner is performed in the
order described in table 3.2 below. All reductions are done by row, i.e. if there is an incorrect
or missing value on one variable, then the complete row is removed. Thus, the number of
rows removed might give a different outcome if the steps are performed in a different order.

nremoved Motivation

1: 3 Tanita_Bodytype ‰ "Standard" alters predictions on MM

2: 25 Model_Gender ‰ Gender alters predictions on MM

3: 6 LST contains NA, unknown reason

4: 1 FMLe f tArm ą 100kg (from BIA), too extreme to be considered realistic

5: 126 Reactance ą 0, not plausible to have positive Reactance

6: 259 Z(dM(Adjusted electrical variables)) ą 2, removal of extreme outliers

7: 1 ALST´MM ą 15kg, extreme outlier prediction from the BIA device

Table 3.2: Data reduction; number of measurements concerned with a short motivation.

As mentioned in section 3.2, the BIA device outputs a prediction on the different com-
ponents of the body (where MM is the only one of interest), using a regression algorithm
[34]. The exact model and parameters generating predictions is not disclosed by the device
manufacturer, but it is believed by the commissioner that Tanita_BodyType and Model_Gender
affect the regression output of MM. Thus, setting Tanita_BodyType to "Athletic" is likely to give
a different outcome from setting Tanita_BodyType to "Standard". Consequently, all instances
of the former setting are removed. In cases where Model_Gender is different from Gender, it
means that either a male subject has predictions on MM that is generated with an equation
that is constructed for female subjects, or vice versa. Consequently, all instances where the
two variables mismatch are removed.

In agreement with the commissioner, any value for Reactance on the ”wrong” side of 0
is considered unrealistic. Representing reactance as positive means that the body works
as an inductor, effectively meaning that current leads voltage. The human body contain
cell membrane, which has electrical properties of a capacitor. Which sign the BIA device
chooses to represent Reactance in the output is not known for certain, but the vast majority
of electrical measurements are negative. Thus, any positive value for any of the 24 available
Reactance variables for a given individual result in a removal of the row, and consequently
126 rows were removed.

After removal of reactance that was deemed incorrect, an intermediate set was created
only using standardized measurements of adjusted electrical variables where adjustments
were stratified on gender. Several intermediate steps were performed and empirical (graph-
ical) checks were performed to see that the filtering process was performed accurately.
Ultimately, Mahalanobis distance (dM) was computed for all the involved variables, and any
standardized distance larger than a specified limit was removed, resulting in 259 removals.
The adjusted measurements are performed with the aim of removing outlier measurements
of electrical variables – when extreme or erroneous measurements are present – as opposed to
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3.4. Data wrangling

outlier individuals. A more detailed description of confounders for electrical measurements
is given in section 3.5.

Predictions from the BIA device that are considered completely unrealistic are removed.
In one subject, predicted FM in the left arm exceeded 140 kg, whereas the subject’s total
weight was 114 kg. The anomaly mentioned is not directly related to quality the target vari-
able given by the DXA device, nor to the electrical variables from BIA, yet some concerns can
be raised with respect to the quality of the measurement as a whole, and the observation was
removed. The last removal in table 3.2 was checked several times, and no particular reason to
why a prediction difference exceeding 15 kg was found. However, this individual was highly
influential in different analyses, and was removed.

3.4 Data wrangling

Outputs on LST are given with unit grams, while outputs from MM are given in kilograms.
To enhance comparisons between the two, LST is converted to unit kilograms according
to LST(kg) = LST(g)/1000. This transformation enables comparisons with similar studies,
which represent similar quantities to LST in units of kilograms.

Due to the removals described in section 3.3, the Visit and ID variables are not monoton-
ically increasing. For programming conveniences (e.g. indexing), these two variables are
recomputed, ignoring the removals completely. This means that if an individual has five
hospital visits; Visit = t1, 2, 3, 4, 5u and the second visit is removed due to inaccuracies in
data, then the updated column will appear as Visit = t1, 2, 3, 4u rather than Visit = t1, 3, 4, 5u.
Similar logic applies to the ID variable.

Despite the removals of Reactance that appeared as positive numbers, described in section
3.3, all remaining reactance measurements are converted to positive. The transformation
makes little sense from a logical perspective, yet it is a common transformation in similar
studies. As a consequence, the rather illogical transformation allows for a direct comparison
of model parameters to other BIA equations.

3.5 Feature engineering

Several new variables are presented in this section and a summary over all variables are
given at the end of this section. Appendicular lean soft tissue (ALST) is computed as the
sum of LST in extremities and appendicular muscle mass (AMM) is computed as the sum
of muscle mass in extremities. To distinguish the sum of these predictions generated by the
DXA and BIA devices respectively, these will be referred to as y and ybia. Note here that y
is seen as the ground truth of ALST. The naming conventions are straightforward; on one
hand, y is the target variable – and is named as such. On the other hand, ybia is a prediction
on the same quantity, yet it only lives within this thesis as a benchmark, as ybia constitutes
what should be improved upon. Thus, ybia constitutes a target variable in a sense, and the
subscript distinguishes the two.

ALST = y = LSTRightArm + LSTLe f tArm + LSTRightLeg + LSTLe f tLeg (3.1)

AMM = ybia = MMRightArm + MMLe f tArm + MMRightLeg + MMLe f tLeg (3.2)

As outlined in chapter 1, predictions of ybia generated by the BIA device are less precise for
extreme ranges of BMI. This issue is visualized in figure 3.2, where a Y-vs-Y plot of y and ybia
is plotted side-by-side of a plot where the difference y´ ybia is plotted as a function of BMI.
BMI is calculated according to standard formula as BMI(kg/m2) = Weigth(kg)/Height2

(m).
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3.5. Feature engineering

Figure 3.2: Issues with BIA predictions. The black line denotes identical predictions and red
lines denote ˘1 kg of identical predictions from BIA and DXA. Left: BIA predictions have a
tendency to overestimate muscle mass. Right: Tendencies towards overestimation from BIA
compared to DXA increases with increasing BMI.

The left hand side of figure 3.2 may serve as a motivation to create a new equation (e.g.
this thesis) as the BIA device has a tendency to overestimate muscle mass. The right hand
side of figure 3.2 suggests that BMI is a contributing factor for overestimation of ALST as the
overestimation increases along with increased BMI. Note also that the trend of difference
ybia ´ y poses problems of estimation in underweight or severely underweight subjects with
BMI ă 20, as the trend for decreasing BMI indicates that the BIA device underestimates
muscle mass for such individuals.

Appendicular Resistance (R) is computed as the sum of individual R and Xc in extremities.
The motivation behind this transformation is simple; R reveal – to some degree – character-
istics of the medium the electrical current flows through. Thus, all components that make up
the sum of ALST should be weighed by the contribution of the electrical variables that help
explain components of the sum. The computations can then be seen as a weighted average.
The algorithm for calculating appendicular resistance is given below.

Algorithm 1 Total appendicular Resistance
Require: Appendicular Resistance variables: R(RA, f ), R(LA, f ), R(RL, f ), R(BL, f )

R(L, f ) =
(

R(RL, f ) + R(BL, f )

)
¨

(
1
3

)
(Average leg Resistance)

R(A, f ) =
(

R(RA, f ) + R(LA, f )

)
¨

(
1
2

)
(Average arm Resistance)

R f =
(

R(L, f ) + R(A, f )

)
¨ 2 (Total appendicular Resistance)

return R f

Using algorithm 1, frequency-specific resistance measurements R5, R50, R250, R500 are ob-
tained. Note that the logic in algorithm 1 can be used for reactance measurements Xc5, Xc50,
Xc250 and Xc500 as well. The averaging of segments ”right leg” and ”both legs” is constructed
as to smooth any undesired noise that may occur in the single segment measurements and
that ”both legs” was empirically checked to be approximately twofold compared to ”right
leg”. Note that measurements on R and Xc for the left leg are not included in algorithm 1,
due to a biasing factor prior to the year of 2015. Below, output of R and Xc are plotted over
the complete time-span during which data was collected. Note that only the frequency 50
kHz is included, to avoid cluttering.
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3.5. Feature engineering

Figure 3.3: Discrepancies of Resistance (left) and Reactance (right) in the left leg. Black vertical
line separates measurements prior and after 2015.

Discussions with the commissioner regarding the seemingly different behaviour of the
output plotted in figure 3.3 did not lead to any conclusions why measurements differ before
and after 2015. The discrepancies plotted above was only found in the left leg, where the
measurements in figure 3.3 after 2015 are in line with the corresponding measurements in
the right leg, i.e. more plausible. Similar patterns were found for all frequencies, leading to
the conclusion that whatever the underlying bias is, it is only connected to measurements of
the left leg. Another interesting factor of biased measurements is that other measurements,
such as Reactance in the segments ”Left side” or ”Both legs” that in a purely logically sense
includes Reactance measured in "left leg" did not show any visual signs of the displayed
behaviour. Resistance and reactance measurements in the left leg only constitutes a fraction
of total appendicular impedance (algorithm 1), but any added inclusion of unnecessary bias
is considered as undesirable.

Algorithm 2 Appendicular phase angle
Require: Appendicular resistance variables: R(RA, f ), R(LA, f ), R(RL, f ), R(LL, f ), R(BL, f )

Require: Appendicular reactance variables: Xc(RA, f ), Xc(LA, f ), Xc(RL, f ), Xc(LL, f ), Xc(BL, f )

ϕRA, f = tan´1
(

Xc(RA, f )
R(RA, f )

)
¨

(
180
π

)
(Phase angle: right arm)

ϕLA, f = tan´1
(

Xc(LA, f )
R(LA, f )

)
¨

(
180
π

)
(Phase angle: left arm)

ϕRL, f = tan´1
(

Xc(RL, f )
R(RL, f )

)
¨

(
180
π

)
(Phase angle: right leg)

ϕLL, f = tan´1
(

Xc(LL, f )
R(LL, f )

)
¨

(
180
π

)
(Phase angle: left leg)

ϕBL, f = tan´1
(

Xc(BL, f )
R(BL, f )

)
¨

(
180
π

)
(Phase angle: both legs)

ϕ f =
1
5 ¨

(
ϕRA, f + ϕLA, f + ϕRL, f + ϕLL, f + ϕBL, f

)
(Composite phase angle)

return ϕ f

Phase angle (ϕ), as given in equation 2.4 is the angle between R and Xc in the Cartesian
plane. Frequency-specific phase angles ϕ f may be calculated using composite measure-
ments outputted from algorithm 1 or averaging over all available frequency-specific and
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extremities-specific measurements. Empirical experiments proved that averaging over all
angles computed in extremities yields a composite angle that is closer to the ground truth
(which was constructed to be known). All steps for computations of appendicular phase
angle is given in algorithm 2. Note that the algorithm computes appendicular phase angle
using the discussed biased measurements of the left leg. As both resistance and reactance
are biased in the same ”direction” (e.g. higher) prior to 2015, the angle is not believed to be
altered to a degree which is unsatisfactory. On the contrary, averaging over more angles on
the noisy data proved to smooth out the resulting measurements.

The apparent theoretical dependency between Resistance and subject size as given in
equation 2.2 is defined below, based on appendicular resistance from algorithm 1. The
variable Rin

f in this thesis differ from e.g. [5], where trunk measurements of resistance are
included in computations of R f . Thus, no attempt to approximate whole body volume is
sought. However, the (proposed) measurement may be interpreted as proportional to appen-
dicular volume. Equation 3.3 (below) offers another – perhaps more interesting – statistical
interpretation. As the dependency between resistance and subject height is present, the com-
puted indices can be seen as interaction; e.g. the statistical importance of one variable (resis-
tance) is dependent upon another variable (height). Additionally, a second index variable ϕin

f
is computed by normalizing with subject weight.

Rin
f =

Height2

R f
(3.3)

ϕin
f =

Weight2

ϕ f
(3.4)

Equation 3.4 is a variable that – to the authors knowledge – is unseen and serves as a
novel suggestion on data transformation. The variable is constructed on a hypothesized de-
pendency between phase angle and cell mass, where cell mass is directly linked to weight.
The compound variables of R f , ϕ f , Rin

f and ϕin
f are plotted versus y in figure 3.4 to display

the functional form, where each frequency f receives a unique color. To avoid any excessive
cluttering, only two frequencies (5 kHz and 250 kHz) are included.

