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Abstract

Histopathological evaluation and Gleason grading on Hematoxylin and Eosin
(H&E) stained specimens is the clinical standard in grading prostate cancer. Re-
cently, deep learning models have been trained to assist pathologists in detecting
prostate cancer. However, these predictions could be improved further regarding
variations in morphology, staining and differences across scanners. An approach to
tackle such problems is to employ conditional GANs for style transfer. A total of
52 prostatectomies from 48 patients were scanned with two different scanners. Data
was split into 40 images for training and 12 images for testing and all images were
divided into overlapping 256x256 patches.
A segmentation model was trained using images from scanner A, and the model
was tested on images from both scanner A and B. Next, GANs were trained to per-
form style transfer from scanner A to scanner B. The training was performed using
unpaired training images and different types of Unsupervised Image to Image Trans-
lation GANs (CycleGAN and UNIT). Beside the common CycleGAN architecture,
a modified version was also tested, adding Kullback Leibler (KL) divergence in the
loss function. Then, the segmentation model was tested on the augmented images
from scanner B.
The models were evaluated on 2,000 randomly selected patches of 256x256 pixels
from 10 prostatectomies. The resulting predictions were evaluated both qualita-
tively and quantitatively. All proposed methods outperformed in AUC, in the best
case the improvement was of 16%. However, only CycleGAN trained on a large
dataset demonstrated to be capable to improve the segmentation tool performance,
preserving tissue morphology and obtaining higher results in all the evaluation mea-
surements. All the models were analyzed and, finally, the significance of the differ-
ence between the segmentation model performance on style transferred images and
on untransferred images was assessed, using statistical tests.
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Nomenclature

AI Artificial Intelligence

AUC Area Under Curve

cGANs Conditional Generative Adversarial Networks

CNN Convolutional Neural Network

CycleGAN Cycle-Consistent Generative Adversarial Network

DL Deep Learning

DNN Deep Neural Network

GANs Generative Adversarial Networks

H&E Hematoxylin and eosin

KL Kullback Leibler

NN Neural Network

SSIM Structural Similarity Index

UNIT Unsupervised Image to Image Translation

WSI Whole Slide Image
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Glossary

Prostatectomy: surgical removal of all or a part of the prostate gland.
Staining: artificial coloration of a substance to facilitate examination of tissues,

microorganisms, or other cells under the microscope.
H&E: haematoxylin and eosin stain is one of the principal stains in histology, it

makes use of a combination of two dyes – haematoxylin and eosin. Eosin is an
acidic dye, staining structures red or pink. Haematoxylin can be considered
as a basic dye, staining structures purplish blue.

Stain-Normalization: method which involves transforming an image I into another
image J using a mapping function that matches the visual appearance of a
given image to the target image.

RGB: additive color model in which red, green and blue light are added together in
many ways in order to reproduce a broad array of colors.

RGBA: RGB color model supplemented with a 4th alpha channel indicating how
opaque each pixel is.

YCbCr: additive color model defined by a mathematical coordinate transformation
from an associated RGB color space. It is widely used in video and digital
photography applications. Y is the luminance component, Cb and Cr are the
blue-difference and red-difference chroma components.

Encoder: network that takes the input, and output a feature map/vector/tensor
which hold the information, the features, that represent the input.

Decoder: network that takes the feature vector from the encoder, and gives the
best closest match to the actual input or intended output.

Autoencoder: network that works as both encoder and decoder. It is trained to
attempt to copy its input to its output.
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1. Introduction

1.1. Background

Histopathology is the discipline of analyzing tissue samples on a cell level to deter-
mine the existence of an abnormal condition such as cancer. Traditionally, the tissue
samples are analyzed under a microscope, after being stained with a procedure that
makes the morphology of the sample visible. However, a shift to digitalization of
microscopic evaluation has started in recent years. This means that the tissue sam-
ples are scanned with a high-resolution scanner and the analysis of the sample is
performed at a workstation where images can be viewed, compared, enlarged, and
eventually analyzed using digital applications.

Such digital applications could, for instance, detect and segment suspicious areas,
count mitosis (cell division), grade cancer areas with respect to severity [9]. The most
promising technology to create such decision support tools is Deep Learning (DL).
ContextVision has started a new Digital Pathology business unit with the objective
to design and sell tools for the analysis of various types of cancer in tissues. The first
product is going to be used for prostate cancer, utilizing the most recent advances in
DL and Artificial Intelligence (AI). This will help the pathologists to provide better
and faster diagnoses.