Figure 3.4: Functional form between electrical variables and target variable. Green: 5 kHz,
orange: 250 kHz. Top row: raw electrical variables, bottom row: electrical variables adjusted
with height (left) and weight (right).
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As can be seen in figure 3.4, the adjustments has aligned the functional form of variables
and target to resemble more of a linear relationship. A factor that might be of importance
is that each subplot of the top row of figure 3.4 corresponds to two distinct clusters (not
highlighted); y « 20 is a separator for female and male patients, where the two clusters
have seemingly different ”slopes”. The transformations to index variables computed and
displayed in the bottom row have reduced the gender-specific slopes, yet not completely,
introducing what more resembles a linear relationship between ALST and the corresponding
variable. The differences seen between different frequencies is reasonably explained by the
fact that resistance – and hence phase angle – is to a high degree influenced by the hydration
level of the corresponding medium, e.g. muscle. High frequencies identify TBW, while low
frequencies are not able to penetrate the cell membrane, essentially measuring ECW. As such,
higher frequencies have a higher correlation with ALST. In addition to the functional form
given in 3.4, the functional form between anthropometric variables and the target is displayed
below, colored by gender.

Figure 3.5: Functional form between anthropometric variables and target, colored by gender.
Orange: males, green: females.

The difference between male and female subjects in terms of ALST discussed with respect
to figure 3.4 is displayed in figure 3.5, where male subjects on average have more ALST than
female subjects. The functional form of anthropometric variables suggests that the relation-
ship to ALST is linear, or close to linear, where primary differences can be found between
genders. If any non-linearity is to stand out, it is that ALST have a quadratic relationship
with Age, where the peak of ALST occurs in mid-life, as is discussed in [6]. In addition to the
index variable of phase angle, two forms of entropy-related variables are proposed. Compu-
tations involve the empirical entropy and the multivariate Mahalanobis distance:

Empirical entropy = ´
ÿ

i

vi ¨ log
[
vi
]

(3.5)

Mahalanobis distance =
b

(v´ v̄)TC´1(v´ v̄) (3.6)

The complete procedure involves several steps and is executed as follows, where the
initial phase angles for step 1 are computed according to equation 2.4:

1 Compute component-specific phase angle vectors for right arm, left arm, right leg and
left side. Each component receives one vector with angles computed for 5 kHz, 50 kHz,
250 kHz and 500 kHz.
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2 Normalise the computed vectors such that each vector sums to one, and each vector
elements are bounded in [0,1].

3 Compute entropy as in equation 3.5, one entropy obtained for each normalised vector,
denoted ϕe

f .

4 Compute sample mean and sample covariance for the entropy vectors.

5 Compute Mahalanobis distance as in equation 3.6 between the entropy vectors.

6 Compute the natural logarithm of the distance obtained in step 5, denoted as Dϕ.

Step one transforms angles into proportions, and the proportions are regarded similar
to probabilities. If all frequencies applied gives an angle that is the same, then entropy
computed in step 3 will by definition be maximized. The entropy variables describe disper-
sion that arises from applying different frequencies to the same body component, which is
justified as frequencies on different ranges can differentiate between ECW and TBW. The
distance-based variable may be able to detect edema, primarily common amongst elderly,
where a large amount of water is moved to the legs. As Resistance is highly correlated with
water content, which is high in muscles, the magnitude of Resistance is similar in subjects
with edema and muscular subjects. If a subject display electrical measurements that are
widely different when comparing legs and arms, such as in subjects with edema, then the
distance will be high. This is especially true for legs, which – due to the bigger size – have
higher Resistance and is the component that is primarily affected by edema.

This section has described how the target variable is computed and several electrical vari-
ables have been defined. Many of the electrical variables have connections to the theory
described in chapter 2, but this section also introduced three novel suggestions of electrical
variables. Similar to table 3.1, relevant variables are displayed below. For notational conve-
nience, the variables Resistance and Reactance and are shown without sub- and superscripts,
although both are measured for all frequencies in all body segments.

Variables Notation ngroup Type

ALST y 1 Continuous

AMM ybia 1 Continuous

Resistance, Reactance R, Xc 40 Continuous

Resistance index Rin
f 4 Continuous

Phase angle index ϕin
f 4 Continuous

Appendicular angle entropy ϕe
f 4 Continuous

Appendicular entropy distance Dϕ 1 Continuous

Visit, ID – 2 Integer

Age, Height, Weight, BMI – 4 Continuous

Gender dummies DMale, DFemale 2 Binary

Table 3.3: Variable overview, after data manipulation and data cleaning.

Note that the raw Resistance and Reactance variables in table 3.3 are fewer than in table
3.1, this is due to removal of measurements in the left leg displayed in figure 3.3. Note also
that appendicular resistance (algorithm 1) and appendicular phase angle (algorithm 2) are
not included above, since these are only intermediate steps for computations of resistance
index (equation 3.3) and phase angle index (equation 3.4).
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3.6. Data partition

3.6 Data partition

The data partition is sample-based, where the aim was to have 4000 training data points,
800 validation data points and the remaining 539 points left for test. To keep the multi-level
structure that arises from repeated visits intact, a sampling scheme was created. The scheme
includes sampling ID’s for the corresponding set, and recursively check if target number of
points were matched. If not, sampling continued. If the set was too large, a pre-specified
number of ID’s were removed, and sampling continued until target criteria’s were met.

All Train Validation Test

Nr of visits (v) nv v ¨ nv nv v ¨ nv nv v ¨ nv nv v ¨ nv

1 2567 2567 1935 1935 386 386 246 246

2 431 862 327 654 57 114 47 94

3 288 864 216 648 44 132 28 84

4 144 576 110 440 20 80 14 56

5 54 270 37 185 10 50 7 35

6 21 126 12 72 5 30 4 24

7 7 49 7 49 0 0 0 0

8 2 16 1 8 1 8 0 0

9 1 9 1 9 0 0 0 0
ř

= 3515 5339 2646 4000 523 800 346 539

Table 3.4: Multi-level structure of data. nv is number of unique patients with v visits in total,
v ¨ nv is the number of measurements for v visits.

The resulting partition in table 3.4 contains 2646 unique patients in the training set, 523
unique patients in the validation set and 346 unique patients in the test set. Divided by
the total number of measurements in the full set results in approximately 1.51 observations
on average. For the partitioned sets, this computation results in approximately 1.51, 1.52
and 1.56 observations on average, i.e. the multi-level structure is intact and also consistent
through partitions. The corresponding MSE is 6.46 for the complete data, 6.55 for the training
set, 6.30 for the validation set and 6.05 for the test set.

Due to the issues that BMI poses on predictions outlined in section 3.5, a selection of sub-
jects in different categories of BMI are taken for model evaluation. Note that this particular
selection acts as a complementary evaluation to the validation set, for a small selection of
subjects and does not replace evaluation of the complete validation set. The selection consists
of three males and three females from the validation set and the selection criteria is made
primarily by selection of different ranges of BMI, but also by checking how much other key
variables deviate from their corresponding mean. Table 3.5 shows the selection.

ALST Gender Age Height Weight BMI Rin
250 ϕin

250
24.61 Male 66 1.76 71.40 23.18 0.0019 756.22
25.60 Male 40 1.76 86.10 27.79 0.0020 1025.45
29.78 Male 30 1.78 105.90 33.42 0.0022 1708.05
15.72 Female 59 1.62 55.95 21.36 0.0015 505.61
17.11 Female 71 1.64 66.20 24.76 0.0016 712.42
17.39 Female 51 1.63 88.60 33.35 0.0017 1056.91

Table 3.5: Selection of subjects with varying BMI from validation data.
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3.6. Data partition

Table 3.5 indicates that the selection does not include a large variety in Height within
the gender-specific groups. However, both Weight and Pin

250 vary quite a lot. For different
categories of BMI – underweight, normal and obese – the above table can be regarded as
representative with respect to the other variables since these observations have a small mul-
tivariate distance to other subjects with similar BMI. Notably, the selection is not single-
handily performed based upon BMI since such a selection may provide a subset with either
erroneous measurements or simply based upon measurements that are too extreme, due to
the high variability that BMI introduces in electrical measurements.
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4 Method

4.1 Bayesian inference

All Bayesian algorithms are – to various degrees – based on the foundation of prior to poste-
rior updating. The updating procedure always includes a prior p(θ) and a likelihood p(D|θ),
where θ are the unobserved model parameters which characterize the model one wants to
perform inference upon together with the data D = txi, yiu, i = 1, 2, ..., n. The mix of a prior
and likelihood is a way to quantify how plausible an event of interest is, e.g. a continuous
response in regression or similar, and reflects the full uncertainty of the model one performs
inference upon. Bayesian prior-to-posterior updating is typically computed via Bayes theo-
rem;

p(θ|D) =
p(D|θ) ¨ p(θ)

p(D)
9p(D|θ) ¨ p(θ), (4.1)

where p(D) is the marginal probability of data. The simplification from 4.1 is valid as the
marginal probability simply transforms the posterior in such a way that integration sums to
one. Regardless of the marginal probability, the posterior still has the same shape. After com-
puting the sought normalized or un-normalized posterior distribution in equation 4.1, the
most common interest is usually to average over expectations with respect to the posterior,
and obtain a posterior predictive distribution:

p(ỹ|y) =
ż

p(ỹ|θ) ¨ p(θ|y)Bθ =

ż

p(ỹ|y, θ) ¨ p(θ|y) (4.2)

where y replaces D and explanatory variables x are intentionally left out to avoid clutter-
ing. The posterior predictive distribution answer queries about unseen data ỹ and embodies
the full uncertainty about model parameters given in the posterior distribution over θ. Using
the expectation ỹ enables computations of model performance, such as (Bayesian) coefficient
of variation R2 [10] and the mean square error (MSE);
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4.2. Bayesian hierarchical linear regression

MSE =
1
n

n
ÿ

i=1

(yi ´ ỹs
i )

2 (4.3)

R2 =
V[ỹs

i ]

V[ỹs
i ] + V[r̃s

i ]
, (4.4)

where r̃s
i = yi ´ ỹs

i and s = 1, 2, ..., S denotes posterior draws for model parameters. For
both MSE and R2 in equation 4.3 and 4.4, it is possible to use a single draw of posterior
parameters and calculate a single R2 and a single MSE based on those. By using a full set
of posterior draws θs, the metrics displayed above would correspond to distributions of
retrodictive model performance R2 and predictive model performance MSE, displaying the
full uncertainty in the corresponding metric.

In the context of Bayesian prior-to-posterior updating, key distinctions can be made on
the information carried by the prior distribution; where the spectrum includes e.g. regular-
izing priors, weakly informative priors and non-informative priors. The information carried by
regularizing priors places a heavy penalty for posterior mass sufficiently far away from the
prior, leading to a posterior distribution that kept within reasonable bounds from the prior.
On the contrary, non-informative priors barely affect the posterior distribution at all, leading
to a posterior that is highly controlled by the data. Weakly informative priors lie somewhere
in between the two. Using a Laplace prior is a way to promote sparsity in parameters, also
known as Lasso regression in regression settings [9]. A weakly informative prior is one that
intentionally contains slightly less information than what the Bayesian practitioner knows
a-priori about the parameter of interest [25]. A common choice for weakly informative priors
is the Cauchy distribution, due to its wide tails.

Priors sometimes play another important role in Bayesian inference with regard to the
posterior distribution; in some cases, there exist an analytical solution for how to compute
the posterior p(θ|D) via conjugate prior-likelihood pairs. For the remainder of this chapter,
no attempts to display closed form solutions for posteriors are presented (unless explicitly
stated otherwise). Instead, the remaining parts of this chapter is focused on explaining mod-
els without analytical solutions (intractable posteriors) and various approximations to the
desirable posterior distribution are presented.