Figure 1.1.: Example of prostate tissue stained with H&E (on the left) and its cancer
annotation (on the right).
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Chapter 1 Introduction

Training a Deep Neural Network (DNN) requires a large amount of data which
should summarize the huge variability existing in this field. Variability in histopatho-
logical data results from different experimental protocols across pathology labs, dif-
ferences in slide preparation, different staining procedures, different scanners, etc. .
These variations cause inconsistencies between pathologists, but they also affect the
performance of the segmentation tool [21]. There are two approaches to overcome
this problem, one focuses on training the segmentation tool on a big, diverse dataset
and the other one operates on the test set, transferring it to the training set style
(normalization of data). The first approach aims to increase variability in the data,
the second one to decrease it.

1.2. Aim

The aim of this thesis work is to explore a new augmentation technique called Gen-
erative Adversarial Networks [11], to improve the performance of ContextVision’s
decision support tool. The goal is to augment test data using style transfer from the
training set, such that the segmentation tool can become invariant to changes not
strictly related to tissue morphology. In more details, this work aims to improve a
segmentation model trained on images obtained with a specific scanner, while test-
ing on images from a different one (see Figure 1.2). The objective of this thesis work
can be summarized as following:

• Are Generative Adversarial Networks an effective approach, as preprocessing
step, to reduce the impact that ’non-biological’ variations on histopathology
data has on the performance of a computer driven segmentation tool?

• Are all the Unsupervised Image to Image translation methods (CycleGAN and
UNIT) able to significantly improve predictions of the segmentation tool in the
same way?

These questions will be evaluated with ContextVision segmentation tool.

1.3. Related works

Increasing variability in histopathology data is a very challenging task, data aug-
mentation techniques have been widely used to introduce differences in color, stain,
etc., but capturing all variations that occur in real-world tissue staining is nearly
impossible. A DL algorithm, which is able to detect cancer on tissues, needs to be
tuned every time new variations are introduced, this is time-consuming and it is a
bottleneck for a pathologist. For this reason, a strategy which aims to normalize
images, to mimic the data that a network was trained on, was preferred in recent
approaches. In more details, in recent works [23, 6, 21, 24], Generative Adversar-
ial Networks (GANs) [11], especially Conditional Generative Adversarial Networks
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1.3 Related works

(cGANs) [14], have been used as stain normalization methods for histopatholog-
ical images, showing significant impact on performance of classification systems,
enhancing their predictions. Common data augmentation techniques (i.e. flip, rota-
tion, zooming, color augmentation, etc.) do not affect tissue morphology and, due
to their linear nature, risk to ovesimplify data variability [23]. In a GAN setup,
instead, a Generator network is responsible to learn a domain mapping from one
style to another one (style transfer), generating synthetic images whom a Discrimi-
nator network learns to classify as fake or real. The learned mapping does not only
change color or stain appearance, style transferred images may change significantly
compared to the original in both content and structure [24].
Changes in morphology, on histopathology data, represent a big issue, for this reason
related works tried to enforce the network to preserve tissues structure while learn-
ing. In [4], for example, this problem is addressed on a loss function level, using an
edge-weighted L2 regularization that encourages the Generator to preserve salient
image edges of the ground truth input, multiplying both input image and generated
image (using an element-wise multiplication) with the color gradient vector field of
the input image. In [24] the photorealism and the structural similarity loss (SSIM)
are introduced to keep the structural information unchanged. Photorealism loss uses
Matting Laplacian transform (defined in [16]) to measure the structural differences
and is calculated using all three RGB color channels of the images. SSIM has been
used for assessing the image quality, to regulate structural changes instead of focus-
ing on pixel to pixel transformations. Working with gray-scale images, instead of
colored images, generally favors texture-based features, showing then large improve-
ments in preserving tissue morphology. In [6], in fact, GANs are used to transfer a
certain style after gray-normalization is performed first on input images.
Conditional Generative Adversarial Networks (cGANs) are used as both supervised,
if paired data from two different scanners or institutes are available, or unsuper-
vised methods, in case of unpaired data. One of the most common technique for
style transfer between two image domains, under an unsupervised setting, is Cycle-
Consistent Adversarial Networks (CycleGANs) [26]. StainGAN, in [21], for example,
is a pure learning based approach that handles the problem of stain normalization
as a style-transfer problem, using CycleGANs to transfer the H&E Stain Appear-
ance between Hamamatsu to Aperio scanners. Even though the model was trained
on unpaired images, paired images were available for evaluations of results show-
ing significant improvement compared to the state-of-the-art methods on similarity
metrics. Usually, in case of unpaired images, a classification network is used to
assess the quality of style transfer methods [4, 6]. In StainGAN, for example, the
Discriminator is asked to compute also the segmentation model task.
In this thesis work, the potential of unpaired Image to Image translation techniques,
using GANs, is explored as a style transfer method for histopathology prostate
images, scanned with two different scanners. Three different methods are proposed
as solution: CycleGAN [26], a novel method obtained from a modified version of
CycleGAN (a loss function is added to the main objective to reinforce the Generators
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Chapter 1 Introduction