4.2 Bayesian hierarchical linear regression

Bayesian linear regression aims to relate the target variable yi to some distribution – typi-
cally the Gaussian distribution – parameterized by a mean (µi) and a standard deviation (σ),
where i = 1, 2, ..., n. In itself, the mean µi is a deterministic linear function – variously known
as the link function or linear model – consisting of the intercept parameter α, slope parameters
βk and features xik, where k = 1, 2, ..., K. The model parameters θ = tα, βk, σu need be as-
signed appropriate prior distributions that reflect a-priori beliefs about the phenomena that
is modelled. By performing the aforementioned requirements, one achieves Bayesian linear
regression. The extension from Bayesian linear regression to Bayesian hierarchical linear re-
gression is achieved by assigning prior distributions to prior parameters using hyper-priors,
where hyper-priors models specific sub-groups of observations in the data. A general formu-
lation is given below using only Gaussian priors and hyper-priors with zero mean and unit
standard deviation:
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4.2. Bayesian hierarchical linear regression

yij „ N (µij, σ) [Likelihood]

µij = αj + βk ¨ xik [Hierarchical link function]

αj „ NJ(αµ, ασ) [Hierarchical prior]

αµ „ N (0, 1) [Hyper-prior] (4.5)

ασ „ N+(0, 1) [Hyper-prior]

βk „ NK(0, 1 ¨ IK) [Prior]

σ „ N+(0, 1), [Prior]

where j P t1, ..., Ju denotes the sub-groups one models using varying intercepts and N+

denotes a truncated Gaussian with support on positive numbers. The hierarchical link func-
tion described in equation 4.5 now consist of a group-specific parameter αj that is pooled
towards the hierarchical mean given by αµ, where the sizes of each sub-group affects the
degree of pooling, or shrinkage [25]. In cases when unseen data can be correctly partitioned
in the correct group of αj, it is possible to use the hierarchical parameters for predictions.
However, in cases where the aforementioned partition is impossible, the hierarchical mean
µα and standard deviation σα can be used as these parameters describes the population of sub-
groups [25]. Naturally, other choices of priors may be used in a given problem, and should
be elicitated using domain specific expertise. In settings involving hyper-priors, the degree of
regularization imposed on the model is determined by the model itself, which may be of ben-
efit not only in hierarchical settings, but also when there exists ambiguity over appropriate
a-priori beliefs about the phenomena modelled [25].

4.2.1 Assessing need for hierarchical modelling

A way to evaluate the gains made by incorporating an hierarchical structure in the data is to
compute intraclass-correlation (ICC). Bayesian ICC is computed using the posterior draws of
the standard deviation in the hierarchical prior α̃σ and the standard deviation of the likeli-
hood σ̃. Like Bayesian R2 and Bayesian MSE, calculations on ICC gives a distribution.

ICC =
α̃σ

α̃σ + σ̃
(4.6)

As can be seen from equation 4.6, ICC display the level of correlation within clusters ασ. If
this metric is high then the variation between clusters is high, suggesting that an hierarchical
structure is required. Intuitively, if ICC ą 0.5 then the between groups variation is higher
than the variation in the model (likelihood). Such a scenario may suggest the need for a
hierarchical model, given the chosen parametric form.

4.2.2 Model evaluation

A way of estimating out-of-sample predictive performance of a hierarchical Bayesian linear
models is to compute the widely applicable information criteria (WAIC). This information
criteria contains two main components; the log point-wise predictive density (zlppd) and the
effective number of parameters (p̂waic). Formulas for these estimates, for data-points yi where
i = 1, 2, ...n and posterior samples θs for s = 1, 2, ..., S, are given below :

zlppd =
n

ÿ

i=1

[
log

( S
ÿ

s=1

p(yi|θ̃
s)
)]

(4.7)

p̂waic =
n

ÿ

i=1

[
VS

s=1

(
log p(yi|θ̃

s)
)]

(4.8)
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4.2. Bayesian hierarchical linear regression

where VS
s=1 is the variance computed for all posterior parameters. From equation 4.7 and

4.8, it is clear that the computations are performed with respect to all posterior parameters
for each observation, then summed over all observations. In model comparison, the differ-
ence between best model zlppd can be computed, referred to as ∇zlppd. The best model then
receives ∇zlppd = 0. To obtain the full WAIC estimate, the following formula is applied:

WAIC = ´2(zlppd´ p̂waic) (4.9)

Ideally, the WAIC estimates should be as low as possible, where a lower WAIC indicates
better out-of-sample fit [37] [25]. However, a single WAIC estimate lacks meaning, as these
estimates are made to be compared between models. The model with lowest WAIC has best
predictive abilities. A standard error can then be computed on the log-pointwise predictive
density for each sample and summed up, referred to as se(WAIC). Two competing models
with overlapping se(WAIC) implies ambiguity over which model is best. Another way of
checking model performance, that is not directly related to predictive power, is to compute
importance ratios. Importance ratios are best used when all n data points are independent
[37], which is quite a stretch for hierarchical models. However, these ratios rs

i can be plotted
as a function of some key variable in a model to evaluate if the particular variable poses
difficulties in some regions, or to single out observations in a model that is extra hard to fit.

rs
i =

1
p(yi|θ̃s)

(4.10)

The importance ratio may then be averaged (or summed) over all posterior samples θ̃s,
providing one aggregated importance ratio per observation, which enables plotting one im-
portance ratio per observation.

4.2.3 Markov chain Monte Carlo

The idea behind Markov chain Monte Carlo (MCMC) algorithms is to iteratively draw sam-
ples of all model parameters θ from a posterior distribution p(θ|y), which as a whole is in-
tractable. The position of model parameters θ at some iteration is referred to as states, and
any movement between iterations is referred to as a transition. As the name suggest, MCMC
are Markov chains, where an updating of a state is dependent only on the previous state. On
the limit, when the number of iterations converges to infinity, the sampler will have visited
all regions of the posterior according to the density of in each region [25]. For smart and ef-
ficient exploration of the posterior distribution, or simply in situations where not all types of
MCMC algorithms meet the requirements, a special breed of MCMC is required.

4.2.3.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) gains efficiency by making smart proposals for the transi-
tions and by adaptation to the surroundings. The gains are made by incorporating yet an-
other set of (independent) parameters; the auxiliary momentum parameters ρ, parametrized
by a zero-mean vector and a mass-matrix M, and knowledge of the surrounding environment
through the log-probability of data p(θ|y). Note that the momentum parameter plays no role
in inference of the model, it serves only as an auxiliary paramter that increases efficiency [9].
The two sets of parameters then form a joint distribution p(ρ, θ|y) = p(ρ)p(θ|y), which is
used to define a Hamiltonian [33];

H(θ, ρ) = ´log
[
p(θ, ρ)

]
= ´log

[
p(ρ|θ)

]
´ log

[
p(θ|y)

]
= T(ρ|θ) + V(θ|y)

(4.11)
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4.2. Bayesian hierarchical linear regression

which describes the total amount of energy in the system. Above, T denotes the kinetic
energy and V denotes the potential energy, and together these two forms the total energy H of
the system. Having defined the system in accordance with the physics analogy to a Hamilto-
nian system in equation 4.11, Hamilton’s equations describe the transition-generating process
in the system as a time-evolution [33]:

Bθ

Bt
= +

BH
Bρ

= +
BT
Bρ

(4.12)

Bρ

Bt
= ´

BH
Bθ

= ´
BV
Bθ

(4.13)

Equation 4.12 and 4.13 defines the evolution of the system in HMC, where updates θ
is dependent upon the gradients of ρ and vice versa. As a consequence, the gradients for
equation 4.12 and 4.13 are required. Defining ρ as a multivariate Gaussian yields BT/Bρ =
Mρ [28]. The gradients for Bρ/Bt are model-dependent. However, a general formulation may
be written as a vector-derivative [9]:

Bρ

Bt
=
Blog

[
p(θ|y)

]
Bθ

=

(
Blog

[
p(θ|y)

]
Bθ1

, ...,
Blog

[
p(θ|y)

]
Bθd

)
, (4.14)

for a total of d model parameters. As Bayesian models includes multiplication of prior(s)
and likelihood(s), taking the log of all products yields a sum. Luckily, the derivative of a sum
is equal to the sum of derivatives [25], meaning that a general formulation for equation 4.14
is feasible (but not defined here). The process of updating states θ and momentum ρ is per-
formed using the leapfrog algorithm (or leapfrog integrator), which alternates half-updates
on ρ and full updates on θ, by taking L discrete leapfrog-steps, with step-size ε. The com-
bination of L and step-size ε determines how far θ is allowed to move in parameter space
[25]. If the product L ¨ ε equals to one, then the leapfrog algorithm is sufficiently able to gen-
erate a trajectory of L (intermediate) states from one end of the posterior to the other [9]. A
pseudo-algorithm for the leapfrog integrator is given below.

Algorithm 3 Leapfrog algorithm
Require: L: Number of leapfrog-steps
Require: ε: Step-size
Require: θ: States
Require: ρ: Momentum

for l P 1 : L do
ρ Ð ρ´ ε

2
Blog[p(θ|y)]

Bθ

θ Ð θ + εMρ

ρ Ð ρ´ ε
2
Blog[p(θ|y)]

Bθ

end for
return θ

In algorithm 3, equation 4.12 and 4.13 are put into context, somewhat bridging the gap
between a physics simulation and the model inference that is really of interest. The leapfrog
algorithm does however only constitute the part of HMC that generates the trajectory of θ
and ρ, i.e. the sequence of samples of length L that can be (and will be) tracked. The parts left
to complete HMC are the accept-reject step and the update step. Let θ(t´1), ρ(t´1) denote the
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4.2. Bayesian hierarchical linear regression

states and momentum prior to algorithm 3, and θ(t), ρ(t) denote the output from algorithm 3,
after all leapfrog steps are taken. Then the acceptance probability r is computed as [9]:

r =
p(θ(t)|y)p(ρ(t))

p(θ(t´1)|y)p(ρ(t´1))
(4.15)

Here, r is the negative change in energy, which is exactly equal to 1 if the energy is pre-
served throughout the leapfrog steps [9]. Since the trajectory is performed under discretized
time via L and ε, and not continuously, there is no guarantee that the energy will be pre-
served [28]. Energy preservation is especially difficult if the curvature of the posterior is
steep in some directions [33]. The final update step is shown below:

θ(t) =

"

θ(t), with probability min(1, r)
θ(t´1), otherwise

(4.16)

Intuitively, the parameters θ can be thought of as particles that are flicked back and forth
in a friction-less bowl, where the height of the bowl (at arbitrary state) correspond to the
negative log-probability of data (through V) and the velocity of which the particle moves is
regulated by the auxiliary parameter ρ (through T). If the particle faces an uphill slope, the
kinetic energy T decreases and the potential energy V increases. If the uphill slope is steep
and long enough, then the particle will eventually halt, and reverse down the slope, to a
region that is of higher density, and to it’s best ability preserve the total energy [28].

4.2.3.2 Chain diagnostics

In this section, the physical properties described in section 4.2.3.1 are used to evaluate how
well the sampler behaves. Having defined HMC as a tool that operates under Hamiltonian
laws, the system is mathematically well-defined. If the total energy H is not preserved, then
issues such as divergent transitions appear. In other words, having defined rigorous physical
laws over the environment in which updating is performed, those laws may be used to
check if updating is performed adequately. If energy is not maintained before and after the
leapfrog algorithm is executed, it simply means that the algorithm does not have optimal
performance. [33] [25]

Further diagnostics are the Gelman-Rubin scale reduction statistic R̂ [11] and the effective
sample size Ne f f [33]. Ne f f is calculated as the fraction of the total number of samples drawn
S and the inefficiency factor, measuring auto-correlation in the samples drawn from the pos-
terior. Chains of samples that exhibit a high degree of auto-correlation are not efficient and
receives low values for Ne f f , essentially meaning that the samples are not independent. The
R̂ diagnostic is an estimate of between-chain variance B and within-chain variance W. These two
diagnostic estimates can be computed for multiple parallel chains and are shown in brevity
below.

xvar+(θ|y) =
S´ 1

S
W +

1
S

B

R̂ =

d

xvar+(θ|y)
W

(4.17)

ρt =
1
τ2

ż

Θ
θ(n)θ(n+t)p(θ)Bθ

Ne f f =
S

1 + 2 ¨
ř8

t=1 ρt
(4.18)
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Above, ρt is the auto-correlation at lag t, S are the number of samples drawn by the sam-
pler, τ2 is the variance of a joint probability function p(θ). There is thus a notational redun-
dancy from previous sections. However, this section can be seen in isolation. Regarding the
magnitude of R̂ and Ne f f , there are no universal limits. If the chain(s) have converged to the
true posterior, then R̂ « 1 [33]. Various suggestions for the effective number of samples exist,
where e.g. 200 effective draws are suggested to be sufficient for describing the posterior [25].