learning) and UNIT (UNsupervised Image to Image translation) [17]. Unpaired
patches are used as training set, the test set obtained as output is then used as
input for a segmentation tool implemented by ContextVision to obtain predictions
of cancer areas. The evaluation of results in this thesis are in accordance with the
requirements in ContextVision and are based on the data and the tools provided by
the company.

1.4. Ethical considerations

The data used in this project consisted of human medical imaging data and cor-
responding meta-information. The data provider was responsible for handling the
ethical, legal and privacy aspects relevant to the data. The images used for this
work were anonymized, no information about patients was given beside the stained
tissue digitalized image. According to General Data Protection Regulation (EU),
european regulation on data protection and privacy, the type of data used in this
work can be used for research purpose. In fact, it states the following:
“The principles of data protection should therefore not apply to anonymous infor-
mation, namely information which does not relate to an identified or identifiable
natural person or to personal data rendered anonymous in such a manner that the
data subject is not or no longer identifiable. This Regulation does not therefore
concern the processing of such anonymous information, including for statistical or
research purposes.” 1

Doing research on human tissues may raise many ethical questions. When a person
has tissues removed, as part of a treatment, he/she is asked for permission and
consent to allow that tissue to be available for research studies. Being able to work
with such personal and sensitive data allows to generate new knowledge, to support
pathologists in their daily work and to speed up the process of cancer detection.
Generating synthetics images, which are similar to real images, allows to reduce
the number of tissues asked to laboratories to be scanned, increasing the number
of quality data available for research. It is worth to notice that “real-world” data
can not be totally substituted, there will always be a new variation which was never
observed before and which is out of the dataset boundary. However, synthetic images
yield considerable benefits for DL methods, which require huge amounts of data for
reaching their full performance.
Style transfer and Image to Image translation can also be seen as a digital image
manipulation technique, altering reality. For medical images, in particular, it can
represent a big issue. Using Artificial Intelligence in healthcare is promising and
powerful, however in this work it not used with the aim of replacing pathologists
but as decision support.

1GENERAL DATA PROTECTION REGULATION (GDPR), recital 26.
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1.4 Ethical considerations

Problem:

Solution:

Figure 1.2.: Description of the problem addressed by this thesis project and the pro-
posed solution. The segmentation tool used to predict cancer on tissues, in this work,
is pre-trained on images scanned with Zeiss Axio Scan.Z1 scanner. The test set is made
of images scanned with the same scanner used for training, but also images scanned
with Leica Aperio AT2 scanner. The predictions obtained by testing on both sets show
that the segmentation tool is sensitive to changes not related to tissues morphology.
Visually comparing these predictions with the cancer annotation of this stained tissue
(right image in Figure 1.1), in fact, predictions on Zeiss images results better in quality.
The proposed solution aims to improve the performance of the segmentation tool when
it is tested on images scanned with Leica scanner, transferring Zeiss style to them. The
style transfer methods are trained on Zeiss and Leica training sets and then tested on
Leica test set. 13





2. Data

Digital pathology data consist of tissue biopsy sample slides scanned as Whole Slide
Images (WSIs). The scanning process aims to produce high quality images from
conventional glass slides, to be able to analyze the tissue on a computer moni-
tor instead of a microscope. The size of the scanned images is in the range from
50,000x50,000 to 100,000x100,000 pixels, making it impossible to work with in
their maximum resolution, because of their size and the computer memory limita-
tions. It is important for the pathologists to have the overview of the entire image,
but it is also essential to access in finer details. For this reason, WSI are stored at
multiple resolutions 1 to accommodate a streamlined method for loading them. Im-
ages are saved in a pyramid structure (see Figure 2.1): the WSI consists of multiple
images at different magnification 2 where the pyramid provides distinct zoom levels.
The base of the pyramid has the highest resolution while the top has the lowest one
[9].

Figure 2.1.: Whole Slide Image pyramid structure

Given a slide, the pathologist identifies cancer areas and annotates those regions
1Resolution is the amount of information that can be seen in the image, the smallest distance
below which two discrete objects will be seen as one.

2Magnification is how large the image is compared to real life.
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Chapter 2 Data

generating a segmented image. In training and testing a segmentation model those
annotations are the labels the predictions are compared with (see Figure 2.2), so
they represent the ground truth images.

2.1. Data sources

The dataset used in this work is a collection of images of stained prostate tissues,
from the medical technology company ContextVision, stained with Hematoxylin and
Eosin (H&E) dyes. The physical size of the tissue samples is around 2x2 cm2. In
a style transfer problem between two styles A and B, two mappings from A to B
and from B to A are learned, hence, for both training and testing, data from both
domains are needed. The training set is composed of 40 slides scanned with a Zeiss
Axio Scan.Z1 and 45 slides scanned with a Leica Aperio AT2. The test set
is composed of 10 slides scanned with Zeiss Axio Scan.Z1 scanner and 9 slides
scanned with Leica Aperio AT2 scanner. The same tissue sections were scanned
by both scanners, some images were excluded due to quality and no registration 3

was performed. Hence, images are not aligned and not all paired, so they are treated
as unpaired data. Slides were scanned at a resolution of 0.22 µm per pixel for Zeiss
and 0.5 µm for Leica and then resized to 0.44 µm per pixel. Their dimension varies,
both width and height values are between 30,000 pixels to 70,000 pixels.
In addition to WSIs, for each of the test set slides a ground truth image is also
provided in a smaller resolution, obtained with the method described in [5] and
approved by pathologists. This method is based on the idea according to which the
presence of basal cells is an indicator for healthy glands, implying that their absence
show potential cancerous areas. Compared to the Gleason grading clinical standard,
this annotation technique resulted in more objective ground truth images, due to the
fact that the presence of basal cells can be assessed by using immunohistochemical
markers [5].

2.2. Data preprocessing

For consistency with the data used for training the segmentation tool by ContextVi-
sion, the level chosen in the WSI is level 1 is reasonable to detect prostate cancer.
However, training neural networks on gigapixel resolution whole slide images is com-
putationally expensive. For this reason from each slide 256x256 pixels patches are
extracted, discarding cases where the background covered more than 40% of the
total area.
To avoid boundary effects, overlapping (by 15%) patches are selected.
As a result, a large amount of patches is obtained for each set of slides (see Table 2.1).

3Image registration is the process of transforming different sets of data into one coordinate system.
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2.3 Data description

Figure 2.2.: Example of ground truth image: white pixels represent cancer while black
pixels represent not cancer tissue.

# training patches # testing patches
Zeiss 202,268 59,226
Leica 262,349 67,040

Table 2.1.: Number of patches obtained after data preprocessing, each patch is 256x256
pixels.

The name of each patch follows the format “SlideName_x_y.jpg” , where x and y
indicate the coordinates of the top left corner in the original slide at level 0, and
SlideName indicates the name of the slide that patch comes from. When images are
saved into arrays they can have different representations. One of them is as RGBA
object: each pixel is a combination of four channels (red green and blue plus alpha
indicating opacity) each of them represented by a number from 0 to 255. In this
color scale white is obtained having 255 in each channel while black having 0 in
each channel. A WSI usually has a white background but because of the differences
across scanners, it can also happen to be darker than pure white, that is why the
definition of background pixel in this work is stated as any pixel having all channels
values of its RGBA representation above 235.

2.3. Data description

Because of the large amount of settings each scanner has, slides coming from two dif-
ferent scanners can look totally different in colors, brightness, contrast (see Figure 2.3).