4.2.3.3 Efficient re-parameterizations

One of the major obstacles to efficient sampling of HMC can be found within how the model
is parameterized. If one parameter of the model is a function of another parameter, such as
in the hierarchical prior presented in 4.5, then the sampler may turn into trouble because the
parameters are highly correlated in parameter space. The parameterization in 4.5 is known
as centered parameterization. A trick to avoid issues with correlations is to use non-centered
parameterization. The Gaussian hierarchical intercept αj in 4.5 may be defined by sampling
the mean αµ and the standard deviation ασ separately and introduce a new parameter; ηj „

NJ(0, 1), where each group in the hierarchy receives a unique parameter [25]:

αj = αµ + ασ ¨ ηj (4.19)

The re-parameterization presented in equation 4.19 is still a Gaussian distribution (as in
4.5), only now it has been ”un-normalized”. The intuition is to regard ηj as a standardized
– or unit Gaussian – version of αj. In order to retrieve αj to its original scale, it is shifted via
its mean αµ and scaled via itself and it’s standard deviation ασ ¨ ηj. This reparameterization
has introduced j = 1, 2, ..., J new parameters into the sampler and by doing so, a simpler
geometry is introduced. The extra parameters introduced places no particular extra burden
on the sampler, as each parameter receives it’s own momentum parameter and all gradients
are used anyhow. [25]

4.2.4 Stan

Stan [33] implements a version of HMC called the No-U-Turn Sampler (NUTS). The special
thing about NUTS samplers in Stan are that trajectories for model parameters θ from the
leapfrog algorithm are not allowed to turn around and move back towards the origin. This
restriction of the trajectories forces the NUTS samples to sample states in distant regions of
the posterior and reduces auto-correlations of the posterior samples. Moreover, Stan provides
tuning of hyper-parameters (not model parameters) that dictate how the sampler will behave.
By feeding a model specification such as 4.5, the following is fine-tuned:

• Leapfrog steps (L).

• Step-size (ε).

• Mass matrix (M).

Additionally, Stan will calculate the log-posterior density and log-posterior sum of deriva-
tives of a given model specification. Thus, the user need only specify the number of warm-up
iterations during which the tuning will take place and the number of iterations for which to
sample from the posterior, i.e. the selected size of posterior samples the user wishes to have.
More tuning parameters are available, and up to the user. However, these are not covered
in this thesis. Note that the acceptance probability in the NUTS sampler provided by Stan
differs from the one presented in equation 4.15, although the same philosophy holds. For
exact details, see [15].
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4.3 Bayesian neural networks

Bayesian neural networks aim to find the posterior distribution p(w|D) of the network
weights w conditioned on the data D. Under the Bayesian paradigm, the posterior distribu-
tion is calculated according to Bayes theorem. However, this solution is typically intractable
for neural networks of practical sizes. One approach to make the problem tractable is to
approximate p(w|D) using a variational posterior q(w|θ) whose functional form is known
and parameterized by θ. How well the variational posterior p(w|θ) fits the true posterior
p(w|D) is measured using the Kullback-Leibler (KL) divergence [21], given below:

KL
(
q(w|θ)||p(w|D)

)
=

ż

q(w|θ) ¨ log
(

q(w|θ)
p(w|D)

)
Bw = Eq(w|θ)log

(
q(w|θ)
p(w|D)

)
, (4.20)

where the intractable posterior p(w|D) is a component of the expression. The KL diver-
gence in equation 4.20 measures the average difference in log-probability between the variational
posterior q and the true, intractable posterior p. Moreover, KL divergence does not have
the same properties as other distance metrics (e.g. Euclidean), as the distance is asymmetric
and dependent on the direction, i.e. KL(q, p) ‰ KL(p, q). The metric does however have a
lower bound, when the two distributions are equal, then the divergence is the same in both
directions; KL(q, p) = 0 = KL(p, q) [25]. Due to the intractability, equation 4.20 needs to be
expressed differently. By replacing p(w|D) with it’s corresponding counterpart on the right
hand side of Bayes theorem, equation 4.20 can be expressed as:

KL
(
q(w|θ)||p(w|D)

)
= Eq(w|θ)

[
log

(
q(w|θ)

)
´ log

(
p(w)

)
´ log

(
p(D|w)

)]
´ log

(
p(D)

)
,

(4.21)
where the term p(D) is not dependent on the parameters θ and can thus be placed outside

the expectation term. Moreover, the first two terms within the expectation can – from the
definition of KL divergence – be rewritten as a KL divergence; KL

(
q(w|θ)||p(w)

)
, leaving

the third term as is. Thus, to find the optimal parameters θ˚ in the variational posterior,
optimization is performed by minimizing the parts of equation 4.21 that depends on θ:

θ˚ = arg min
θ

"

KL
(
q(w|θ)||p(w)

)
´Eq(w|θ)log

(
p(D|w)

)*

, (4.22)

where all terms are tractable. The terms in the argument on the right-hand side in 4.22
correspond to a prior-dependent part; KL(q(w|θ)||p(w)) referred to as the complexity cost and
a data-dependent part; log(p(D|w)) referred to as the likelihood cost, and is as a whole referred
to as the variational free energy [2] [14] [13]:

F (D, θ) = KL
(
q(w|θ)||p(w)

)
´Eq(w|θ)log

(
p(D|w)

)
(4.23)

The variational free energy – or cost function – in equation 4.23 describes a trade-off be-
tween regularization on the weights via the complexity cost and the eagerness to fit the data
via the likelihood cost [2]. There is a specific relationship between the variational free energy
and the Evidence LOwer Bound (ELBO), such that ELBO = ´F . Note that the complexity
cost in equation 4.23 is only defined in closed form for some specific prior-posterior combi-
nations and is computationally expensive.

4.3.1 Bayes By Backprop

A specific breed of Bayesian variational neural networks that utilize the theoretical aspects
given in section 4.3 are Bayes By Backprop neural networks [2]. The aim is to perform
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back-propagation on the weights w, which are distributions with parameters mean µ and
standard deviation σ. To allow only positive standard deviations, σ is parameterized as
σ = log(1 + exp(ρ)). Note that each weight receives exactly one mean and one standard
deviation parameter. The first aim is to formulate an objective function, consisting of the
weights and the parameters prone to optimization, such that f (w, θ) « F (D, θ). The objec-
tive function proposed in [2] is defined as:

f (w, θ) = log
[
q(w|θ)

]
´ log

[
p(w)p(D|w)

]
(4.24)

The objective function in equation 4.24 denotes an expectation w.r.t the variational pos-
terior, and is subject to minimization. Having defined the objective function, the aim is to
perform back-propagation [32] on the neural network weights, where gradients of the ob-
jective function directs the optimization procedure towards a minimum. By introducing
a stochastic parameter ε „ q(ε), one per weight, and treating θ = tµ, ρu as determinis-
tic, a diagonal Gaussian variational posterior can be described as a deterministic mapping
q(w, θ) = t(θ, ε) = µ + σ d ε and q(w|θ)Bθ = q(ε)Bε, where d is element-wise multiplica-
tion. The particular re-parameterization is known as the re-parameterization trick [19], and is
similar to the non-centered paramterization in equation 4.19. Re-parameterizing the varia-
tional posterior this way allows to express the derivative of the variational posterior q(θ|w)
as the expectation of the parameter-free noise q(ε):

B

Bθ
Eq(w|θ)

[
f (w, θ)

]
=
B

Bθ

ż

f (w, θ) ¨ q(w|θ)Bw

=
B

Bθ

ż

f (w, θ) ¨ p(ε)Bε

= Eq(ε)

[
B f (w, θ)

Bw
Bw
Bθ

+
B f (w, θ)

Bθ

] (4.25)

The re-parameterization trick in combination with the specific objective function from
equation 4.24 have resulted in an unbiased gradient expression for the objective function,
referred to as unbiased Monte Carlo gradients [2]. Furthermore, as equation 4.25 clearly sug-
gests; taking a sample from the variational posterior q(w|θ) can be performed by shifting
and scaling a sample from the parameter-free noise q(ε) and this particular sample is exactly
the gradient that is sought for back-propagation. With unbiased gradients, a Monte Carlo ap-
proach is proposed as an approximation of the exact cost in equation 4.23 [2]. For i = 1, 2, ..., S
samples, the expression becomes:

F (D, θ) «
S

ÿ

i=1

log
(
q(w(i)|θ)

)
´ log

(
p(w(i))

)
´ log

(
p(D|w(i))

)
(4.26)

Note that all terms of the approximated cost function depends upon weights drawn
from the variational posterior w(i) and that the expression clearly avoids computing the
complexity cost from equation 4.22 in closed form. Having liberated the neural network
from closed form solutions of the complexity cost, choice of priors for the weights p(w) are
less constrained. A full overwiew of the optimization procedure proposed by [2] is given in
algorithm 4, where α denotes the learning rate.

The parts B f (w,θ)
Bw in step 5 and 6 of algorithm 4 are shared among the network parameters

and correspond exactly to the gradients of a standard (frequentist) neural network [2]. Scaling
and shifting the gradients as in the algorithm above thus allows to learn both the mean µ
and the (parametrized) standard deviation log(1 + exp(ρ)). Additionally, adding noise to
the weights via ε is one way of obtaining regularization and is a technique that encourages
stability in the function that is being evaluated [12]. Thus, Bayesian neural networks of the
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4.3. Bayesian neural networks

Algorithm 4 Bayes By Backprop optimization procedure
1. ε „ N (0, 1)
2. w = µ + log(1 + exp(ρ))d ε

3. θ = tµ, ρu

4. f (w, θ) = log q(w|θ)´ log p(w)p(D|w)

5. ∇µ = B f (w,θ)
Bw + B f (w,θ)

Bµ

6. ∇ρ = B f (w,θ)
Bw

ε
1+exp(´ρ)

+ B f (w,θ)
Bρ

7. µ = µ + α ¨∇µ

ρ = ρ + α ¨∇ρ

kind presented in this section are potentially regularizing in two ways; via the priors and and
via the random noise associated with the weights.

4.3.2 Stochastic optimization

Stochastic gradient descent may be regarded as an improved way of learning the gradient
found in back-propagation, where small chunks of data called mini-batches are used to evalu-
ate the gradients. As a consequence of the usage of mini-batches, the gradient is noisy, which
can lead to faster learning [12]. Stochastic gradient descent on the approximated cost from
equation 4.26 may be used by splitting the data D into m

1
equally sized subsets Dj and assign

each partition a partition-weight πj, where
ř

j πj = 1 and πj P [0, 1] [2]. Note that only the
complexity cost is scaled with the partition-weights, as given below:

F (D, θ) « πj

[ S
ÿ

i=1

log
(
q(w(i)|θ)

)
´ log

(
p(w(i))

)]
´ log

(
p(Dj|w(i))

)
(4.27)

Note that by assigning the partition-weights decreasingly, the scochastic optimization
mimics Bayesian inference; when little data is seen, the priors plays a significant role and as
data increases the prior becomes less influential. Using a decreasing scheme for the partition-
weights is suggested as a way to avoid getting stuck in local minima and avoid poor param-
eters [2].

4.3.3 Activation function

Bayesian feed-forward networks of the kind presented here use – like ordinary neural net-
works – activation function(s) between the input and hidden layer as well as between hidden
layers. Choice of activation function is dependent upon the given problem. However, some
activation functions have attractive properties. The rectified linear unit (ReLU) is a non-linear
activation with close to linear properties, and thus the optimization surface may be easier to
optimize [12]. A formula for the ReLU is given below.

h(z) = max(0, z) (4.28)

In equation 4.28, the input z could either denote the input vector x, multiplied by the
neural network weights w, or the output from a previous layer.

4.3.4 Optimizers

The last step of the optimization procedure given in algorithm 4 corresponds to the standard
gradient descent, where learning is scaled by some pre-selected learning-rate (or stepsize) α.
The learning rate itself is hard to fine-tune, i.e. challenging to specify for the user. Using fixed
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4.3. Bayesian neural networks

stepsizes in all directions may be a drawback, as the cost function may be more sensitive to
steps in some directions of a high-dimensional optimization surface than it is to others. As
such, it may be beneficial to use an optimization algorithm that adapts the momentum in
different directions according to the corresponding sensitivity. [12]

The Adam algorithm [20] is an alternative to standard gradient descent that utilizes
additional information on the first-order and second-order momentum for each parameter
separately and computes bias-corrections of such before taking an optimization step. Usage
of the Adam optimizer requires a stepsize, and several other parameters that can be tweaked
to other values than the suggested defaults. In this thesis, the default suggestions for the
additional parameters are kept. The full Adam optimizer presented in [20] is presented in
algorithm 5.

Algorithm 5 Adam optimizer
Require: α: Stepsize
Require: ε: Constant for numerical stabilization (default = 10´8)
Require: β1 P [0, 1): Exponential decay-rate for first moment (default = 0.9)
Require: β2 P [0, 1): Exponential decay-rate for second moment (default = 0.999)
Require: f (θ): Objective function
Require: θ0: Initial parameter vector

m0 Ð 0
v0 Ð 0
t Ð 0
while θt not converged do

t Ð t + 1
gt Ð ∇θ ft(θt´1) (Gradients w.r.t objective function, at timestep t)
mt Ð β1 ¨mt´1 + (1´ β1) ¨ gt (Biased first moment estimate)
vt Ð β2 ¨ vt´1 + (1´ β2) ¨ g2

t (Biased second moment estimate)
m̂t Ð mt/(1´ βt

1) (Bias-corrected first moment estimate)
v̂t Ð vt/(1´ βt

2) (Bias-corrected second moment estimate)
θt Ð θt´1 ´ α ¨ m̂t/(

?
v̂t + δ) (Update step)

end while
return θt (Final parameters)

Note that evaluation of gt in algorithm 5 above corresponds to algorithm 4, excluding the
updating step (step 7). With individual treatment for all parameters, gt, mt etc. are vectors,
and g2

t denotes the element-wise square of gradients for all parameters [20]. Using mini-
batch optimization, the Adam algorithm is evaluated m

1
times before the complete data is

back-propagated. Successfully updating all m
1

mini-batches corresponds to one epoch.

4.3.5 Model evaluation

Model evaluation can be performed by monitoring the cost function of the network for each
epoch, for both training data and evaluation data simultaneously. The fitting procedure is
performed by minimizing a cost function at each epoch, which – as discussed – includes
regularization on the weights. By only storing parameters of the network on the basis of the
validation set cost at each epoch, then early stopping is achieved [12]. This kind of stopping
criteria always ensures the best generalizing ability of a neural network. If several models are
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4.3. Bayesian neural networks

fitted on the same data, then the cost function over epochs can be compared, in order to see
which model performs best. Additionally, the output can be used to compute MSE and R2 in
accordance with equation 4.3 and 4.4.

4.3.6 PyTorch

The machine learning framework PyTorch [31] allows for simple specification of the feed-
forward structure applied in neural networks, and back-propagation through automatic
differentiation [30] of the objective function. In other words, the program computes gradients
of any given objective function, meaning that no closed form gradients are required to learn
the neural networks. Furthermore, optimizers such as Adam and activation functions such
as ReLU are pre-programmed.
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5 Results

5.1 Bayesian hierarchical regression

To ensure that the hierarchical linear models included in this thesis are adequately fitted,
the HMC sampler is checked according to the chain diagnostics presented in section 4.2.3.1.
During model prototyping, the models were fitted using several chains to ensure that po-
tential different starting positions gave similar results. Note that prototyping models are
not included in the report. The models presented in this chapter are fitted using one chain
each. The results presented fulfils the following requirements: no divergent transitions, no
iterations that exceed maximum tree-depth and trace plots indicating that the chains have
mixed well. All models are fitted using 500 warm-up iterations, and 1500 sampling itera-
tions. All Ne f f are greater than 200, but all R̂ are not within [0.99, 1.01]. Careful checks of the
chains indicate that despite the somewhat large R̂ for some parameters, the chains seem to be
sampling sufficiently well for inference. For specifics of trace plots, effective draws and the
Gelman-Rubin diagnostics for relevant parameters, see Appendix A.

5.1.1 Model specifications

All models are fitted using the same prior-setup for the varying intercepts (αj), consisting of
a weakly informative, non-centered prior as in equation 4.19. The prior mean (20) for α is
chosen empirically from the data mean and given wide tails with a high standard deviation
(5). The motivation is to gently nudge the posterior mean α̃ using an empirically reasonable
value, since no relevant prior for the intercept could be elicitated. Identical weakly infor-
mative priors for the varying intercept standard deviation parameter ασ and the regression
noise σ are chosen not to steer ICC calculated by equation 4.6 in any particular direction. For
predictions, the varying intercept mean parameter αµ is used as partitioning of new data (pa-
tients) into the correct cluster is not possible. This thesis evaluates three different priors for
slope parameters – leading to three models – with all other priors shared. Variable selection
is performed according to common variables in BIA equations in [1], in combination with the
suggested phase angle (equation 3.4). The frequency of 250 kHz proved during prototyping
to give comparatively better results to other frequencies and is hence the only frequency uti-
lized. A general model specification for the parametric form is given below, followed by the
three specifications that separates the models.
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5.1. Bayesian hierarchical regression

yij „ Normal(µij, σ)

µij = αj + γ ¨ Rin
250 + β3 ¨DMale + β4 ¨ ϕin

250 + β5 ¨Weight + β6 ¨ Height + β7 ¨ Age

γ = β1 + β2 ¨DMale

αj = α + σα ¨ ηj

α „ Normal(20, 5)

σα „ Half-Normal(0, 2)

ηj „ Normal(0, 1)

βk „ Model specific

σ „ Half-Normal(0, 2)

Regularizing priors for slope parameters

A Laplace prior is used to penalize large coefficients for slope parameters. Thus, completing
the previous model specifications is performed using a Laplace prior with zero mean and
standard deviation σ = 0.1. This prior is heavily regularizing, placing negligible mass outside
of ˘0.2, meaning that for any slope coefficient to be large, the corresponding variable needs
to have a really high influence on the target variable. The model specification is completed
with:

βk „ LaplaceK(0, 0.1) (5.1)

Weakly informative priors for slope parameters

In models with standardized features and non-standardized target, a slope parameter βk = 1
is readily interpreted as; a one standard deviation increase in variable k influences the target variable
with one unit increase. With that in mind, independent Cauchy priors for slope parameters
with mean 0 and standard deviation 2 allows for parameters to move free due to the wide
tails of a Cauchy distribution. The model specification is thus completed with:

βk „ CauchyK(0, 2) (5.2)

Elicitated priors for slope parameters

Based on the commissioner’s domain specific knowledge, a set of priors for the slope param-
eters were elicitated. Elicitation was performed in such a way that a list of model variables
was included, and with comments regarding each variable, a relevant prior was created. The
comments were given as a range from highly positive influence (++) to highly negative influ-
ence (´´). To formulate priors over the specified range, only Gaussian priors was considered,
with the following translation scheme from the given comment into priors:

Comment Prior translation

++ µ = 4

+ µ = 2

0 µ = 0

´ µ = ´2

´´ µ = ´4
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5.1. Bayesian hierarchical regression

No correlations between parameters or variables are hypothesized, meaning that each
slope parameter receives a prior independent from all others. Unit variance of a Gaussian
distribution in combination with the chosen means results in an informative prior, on the
boundary to regularizing. The missing part of the model specification is filled below:

β1 „ Normal(2, 1)

β2 „ Normal(4, 1)

β3 „ Normal(2, 1)

β4 „ Normal(´2, 1)

β5 „ Normal(4, 1)

β6 „ Normal(2, 1)

β7 „ Normal(´2, 1)

(5.3)

5.1.2 Parameter estimates

Below, posterior parameter estimates that are part of the linear model (link function) are
displayed for all fitted models. From here on, the models will be referred to as regularized
model, weakly informative model and elicitated model, according to the specifications given in 5.1
to 5.3.

Regularized Weakly informative Elicitated

Parameter Variable Mean Sd Mean Sd Mean Sd

α Intercept 19.54 0.06 19.51 0.06 19.51 0.06

β1 Rin
250 1.19 0.06 1.17 0.06 1.16 0.06

β2 Rin
250 ¨DMale 1.28 0.07 1.31 0.07 1.33 0.07

β3 DMale 3.01 0.10 3.07 0.10 3.07 0.11

β4 ϕin
250 0.46 0.06 0.46 0.06 0.44 0.06

β5 Weight 0.64 0.07 0.65 0.08 0.68 0.07

β6 Height 1.52 0.05 1.51 0.05 1.51 0.05

β7 Age -0.59 0.03 -0.60 0.03 -0.60 0.03

Table 5.1: Parameter estimates for hierarchical linear models.

In table 5.1, different prior specifications did not result in much of a difference between
models, with all parameters within one standard deviation from the corresponding param-
eter in the other models. The linear interaction suggests that males have a steeper slope for
ALST than females, as the linear interaction parameter β2 for Rin

250 ¨DMale differs from 0 when
DMale ‰ 0, which happens for males. The most notable difference found between the three
models presented is that the regularized model trades a higher intercept α for less differences
between genders β3.

5.1.3 Performance on training data

In this section, all three models are evaluated on various checks on the training set. Below,
plots displaying Bayesian R2, MSE and ICC for all three fitted models are presented. The
center line in each subplot below denotes the median, and the corresponding value on the
x-axis displays the median rounded to the third decimal. Similarly, the left and right lines
denote the 5th and 95th percentile, rounded to the third decimal.
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Figure 5.1: Bayesian R2, MSE and ICC for all hierarchical linear models. Left: regularizing
model, center: weakly informative model, right elicitated model.

The differences between models in figure 5.1 are sparse, as all three metrics are similar for
all three models. If any metric is to stand out, it is the difference in MSE, which is higher for
the weakly informative model, and possibly the wider range the three metrics display for the
weakly informative model. Posterior metrics for ICC indicates that the posterior variation-
between (σ̃α) is larger than the posterior additive noise (σ̃), suggesting that a multilevel-model
is a necessity. As the ICC metric is a posterior metric, based on the particular parameters
of the model, and all mass is located to the right of 0.5, there is a 100 % probability that
σ̃α ą σ̃, according to all three models. To estimate out-of-sample fit, the estimates discussed
in section 4.2.2 are computed on the log-likelihood matrix for each posterior draw of the
posterior model parameters θ̃.

Model ∇zlppd zlppd p̂waic WAIC se(WAIC)
Elicitated 0.00 -12080.31 355.33 24160.63 517.03

Regularizing -27.66 -12107.98 346.12 24215.95 519.35
Weakly informative -1839.88 -13920.20 778.45 27840.39 677.00

Table 5.2: Estimates on out-of-sample predictive abilities of hierarchical linear models.

In table 5.2, WAIC, as calculated by equation 4.9 is a measure for expected deviance
on new data, p̂_waic, as calculated by equation 4.8 is the number of effective parameters
and ∇zlppd is the expected log-predictive density as calculated by equation 4.7. The WAIC
estimate suggest that the model with elicitated priors for the slope parameters yields best
out-of-sample performance and p̂_waic suggests that the model using weakly informa-
tive priors have the highest number of effective model parameters. As the standard error
se(WAIC) for the elicitated model is wide enough for the elicitated model WAIC to cover the
regularizing model WAIC, care should be taken as regarding the elicitated model to have the
best out-of-sample performance.
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To provide a visual inspection of model performance on training data, two different
checks are performed for BMI: (1) the aggregated relative effective sizes presented in equa-
tion 4.10 for each model and plotted as a function of BMI and (2) the difference ỹ ´ y is
computed and plotted as a function of BMI, similar to the right side of figure 3.2. The check
is performed to see if the various underlying causes of high and low BMI have a confound-
ing effect on predictions generated by the three fitted models.

Figure 5.2: Importance ratios plotted over BMI for all hierarchical linear models. Green points
correspond to females, orange points correspond to males. Left: regularizing model, center:
weakly informative model, right: elicitated model.

In figure 5.2, the difference between models become apparent. The aggregated impor-
tance ratios r is not systematically increasing with increasing BMI yet mostly obese subjects
receive high values of such. This is especially true for the weakly informative model, which
contain more problematic observations. Notably, high ratios is primarily concerned with
male subjects, for all models. This is an indication that the model faces a tougher task when
predicting males. The difference between posterior predictions and actual data plotted over
BMI is shown below.

Figure 5.3: Difference ỹ´ y plotted over BMI for all hierarchical linear models. Green points
correspond to females, orange points correspond to males. Left: regularizing model, center:
weakly informative model, right: elicitated model.

No pathological behaviours associated with increased or decreased BMI can be found in
figure 5.3 for the regularizing and elicitated model, which are visually close to identical. The
weakly informative model shows signs of increasing difference with increasing BMI, i.e. a
tendency to over-estimate ALST. Most predictions lie within ˘5 kg from the target variable.
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However, some concerns can be raised towards all three models ability to accurately esti-
mate ALST, as there are a few quite distinct outliers. Further investigations on the posterior
predictions ỹ generated by the three models are displayed in figure 5.4.

Figure 5.4: Y-vs-Y plots for posterior predictive means on training data. Green dots represent
females and orange dots represent males. Left: regularizing model, center: weakly informa-
tive model, right: elicitated model.