Differences between Leica and Zeiss slides can be detected on a quality (see
Figure 2.3) level but also numerically as will be shown later (see Table 2.2).
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Chapter 2 Data

Figure 2.3.: Zeiss patches are showed in the first row while Leica’s patches in the second
one. The patches differ in style, including color and brightness. The main goal of this
master thesis is to transfer the style of one scanner to the other one, using deep learning.

Visually Zeiss images look lighter and more fluorescent while Leica images are more
opaque and less sharp in color differences. Also the color scales are quite different,
hot and deep pink for Zeiss and more violet and lavender for Leica.

A different way of encoding an image is with YCbCr representation which also
uses three components to describe a pixel. The first component describes a gray
scale brightness called luminance (Y), the other two tell how much Blue (Cb) and
Red (Cr) is needed to get a desired color. While in the RGBA model each color
appears as a combination of red, green, and blue, YCbCr is more useful with digital
images because of its luminance channel taking into account also the light intensity
of the color (brightness). Given a pixel represented in RGB format, the YCbCr
components can be obtained with the following equations [2]:



Y = 16 + 65.738R
256 + 129.057G

256 + 25.064B
256

Cb = 128− 37.945R
256 − 74.494G

256 + 112.439B
256

Cr = 128 + 112.439R
256 − 94.154G

256 − 18.285B
256

A total of 2,000 random patches from Zeiss slides and 2,000 from Leica slides are
used to detect differences for each color channel. First, each patch is split into the
three channels, then pixels values of the same channel over all patches are merged for
each of the two datasets and the histograms are calculated (see Figure 2.4). For both
Cb and Cr the distributions are quite different across scanners, Zeiss histograms
represent a higher variance compared to Leica in both cases. For the luminance
channel, instead, the distributions seem to be very similar, just slightly shifted in
mean value.
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2.3 Data description

Figure 2.4.: Comparison between Y, Cb and Cr color histograms for Zeiss and Leica
images

But how big is the difference? A good statistical way to measure how one proba-
bility distribution is different from a second one is through Kullback–Leibler
divergence (DKL), also called relative entropy, defined as:

DKL(P ||Q) =
∑
x∈X

P (x) log
(
P (x)
Q(x)

)
(2.1)

where, in this specific case, P refers to Zeiss histogram channels, Q to Leica his-
togram, X represents the range of possible pixel values each channel has. According
to this definition, two distributions are identical if the KL divergence value is zero
[13]. In Table 2.2 KL divergence is calculated per each channel between Zeiss images
and Leica’s. The result is totally coherent with the previous analysis from the color
histograms, the main differences between Zeiss and Leica image domains are related
to Cb and Cr channel where the value of KL divergence is higher than zero. Relative
entropy does not measure distances between two image domains, while the amount
of information lost per channel when Leica’s images are used instead of Zeiss. From
a deep learning point of view, high values of KL divergence (far from zero), per
channel, could cause misleading results of predictions.
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Chapter 2 Data

Y Channel Cb Channel Cr Channel
KL(Zeiss,Leica) 0.61 1.41 1.13

Table 2.2.: Kullback-Leibler divergence between Zeiss and Leica Y, Cb and Cr color
histograms.
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3. Methods

The methods used to achieve the thesis objective belong to the family of GANs,
Generative Adversarial Networks [11], a class of machine learning systems
with deep neural network architectures. In the first part of this chapter, a definition
of how neural networks are applied to image data is given, followed by an overview
on what GANs are and a more detailed description of the Image to Image translation
techniques used in this work. In the final part, the evaluation methods are described
and the assessments of data quality will be given.

3.1. Image to Image translation

An image-to-image translation problem consists of mapping an image from one
domain to a corresponding image from another domain (e.g. converting a summer
image into a winter image). From a probabilistic point of view, the key point is
to learn two data generating distributions to be able to perform image translation
across the two domains.

3.1.1. Convolutional Neural Networks

Neural Networks are particularly powerful for analysis of images, especially for their
ability to automatically extract useful features from unstructured data. Images are
arrays of numbers representing each pixel, so training a neural network on such data
would not take into account the spatial structure of the image but it would consider
all pixels independently. For this reason a special architecture resulted a better
option for image analysis: Convolutional Neural Networks (CNN). They
are made of an input layer, an output layer and several hidden layers (hence the
name "deep" networks), some of which are convolutional. Unlike Neural Networks,
the layers of a Convolutional Network have neurons arranged in 3 dimensions: width,
height, depth (see Figure 3.1).