In figure 5.4, the three models again tend to be very similar, and contain no major differ-
ences in terms of predictions. However slight differences are found in the top-right region,
where the weakly informative model tends to perform best while the other two models tend
to under-estimate ALST. It should be noted that the top-right region of muscular subjects
contains few observations, so there is a degree of caution that should be taken when regard-
ing the elicitated and regularized models as incapable of predicting high ALST.

5.1.4 Performance on validation data

Below, validation data MSE is plotted for all three models. Similar to figure 5.1, the lines
denotes 5th, 50th and 95th percentile and the x-axis values correspond to those quantiles,
rounded to three decimals.

Figure 5.5: MSE for validation data. Left: Regularizing model, center: weakly informative
model, right: elicitated model.

Despite the differences found in the WAIC estimates given in table 5.2, figure 5.5 indicates
that the weakly informative model has similar predictive performance to the other two mod-
els as there is not much difference in MSE. In fact, the weakly informative model displays
the second lowest (median) validation set MSE, by a very small margin. The procedure of
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plotting BMI as a function of the difference between predictions as in figure 5.3 is repeated
for the validation set in figure 5.6.

Figure 5.6: Difference ỹ´ y plotted over BMI for all hierarchical linear models on validation
data. Green points correspond to females, orange points correspond to males. Left: regular-
izing model, center: weakly informative model, right: elicitated model.

In figure 5.6, no pathological behaviours of the differences between target and prediction
over BMI is visible. All models display similar behaviours. Similar to figure 5.4, plots of
posterior predictions for all models are computed for the validation set, presented in figure
5.7.

Figure 5.7: Y-vs-Y plots for posterior predictive means on validation data. Light green dots
represent females, dark green dots represent males. Left: Laplace model, center: weakly
informative model, right: elicitated model.

The predictions given in figure 5.7 indicates that all three fitted models follow the valida-
tion data in similar fashion to how the models behaved on training data. The same pattern
regarding individuals with high ALST in figure 5.4 is however not present above to the same
extent; predicting high ALST does not impose additional difficulties for the hierarchical
linear models on validation data.

To see how the predictions perform for underweight, normal weight and obese subjects,
the full posterior predictive distribution presented in equation 4.2 is computed for the se-
lected subjects presented in table 3.5. This is presented in figure 5.8, where black dots cor-
respond to the y value for each subject and the distributions show the posterior predictive
distribution ỹ given by equation 4.2 for that specific subject.
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Figure 5.8: Posterior predictive distributions for a selection of subjects with different BMI.
From left to right: underweight, normal and obese. Top row: Male subjects, bottom row: fe-
male subjects. Gray: regularizing model, orange: weakly informative model, green: elicitated
model.

First of, figure 5.8 shows again that in terms of predictions, all three models are very
similar. Almost nothing separates the three different (almost indistinguishable) colors for
the three models. The over-estimation of ALST in the bottom-right sub-figure and under-
estimation of ALST in the top-left sub-figure are problematic signs for the linear models. All
six selected individuals are as representative of the respective region of BMI with respect to
a couple of other variables. However, the two mentioned subjects correspond to an under-
weight male with relatively high ALST and an overweight female with relatively low ALST.
That means the under- and over-estimation is likely (but not guaranteed) to be problematic
for underweight males and overweight females, if calculated according to BMI.

5.1.5 Model selection

Based on the out-of-sample deviances presented in table 5.2, the model with elicitated priors
on the slope parameters is estimated to have the best predictive ability, although the standard
error of WAIC (se_waic) is large enough to cover the WAIC estimate of the regularized
model. All fitted models have very similar parameter estimates, with primary differences
found in the intercept and dummy-variable for males. The weakly informative model dis-
play worrying signs for increasing BMI, which is a direct contradiction to the aim of this
thesis and is ruled out. For the elicitated and regularized model, no differences in visual per-
formance is detected other than for the relative effective sizes in figure 5.2, which is in favour
of the regularized model due to the lower amount of problematic observations. Hence, the
regularized model is considered the most suitable, and selected. In figure 5.9, an Y-vs-Y plot
is displayed on the left-hand side in combination with test set MSE on the right-hand side
for the test set.

38



5.2. Bayesian neural networks

Figure 5.9: Test set Y-vs-Y (left) and test set MSE (right) for the regularized model.

In figure 5.9, problematic predictions can again be found in subjects with much muscles.
The large deviations have resulted in MSE that is slightly higher than that of the validation
set. Also, as there are fewer observations in the test set, large deviations become more influen-
tial. The average MSE of the posterior distribution is approximately 4.0, with an approximate
90 % probability interval; 3.8 ă MSE ă 4.28. I.e. it is 9 times more probable that test set MSE
is within the intervals than outside.

5.2 Bayesian neural networks

The neural networks presented in this section share variable selection and hyper-parameter
settings. The variables used are can all be found in table 3.3; all 20 resistance (R), all 20
reactance (Xc), all 4 entropy-based phase angles (ϕe

f ), the entropy distance (Dϕ), both gender
dummies (DMale, DFemale) and finally the anthropometric variables Age, Height, Weight and
BMI. No standardization is performed on the target (y). The Adam optimizer is used in
combination with the ReLU activation function, and all networks have three hidden layers
with 8 hidden units each. All networks have a maximum training of 1000 epochs, where early
stopping is used according to the optimal validation set cost. A mini-batch configuration
where each mini-batch of size 100 is sampled uniformly is chosen, which results in 40 mini-
batches for the training set and 8 for the validation set. Thus, the natural ordering that occurs
due to repeated visits is most likely removed and evaluation of the likelihood cost may be
evaluated under the assumption of i.i.d observations. The particular weight-scheme for each
mini-batch discussed in section 4.3.2 is set according to the proposed scheme in [2]:

πi =
2m

1
´i

2m1

´ 1
, (5.4)

where i = 1, 2, ..., m
1
. For the likelihood cost presented in equation 4.23, the squared loss

is used. Both neural networks are initialized with means (µj) for biases and weights sampled
from a Gaussian distribution with zero-mean and standard deviation of 0.1, i.e. tightly con-
centrated around 0. Log standard deviation parameters (ρj) are initialized uniformly in the
interval [´6,´5]. Empirical experiments proved that the initialization described gave consis-
tent results, under repeated trials with different random seeds. The parameter-free noise is
distributed as p(ε) „ N (0, 1). Differences in the neural networks can be found within the
prior-specification for the weights. Two different set-ups are tested, one Gaussian prior and
one Laplace prior:
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pL(w) „
N

ź

i=1

Laplace(w(i)|0, 0.5)

pN(w) „
N

ź

i=1

Normal(w(i)|0, 0.5)

where N is the total number of weights and biases in the network. Henceforth, the neural
network with Gaussian prior for the weights will be referred to as the Gaussian NN and the
neural network with Laplace priors for the weights will be referred to as the Laplacean NN.

5.2.1 Fit metrics

The variational free energy for both the Gaussian NN and Laplacean NN are plotted below.
Here, the first 100 epochs are trimmed, as the loss drastically decreases during these epochs
and deteriorate any visual interpretations due to the difference in loss function, which de-
creases with several orders of magnitude only a couple of epochs after initialization.

Figure 5.10: Variational free energy for the Gaussian NN (orange) and the Laplacean NN
(green). Left: training data, right: validation data.

Throughout most displayed epochs in figure 5.10, the Laplace NN outperforms the Gaus-
sian NN with respect to the cost function. Early stopping was initiated at epoch 974 for the
Gaussian NN and at epoch 971 for the Laplacean NN. Both neural networks display a trend
that indicates the cost function keeps decreasing, which may be interpreted as more iterations
are required. In appendix A, the corresponding plots for complexity cost and likelihood cost
can be found, which suggest that the likelihood cost has reached its minimum, and that only
the complexity cost decreases. The likelihood cost is most important for predictions, and
thus the number of epochs that are run to obtain the above results are considered enough.
In figure 5.11, distributions for point estimates of means and standard deviations for the
weights are plotted.

In figure 5.11, most weights are dispersed around 0, which is where both models have the
highest mass for posterior means µ̃, and the standard deviations shows that most standard
deviations for the weights are found around σ̃ « 0.7. Differences between parameters in
between the are sparse, as the difference between the different distributions in figure 5.11 are
sparse.
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Figure 5.11: Posterior means and standard deviations for the Gaussian NN (orange) and
Laplacean NN (green). Left: means, right: standard deviation.

5.2.2 Performance on training data

Similar to the plots presented throughout section 5.1, predictions from the neural networks
are fitted versus the ground truth, to see if the network is able to predict adequately in all
regions. However, the plots presented in this section does not provide different colors for
gender. Both neural networks can adequately make predictions for both genders, so includ-
ing this variable only contributes to more cluttering, and is hence scrapped.

Figure 5.12: Y-vs-Y plots for posterior predictive means on training data. Left: Laplacean NN,
right: Gaussian NN.

Both models display high similarities in terms of predictions, as seen in figure 5.12. Both
models predict well in low to high ranges of ALST, with slight concerns for very muscular
individuals in the top-right corner. The predictions above is considerably closer to the truth
than in the hierarchical linear models presented in figure 5.4, practically reduced in half.
Below, distributions of R2 and MSE are plotted for both neural networks.

In figure 5.13, differences between the Gaussian NN and Laplacean NN becomes more
apparent, as both MSE and R2 differs between models. Both metrics are calculated based
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5.2. Bayesian neural networks

Figure 5.13: Bayesian MSE (left) and R2 (right) for the two neural networks on training data.
Green: Laplacean NN, orange: Gaussian NN.

on 1500 draws from the posterior distribution of each weight. The Laplacean NN produces
higher R2 and lower MSE, yet the differences are quite subtle. It should be noted that the
Laplacean NN seemingly has a lower bound for MSE and upper bound for R2, as the distri-
butions look almost truncated in the tails.

5.2.3 Performance on validation data

Similar to figure 5.7, the posterior predictions from both neural networks are plotted versus
y in figure 5.14 for the validation data.

Figure 5.14: Y-vs-Y plots data for posterior predictive means on validation data. Left:
Laplacean NN, right: Gaussian NN.

Again, the predictions reveal little difference between models, as both the left-hand side
and right-hand side of figure 5.14 look identical. Both models hold the ability to predict
all regions of ALST for unseen data. Similar to figure 5.8, the difference between posterior
predictions and target variable is plotted as a function of BMI below.
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5.2. Bayesian neural networks

Figure 5.15: Difference ỹ ´ y plotted over BMI for Laplacean NN (left) and Gaussian NN
(right).

In figure 5.15, no pathological behaviours for predictions are associated with low or high
BMI is displayed. However, the largest outliers are primarily found in mid-to-high regions
of BMI (ą 30). On average, both neural networks predict ALST that matches the target for
all ranges. Below, MSE is computed for both neural networks on validation data, this time
using 1500 new samples from the posterior distribution of each weight.

Figure 5.16: Validation set MSE for Laplacean NN (left) and Gaussian NN (right).

In figure 5.16, the differences between the two neural networks once again becomes ap-
parent. Similar to figure 5.13, the Laplacean NN outperforms the Gaussian NN in terms of
MSE, with approximately 0.1 units. The lower bound which was apparent for the Laplacean
NN in figure 5.13 is not as evident as previously.
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5.3. Results summary

5.2.4 Model selection

As both neural networks display similar predictions for all ranges of BMI, and no clear visual
differences in Y-vs-Y plots are apparent, the choice comes down to selecting the model with
best predictive abilities and lowest cost function. In this case, the Laplacean NN performs
best, and is hence selected. Test set MSE and test set Y-vs-Y plot is displayed below, where
MSE calculations are based on 1500 samples from the posterior of each weight.

Figure 5.17: Y-vs-Y-plot (left) and MSE (right) for the Laplacean NN on test data.

In figure 5.17 test set MSE has it’s mode around 2.15, with high uncertainty displayed in
the right tail. The Y-vs-Y-plot displays that some subjects with high ALST remains hard to
predict well and receives an under-estimation of ALST. Similar to the linear models, the test
set MSE is higher than validation MSE.

5.3 Results summary

A table of MSE for BIA predictions, the selected hierarchical linear model and the selected
neural network is given below for training data, validation data and test data. Since MSE
from the fitted models are distributions, the posterior mode of MSE is taken as a point esti-
mate.

Model Training Validation Test
BIA prediction 6.55 6.30 6.05

Hierarchical linear 3.86 3.51 4.00
Neural network 1.73 1.84 2.14

Table 5.3: MSE for the different data sets.

Table 5.3 suggests that the BIA device predicts MM that is closer to ALST in the test set
as compared to the validation set. The neural network and hierarchical linear model suggest
otherwise. For the neural network, the fact that generalization error for the validation set
would be lower than test set is not strange, as the optimal weights are chosen with the low-
est variational free energy on the validation set. However, as the hierarchical linear models
suggest, the test set seems to include subjects that are hard to predict. In all cases, the results
show that the corresponding error for the BIA device is highest, whereas the neural network
error is lowest, by quite some margin.
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6 Discussion

6.1 Data

Accuracy of the target variable is only as accurate as the quality of the golden standard
method allows it to be, i.e. predictions on ALST given by the DXA device. While DXA
is a reliable tool for assessment of ALST, it is not it’s primary strength. Therefore, some
caution should be taken as to how certain the measurements of the target variable is in
reality. For instance, different DXA devices from different manufacturers have been reported
to give inconsistent results [6]. It is mentioned several times in this thesis that DXA gives
predictions on ALST, seen as the ground truth quantity rather than the exact quantity. Con-
sidering the previously mentioned, what is the point of creating a predictive model if the
machine that generates the target variable in itself displays uncertainty? Considering that
the DXA predictions are stable when compared to the BIA predictions, any upgrade in terms
of precision in the target variable allows to create a model that can outshine the device output.

The majority of data points in this thesis are collected while performing routine medical
examinations at Sahlgrenska hospital. Although patients have received instructions of how
to correct the diet and exercise prior to measurements, no meta-data of such information is
accessible. Since the BIA device is recommended to use under very strict conditions [34], and
no such conditions can be guaranteed, many of the data points may contain an undesirable
degree of noise that have arised from sub-optimal measurement conditions. As a conse-
quence, the degree of noise may be quantified, yet the underlying factors for why the noise
is present will remain unknown.

The data cleaning described in section 3.3 included removals of both NA’s and measure-
ments that was considered unrealistic, or outliers. The total amount of rows removed from
the original set was 421 observations, which corresponds to approximately 7.3 percent of the
total data. Essentially, this is information lost. Imputation was considered as an alternative
to the plain removals. For instance, HMC can be used for imputation of continuous variables
[25]. Imputing NA’s would have little effect, as there are only six missing data points. How-
ever, for the outlier cases, using imputation of the complex dependencies that exist within
the variables would be tough due to the confounding effect that many variables have. There
is no point in imputing values if the imputed values are no good. The idea was scrapped
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6.2. Results

due to the complexity of the task, in comparison to the information that could potentially be
gained and the potential errors that the imputation could infer in the data.

Many of the variable transformations in this thesis are related to the variable transforma-
tions in previous studies. For instance, the index variable of resistance seems to be the most
common transformation [1]. The proposed variable of phase angle index is – to the authors
knowledge – not present in the literature and serves as a novel suggestion of data transforma-
tion. The entropy-based variables and the (log-) Mahalanobis distance variable are also – to
the authors knowledge – unseen in previous literature in the way they are set up. However,
using entropy variables in itself is not new, and has been applied to BIA equations before. The
reasoning in creating these variables was to quantify the quality of a measurement, with the
hypothesis that low entropy and high distances would result in low quality measurements.
In the neural network setting where these variables were applied, it is hard to investigate the
effect which these variables have, but experiments with and without these variables proved
that small gains in both MSE and R2 were made.

6.2 Results

The data set used in this thesis contains more observations than most previous studies and
contains a degree of diversity that is representative of an adult Swedish population, includ-
ing patients with diverse medical conditions. Most data materials in similar studies are much
narrower, which allows modelling a specific group of individuals that is of clinical interest.
Using a diverse sample as the one obtained in this thesis may lead to lower model perfor-
mance (e.g. MSE, R2) compared to similar studies yet result in models with better ability to
generalize to a whole population. The results indicate that despite the wide selection, the
retrodictive (R2) and predictive (MSE) metrics for both the hierarchical linear models and
the neural networks are comparative to those seen in [1]. These metrics are naturally highly
dependent on the parametric form, and no other study models the exact same parametric
form as in this thesis.

The Laplace and Cauchy prior specifications were tested to see how sensitive the analysis
is to prior information, a form of sensitivity analysis. The elicitated prior was tested as it
is the most reasonable method for choosing a prior and to see if domain specific expertise
would affect inference. In all three cases, predictions were seemingly identical. The main
difference was found in the weakly informative specification, which performed slightly
worse to the evaluations that were performed. It seems as the models fitted allows for very
little flexibility. A reason for this might be the highly influential resistance index variable
that was modelled as an interaction. The results suggest that the models face a tough task
of predicting the very highest ranges of ALST. However, in these regions there are very little
data.

The neural networks are implemented in PyTorch [31], which does not include pre-
programmed probabilistic (Bayesian) layers. Thus, the neural networks were implemented
by the author, using relevant parts of the PyTorch framework. For model code, see Appendix
B. The hierarchical linear models are coded in Stan [33], which is a highly flexible modelling
language. Code for the linear models can be found in Appendix B. Several alternative options
to PyTorch and Stan exist, but was not tested. Exactly how much the usage of alternative
frameworks could potentially change inference remains unknown.
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6.3. Method

6.3 Method

The linear models presented in this thesis may not have the predictive power of other
non-linear models. Linear models may be tweaked to display non-linear predictions, by
incorporating one or several higher-order polynomials (or similar) while still fulfilling the
definition of linear models; linearity in the parameters. From a theoretical point of view,
there are several approaches that could be tried. For instance, as ALST has a theoretical
established quadratic relationship with age [6], such a configuration would be feasible. Po-
tential modelling choices are perhaps in abundance, it is not possible to include all. The
variable selection and the linear models presented in this thesis may be justified from what
exists in the literature, as variable selection to a high degree was founded upon previous
research. The predictive metrics of linear models reported in this thesis places a direct com-
parison to other models available and as a reference for future studies in the field.

Inclusion of neural networks was to a degree chosen as to see if a more advanced and
complex model structure would be able to improve predictions while generalization to
unseen data is maintained. The multi-layer setting of three layers was used with the aim
of finding the complex patterns that exist in the data via deep learning. Empirical testing
proved that a three-layer neural network performed well on training data with sufficient
generalization to unseen data. Empirical testing of different structures also proved that a
single-layer neural network was enough to easily outperform linear regression, yet not with
the same amount of reduced variability in predictions. Exploring deep learning is likely an
approach that can reduce variability even further, to what extent remains unknown.

Although regarded as benchmark models, the linear models fulfil an interesting purpose;
the hierarchical setup. The ICC metric was used in this thesis to check if a multi-level struc-
ture was necessary – and indeed it was. As all ICC distributions presented in this thesis have
all posterior mass over 0.5, there is thus a 100 percent probability that hierarchical models are
necessary (assuming 0.5 is used as a threshold), according to the models and the parametric
form that they are founded upon. Although changing the parametric form may lead to
contradicting results regarding ICC, the results are somewhat telling. The fitting of neural
networks may then be questioned, as the NN’s presented do not incorporate the hierarchical
structure in the data. However, since the NN’s have a completely different parametric form,
it remains unknown if ICC would be of any importance in a hierarchical NN setting.

The neural networks fitted in this thesis are built on the Bayesian foundation, using vari-
ational inference. The diagonal Gaussian representation of the weight posterior distribution
is a considerable simplification. There are likely dependencies that exist between the weights
that this particular setup does not account for. However, the fitted Bayesian neural networks
bring the benefit of displaying the full uncertainty in models’ predictions, and simultane-
ously bring regularization on the weights via the complexity cost. The hierarchical linear
models were primarily chosen with the domain specific expertise of the external commis-
sioner in mind. Although the elicitated linear model was not selected, the prior elicitation is
an interesting contribution to this thesis. Bayesian inference might be of extra relevance for
dietitians, as the research is performed in an area or their expertise. Often, the number of
subjects is few, in that sense priors are of importance, especially using proper elicitation.

As discussed in chapter 3, there is a dependency between features, that to various (and un-
known) degrees affect the outcome of e.g. reactance. If a directed acyclic graph (DAG) was to
be created, then there would be no theoretical justification to draw a directed arrow from e.g.
Reactance Ñ ALST. In fact, it would be directed in the other direction; ALST Ñ Reactance,
as reactance clearly does not cause muscle mass. With such a contradicting statement laid
out, it seems counter intuitive to model ALST using electrical variables as features, as both
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6.4. The work in a wider context

neural networks and hierarchical linear models are essentially DAG’s that point in the wrong
direction. A family of models that could be considered are Bayesian networks, with directed
arrows that better rhymes with the theoretical causal reasoning of how BIA works. However,
with the aim of this thesis – to improve BIA predictions – modelling BN’s may be an inferior
choice. Bayesian networks model the joint distribution, which is of little interest in terms of
predictions.

With the aim of finding a functional mapping from features to target, with seemingly high
dependencies between features, hierarchical linear models and simple feed-forward neural
networks may not be the best option. A way to incorporate both the hierarchical setup and
a powerful predictive machine are Gaussian processes (GP). The ”heart” of GP’s is to model
the correlations – or covariance – between individuals with the kernel function. The kernel
function computes similarities between individuals and may be tweaked by using more than
one kernel to express structures in data. Furthermore, using GP’s allows for a full Bayesian
treatment, with priors, hyper-priors and complete modelling of the uncertainty. As such, the
choice of GP’s seems ideal, but there are some significant drawbacks. GP’s need to calculate
the inverse of a covariance matrix with dimensions [nˆ n] at each iteration of e.g. MCMC,
which makes computations extremely expensive. Also, computing the predictive mean and
predictive variance of a fitted model requires a grid of all possible combinations of features,
which is unfeasible if too many features are included.

6.4 The work in a wider context

The results of the models fitted in this thesis suggest that an improvement has been made
on predictions. While not exactly as accurate as those of the DXA device, the models can be
used by the practitioners at the Clinical Nutrition Unit for future patients. The data filtering
has however filtered out the most influential (outlier) measurements, meaning that only ob-
servations that fulfil specific quality measures are left. In order to safely use the results in the
future, careful analysis of which observations were removed need be investigated, to have
full control over which future patients are safe to predict. This is true because the most influ-
ential observations are not part of the inference, and thus not part of the evaluation presented
in this thesis either.

6.5 Future research

Knowing the data is key to building a good model. It is theoretically clear why some variables
influence other variables, but not to what extent. Performing an analysis that describes the
data and the relationships would likely be a good choice in order to understand the mech-
anisms of BIA. One such model is Bayesian networks. This kind of model could be used
to describe the conditional dependencies that exist between variables in a probabilistic way.
The conclusions drawn from such an analysis could be used to de-mystify some aspects of
BIA and allow for reasonable variable selections and/or model choices in the future. An-
other approach that would most likely increase the predictive results is to include at least one
additional anthropometric variable, e.g. arm length or waist girth. Knowing for sure how
a subject is shaped would likely explain some variability in electrical variables. However,
using one such variable in a regression setting requires measurement of the same variable
for all future patients, if the model is used for prediction. That might be a less attractive op-
tion. In conclusion, future research should be divided in two; (1) use a descriptive model to
quantify conditional dependencies in BIA variables and (2) use a non-linear model based on
knowledge gained from (1) as a predictive machine.
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7 Conclusion

Can predictions on appendicular lean soft tissue from the impedance device be improved
upon using a statistical model?

The results from both the hierarchical linear models and neural networks show that
improvements have been made in terms of MSE. The MSE metric does however only indi-
cate that improvements are made on average. In the different Y-vs-Y plots produced for all
models, some concerns can be raised towards very muscular individuals, in these regions
the models are prone to under-estimation of ALST, although these predictions are definitely
closer to the ground truth than those of the BIA device. In conclusion, the predictions are
improved using both modelling approaches.

Can predictions from the fitted models generalize over all ranges of BMI?

When plotting the difference between prediction and target as a function of BMI, the fit-
ted models display no systematic errors associated with either increased or decresased BMI.
Some concerns can however be raised over higher regions of BMI, which contain more out-
liers. In conclusion, both models generalize well over all ranges of BMI.
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A Appendix A – Model diagnostic
plots

Figure A.1: Traceplots for relevant parameters of the regularizing hierarchical linear model.
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Figure A.2: Effective samples and Gelman-Rubin diagnostic for the regularizing hierarchical
linear model.