Convolution is one of the main building blocks of a CNN and it is performed on
the input image using a filter (the convolutional matrix) in a Feature Extraction
step. The filter, with a given size, slides over the input, performing element-wise
multiplication and the resulting sum goes into the feature map. The amount, by
which the filter slides, is referred to as the stride (see Figure 3.2).
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Chapter 3 Methods

Figure 3.1.: Neural Network (on the top) vs Convolutional Neural Network (on the
bottom) Architecture. A CNN arranges its neurons in three dimensions (width, height,
depth). The input layer in a CNN holds the image, so its width and height would be the
dimensions of the image and the depth would represent Red, Green and Blue channels
(dimension of 3). A 3D input volume is transformed into a 3D output volume of neuron
activactions.

Feature maps are built performing many convolutions on the input matrix, and
then all the feature maps are put together as final output of the convolution layer.
For a given layer in a CNN the weights are shared. After each convolution layer a
pooling layer aims to reduce dimensionality and also the number of parameters and
computations in the network. The last step in a CNN is Classification, here fully
connected layers use the features obtained in the last pooling operation to perform
prediction or classification (see example Figure 3.3). Training a CNN translates into
updating the filters weights during backpropagation for all layers [10].
Another reason to use a CNN is that the number of parameters to learn is greatly
reduced compared to NN. An image of 256x256 pixels can be seen as a vector of 65
536 values, and a single layer with 100 nodes in a fully connected network would
require learning 65 536 * 100 weights. For a CNN using 100 filters of size 3 x 3, it
is only necessary to learn 900 weights + 100 bias terms.

3.1.2. Generative Adversarial Networks

Machine Learning algorithms take data as input and then they perform a task
which is among classification, regression or clustering. There are two different kinds
of approaches used to face those tasks: a Generative approach and a Discriminative
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3.1 Image to Image translation

Figure 3.2.: Example of how convolution is performed in a CNN. A filter of 3x3 slides
over an input feature map of dimensions 5x4, with stride equal to 1, generating an
output feature map of 3x2.

approach.
Discriminative models map features into labels, trying to understand where data
belongs to from its main characteristics. Generative models are their opposite, they
try to predict features given a label. In more probabilistic terms, while Discrim-
inative models learn the boundary between classes, Generative models model the
distribution of individual classes.
For example, in a classification problem, let x be the input (observable variable)
and y be the label (target variable), a generative classifier learns a model of the
joint probability p(x, y) and makes its prediction using Bayes rules to calculate the
conditional probability p(y |x) and then picking the most likely label y; a discrimi-
nant classifier models the posterior p(y |x) or learns a direct map from x to the class
labels [19].
Generative Adversarial Network (GAN) is a deep neural network architec-
ture made of two (convolutional) networks “competing” with each other (hence the
name “adversarial”) and trained simultaneously: a generative model (Generator)
and a discriminative model (Discriminator). The Generator G aims to capture the
data distribution while the Discriminator D estimates the probability that a sample
came from the training data or from G (see Figure 3.4) [11]. D is trained such that
it learns how to assign the correct label to both training data and samples from G
, while G is trained such that it creates images whom D can not distinguish from
the real ones.
In more theoretical terms, let pg be the generator distribution, x (real images) the
data and pz(z) a prior distribution on input noise variables z, then G(z; θg) is the
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Figure 3.3.: Example of Convolutional Neural Network architecture

Figure 3.4.: Generative Adversarial Network (GAN) architecture.

differential mapping function to the data space of the fake images, D(x; θd) is the
mapping function to the data space of the predicted labels (see Figure 3.4), while
θg and θd are G and D’s respective hyperparameters. G and D are trained to learn
pg over the data so the goal turns into solving the following optimization problem:

min
G

max
D

LGAN(G,D,Z,X) = min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

(3.1)

Where D(x) represents the probability that x came from the data rather than from
pg [11].
LGAN in equation 3.1 is the adversarial loss, so called because G aims to minimize
this objective against an adversary D which tries to maximize it. The approach to
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solve the min-max problem is iterative and numerical (see Algorithm 3.1). It was
proved that the algorithm converges to a global optimum for pg = pdata [11].