Figure A.3: Traceplots for relevant parameters of the weakly informative hierarchical linear
model.
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Figure A.4: Effective samples and Gelman-Rubin diagnostic for the weakly informative hier-
archical linear model.

Figure A.5: Traceplots for relevant parameters of the elicitated hierarchical linear model.
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Figure A.6: Effective samples and Gelman-Rubin diagnostic for the elicitated hierarchical
linear model.

Figure A.7: Complexity cost over epochs for both neural networks, green: Laplacean NN,
orange: Gaussian NN.
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Figure A.8: Likelihood cost over epochs for both neural networks, green: Laplacean NN,
orange: Gaussian NN.
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B Appendix B – Code

Stan code for hierarchical linear model with Laplace regularization

data {
in t <lower=1> N;
int <lower=1> J ;
in t <lower=1> id [N] ;

vec tor [N] Ri ;
vec tor [N] Pi ;
in t <lower=0> Dm[N] ;
vec tor [N] W;
vec tor [N] H;
vec tor [N] A;
vec tor [N] y ;
r e a l lambda ;

}
parameters {

r e a l alpha ;
rea l <lower=0> alpha_std ;
vec tor [N] alpha_ncp ;

vec tor [ 7 ] beta ;
rea l <lower=0> sigma ;

}
transformed parameters {

r e a l alpha_id [ J ] ;

f o r ( j in 1 : J ) {
alpha_id [ j ] = alpha + alpha_std * alpha_ncp [ j ] ;

}
}
model {
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vector [N] mu;
vec tor [N] gamma1 ;
vec tor [N] gamma2 ;

alpha ~ normal ( 2 0 , 1 0 ) ;
a lpha_std ~ normal ( 0 , 1 ) ;
alpha_ncp ~ normal ( 0 , 1 ) ;
beta ~ double_exponential ( 0 , lambda ) ;
sigma ~ normal ( 0 , 2 ) ;

f o r ( n in 1 :N) {
// Linear i n t e r a c t i o n part ; D_male and R_index :
gamma1[ n ] = beta [ 1 ] + beta [ 2 ] * Dm[ n ] ;
// Link funct ion :
mu[ n ] = alpha_id [ id [ n ] ] +

gamma1[ n ] * Ri [ n ] + beta [ 3 ] * Dm[ n ] +
beta [ 4 ] * Pi [ n ] + beta [ 5 ] * W[ n ] +
beta [ 6 ] * H[ n ] + beta [ 7 ] * A[ n ] ;

// Log´l i k e l i h o o d :
y [ n ] ~ normal (mu[ n ] , sigma ) ;

}
}
generated q u a n t i t i e s {

r e a l ICC ;
r e a l R2 ;
r e a l MSE;
vec tor [N] y_s ;
vec tor [N] l o g _ l i k ;
ICC = alpha_std / ( alpha_std + sigma ) ;

{
vec tor [N] mu_s ;
vec tor [N] r_s ;
vec tor [N] gamma1 ;

f o r ( n in 1 :N) {
gamma1[ n ] = beta [ 1 ] + beta [ 2 ] * Dm[ n ] ;
// Note : Using the population mean parameter alpha here .
mu_s [ n ] = alpha +

gamma1[ n ] * Ri [ n ] + beta [ 3 ] * Dm[ n ] +
beta [ 4 ] * Pi [ n ] + beta [ 5 ] * W[ n ] +
beta [ 6 ] * H[ n ] + beta [ 7 ] * A[ n ] ;

y_s [ n ] = normal_rng ( mu_s [ n ] , sigma ) ;
l o g _ l i k [ n ] = normal_lpdf ( y [ n ] | mu_s [ n ] , sigma ) ;
r_s [ n ] = y [ n ] ´ y_s [ n ] ;

}
MSE = mean( square ( r_s ) ) ;
R2 = var iance ( y_s ) / ( var iance ( y_s ) + var iance ( r_s ) ) ;

}
}
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Python code for diagonal variational posterior

c l a s s Gaussian ( object ) :
def _ _ i n i t _ _ ( s e l f , mu, rho , eps_sigma ) :

super ( ) . _ _ i n i t _ _ ( )
s e l f .mu = mu
s e l f . rho = rho
s e l f . eps = torch . d i s t r i b u t i o n s . Normal ( 0 , eps_sigma )

@property
def sigma ( s e l f ) :

return torch . log (1 + torch . exp ( s e l f . rho ) )

def reparam ( s e l f ) :
eps i lon = s e l f . eps . sample ( s e l f . rho . s i z e ( ) )
return s e l f .mu + s e l f . sigma * eps i lon

def log_prob ( s e l f , w) :
return torch . d i s t r i b u t i o n s . Normal ( s e l f .mu, s e l f . sigma ) . log_prob (w) . sum ( )

def rng ( s e l f , sampleBias = Fa l se ) :
s = torch . zeros ( s e l f .mu. shape )

M = s e l f .mu. detach ( ) . numpy ( )
S = s e l f . sigma . detach ( ) . numpy ( )

i f sampleBias == True :
for i in range (M. shape [ 0 ] ) :

s [ i ] = torch . d i s t r i b u t i o n s . Normal (M[ i ] , S [ i ] ) . sample ( )
return s

i f sampleBias == Fa lse :
for i in range ( s . shape [ 0 ] ) :

for j in range ( s . shape [ 1 ] ) :
s [ i , j ] = torch . d i s t r i b u t i o n s . Normal (M[ i , j ] , S [ i , j ] ) . sample ( )

return s

Python code for Laplace prior with fixed parameters

c l a s s Laplace ( object ) :
def _ _ i n i t _ _ ( s e l f , sigma ) :

super ( ) . _ _ i n i t _ _ ( )
s e l f . l a p l a c e = torch . d i s t r i b u t i o n s . Laplace ( 0 , sigma )

def log_prob ( s e l f , w) :
return ( s e l f . l a p l a c e . log_prob (w) ) . sum ( )
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Python code for Bayesian feed-forward linear layer

c l a s s l inearBayesLaplace ( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , n_In , n_Out , eps_noise , prior_sigma ) :

super ( ) . _ _ i n i t _ _ ( )

s e l f .w_mu = nn . Parameter ( torch . Tensor ( n_Out , n_In ) . normal_ ( 0 . 0 , 0 . 1 ) )
s e l f . w_rho = nn . Parameter ( torch . Tensor ( n_Out , n_In ) . uniform_ ( ´6 .0 , ´5 .0 ) )

s e l f . b_mu = nn . Parameter ( torch . Tensor ( n_Out ) . normal_ ( 0 . 0 , 0 . 1 ) )
s e l f . b_rho = nn . Parameter ( torch . Tensor ( n_Out ) . uniform_ ( ´6 .0 , ´5 .0 ) )

s e l f .w = Gaussian ( s e l f .w_mu, s e l f . w_rho , eps_noise )
s e l f . b = Gaussian ( s e l f . b_mu , s e l f . b_rho , eps_noise )

s e l f . w_prior = Laplace ( prior_sigma )
s e l f . b_pr ior = Laplace ( prior_sigma )

s e l f . l o g _ p r i o r = 0 .
s e l f . l o g _ v a r i a t i o n a l _ p o s t e r i o r = 0 .

def forward ( s e l f , x , t r a i n i n g = True ) :

i f t r a i n i n g :
w = s e l f .w. reparam ( )
b = s e l f . b . reparam ( )

e lse :
w = s e l f .w_mu
b = s e l f . b_mu

s e l f . l o g _ p r i o r = s e l f . w_prior . log_prob (w) + s e l f . b_pr ior . log_prob ( b )
s e l f . l o g _ v a r i a t i o n a l _ p o s t e r i o r = s e l f .w. log_prob (w) + s e l f . b . log_prob ( b )

return nn . f u n c t i o n a l . l i n e a r ( x , w, b )

def p r e d i c t ( s e l f , x ) :
w = s e l f .w. rng ( sampleBias = Fa l se )
b = s e l f . b . rng ( sampleBias = True )
return nn . f u n c t i o n a l . l i n e a r ( x , w, b )
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Python code for complete structure of Laplacean NN

c l a s s BayesByBackprop ( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , nIn , h1 , h2 , h3 , nOut , eps_noise , s igma_prior ) :

super ( ) . _ _ i n i t _ _ ( )
s e l f . l 1 = l inearBayesLaplace ( nIn , h1 , eps_noise , s igma_prior )
s e l f . l 2 = l inearBayesLaplace ( h1 , h2 , eps_noise , s igma_prior )
s e l f . l 3 = l inearBayesLaplace ( h2 , h3 , eps_noise , s igma_prior )
s e l f . l 4 = l inearBayesLaplace ( h3 , nOut , eps_noise , s igma_prior )
s e l f . a c t = nn . ReLU ( )

def forward ( s e l f , x , t r a i n i n g = True ) :
x = s e l f . l 1 ( x , t r a i n i n g )
x = s e l f . a c t ( x )
x = s e l f . l 2 ( x , t r a i n i n g )
x = s e l f . a c t ( x )
x = s e l f . l 3 ( x , t r a i n i n g )
x = s e l f . a c t ( x )
x = s e l f . l 4 ( x , t r a i n i n g )
return x

def p r e d i c t ( s e l f , x ) :
x = s e l f . l 1 . p r e d i c t ( x )
x = s e l f . a c t ( x )
x = s e l f . l 2 . p r e d i c t ( x )
x = s e l f . a c t ( x )
x = s e l f . l 3 . p r e d i c t ( x )
x = s e l f . a c t ( x )
x = s e l f . l 4 . p r e d i c t ( x )
return x
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R code for partitioning of data into training, validation and test sets

p a r t i t i o n D a t a = function ( id , t r a i n T a r g e t , val idTarget , p a r t i t i o n S e e d ) {
s e t . seed ( p a r t i t i o n S e e d )
t r a i n S e t = c ( )
t r a i n I D s = c ( )

idVec = id
i d S e t = unique ( id )

idDraw = sample ( idSet , as . in teger ( va l idTarge t * 0 . 5 ) )
t r a i n I D s = union ( t ra inIDs , idDraw )
i d S e t = s e t d i f f ( idSet , idDraw )
t r a i n S e t = idVec [ idVec %in% t r a i n I D s ]

while ( length ( t r a i n S e t ) ! = t r a i n T a r g e t ) {
idDraw = sample ( idSet , 1 )
t r a i n I D s = union ( t ra inIDs , idDraw )
i d S e t = s e t d i f f ( idSet , idDraw )
t r a i n S e t = which ( idVec %in% t r a i n I D s )
i f ( length ( t r a i n S e t ) > t r a i n T a r g e t ) {

idDraw = sample ( t ra inIDs , 5 )
t r a i n I D s = s e t d i f f ( t ra inIDs , idDraw )
i d S e t = union ( idSet , idDraw )
t r a i n S e t = which ( idVec %in% t r a i n I D s )

}
}

v a l i d S e t = c ( )
val idIDs = c ( )

idDraw = sample ( idSet , as . in teger ( va l idTarge t * 0 . 5 ) )
val idIDs = union ( validIDs , idDraw )
i d S e t = s e t d i f f ( idSet , idDraw )
v a l i d S e t = idVec [ idVec %in% val idIDs ]

while ( length ( v a l i d S e t ) ! = val idTarge t ) {
idDraw = sample ( idSet , 1 )
val idIDs = union ( validIDs , idDraw )
i d S e t = s e t d i f f ( idSet , idDraw )
v a l i d S e t = which ( idVec %in% val idIDs )
i f ( length ( v a l i d S e t ) > va l idTarge t ) {

idDraw = sample ( validIDs , 5 )
val idIDs = s e t d i f f ( validIDs , idDraw )
i d S e t = union ( idSet , idDraw )
v a l i d S e t = which ( idVec %in% val idIDs )

}
}

t e s t I D s = s e t d i f f ( idVec , union ( t ra inIDs , val idIDs ) )
t e s t S e t = which ( idVec %in% t e s t I D s )

p a r t i t i o n V e c t o r = vector ( length = length ( idVec ) )
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p a r t i t i o n V e c t o r [ t r a i n S e t ] = 1
p a r t i t i o n V e c t o r [ v a l i d S e t ] = 2
p a r t i t i o n V e c t o r [ t e s t S e t ] = 3
return ( p a r t i t i o n V e c t o r )

}

p a r t i t i o n V e c t o r = p a r t i t i o n D a t a ( id = dtp$ID ,
t r a i n T a r g e t = 4000 ,
va l idTarge t = 800 ,
p a r t i t i o n S e e d = 123456789)
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