Algorithm 3.1 Minibatch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator, k, is a hyperparameter [11] .

for number of training iterations do

for k steps do
• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior
pg(z).

• Sample minibatch of m examples {x(1), . . . , x(m)} from data generating
distribution pdata(x).

• Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)

)))]

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).

• Update the generator by descending its stochastic gradient:

∇θg

1
m

m∑
i=1

log
(
1−D

(
G
(
z(i)

)))
end for
The gradient-based updates can use any standard gradient-based learning rule.

GANs have been successful in generating images within many vision, graphic and
medical imaging problems [25, 15]. One example is image to image translation with
its wide number of applications such as style transfer. In those kinds of applications,
GANs are used in a conditional setting. This means that generating an output image
is done conditioning on an input image (cGANs) [14]. This problem can be faced in
a supervised or unsupervised way, depending on the type of data available: paired
training data or unpaired training data. To summarize the difference between the
approaches, paired data are such that {(x(i), y(i))}Ni=1 while unpaired data are such
that {x(i)}Ni=1 with x(i) ∈ X and {y(j)}Mj=1 with y(j) ∈ Y .
In this work, due to the lack of paired images, an unsupervised approach is therefore
needed. Unpaired Image-to-Image Translation methods using GANs, even if they
share the same goal, mainly differ in objective functions and/or architecture accord-
ing to the task they are solving. The leading idea is to map images from one domain
X to another domain Y, and vice versa, using two generator and discriminator pairs
((Gx , Dx) and (Gy , Dy)) instead of one, as shown in Figure 3.5.
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Figure 3.5.: Image to Image Translation. The model has two image domains X and
Y, two mapping functions Gx: X → Y and Gy: Y → X and two adversarial discrimi-
nators DX and DY . A conditional GAN thereby contains four CNNs (two generators
and two discriminators), while a normal GAN contains two CNNs (a generator and a
discriminator).

3.1.3. CycleGAN

CycleGAN [26] is one of the most popular GANs for image to image translation.
What CycleGAN model focuses on is trying to preserve similar structure between
generated images and the target domain. The objective function is made of two
terms: adversarial losses (typical of GANs) which match the distributions of gen-
erated images to the data distribution in the target domain, and cycle consistency
loss (hence the name CycleGAN) which prevents the learned mappings Gx and Gy

from contradicting each other [26] .
Assuring the cycle-consistency means “following” the entire cycle from x ∈ X to
Gx(x) and back to Gy(Gx(x)) = x̂ ≈ x (forward cycle consistency) and from y ∈ Y
to Gy(y) and back to Gx(Gy(y)) = ŷ ≈ y (backward cycle consistency) for each
image x and y in domains X and Y respectively, to induce the learned distribution
to match the target one.
The cycle consistency loss is defined as:

Lcyc(Gx, Gy) = Ex∼pdata(x)[‖Gy(Gx(x))−x‖L1 ]+Ey∼pdata(y)[‖Gx(Gy(y))−y‖L1 ]. (3.2)

The full objective function the network optimizes is:

LCycleGAN(Gx, Gy, DX , DY ) =
= LGAN(Gx, DY , X, Y ) + LGAN(Gy, DX , Y,X) + λcycLcyc(Gx, Gy) (3.3)
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3.1 Image to Image translation

where LGAN(Gx, DY , X, Y ) = Ey∼pdata(y)[logDY (y)]+Ex∼pdata(x)[log(1−DY (Gx(x)))],
LGAN(Gy, DX , Y,X) = Ex∼pdata(x)[logDX(x)] + Ey∼pdata(y)[log(1 − DX(Gy(y)))] are
the adversarial losses and λcyc controls the relative importance of the cycle consis-
tency loss [26]. The optimal mapping functions are such that:

G∗x, G
∗
y = arg min

Gx,Gy

max
DX ,DY

LCycleGAN(Gx, Gy, DX , DY ). (3.4)

3.1.3.1. Implementation

The network architecture for CycleGANs used in this work is inspired by [26] which
showed impressive results in many applications of style transfer where paired data
where not available. Two generator networks and two discriminator networks are
needed for the implementation.

Figure 3.6.: CycleGAN architecture, consisting of two generators and two discrimina-
tors, which are trained together.

The two Generative Networks are made of three blocks: an encoder which extracts
features from an image, a transformer1 which creates the vector of features of the
output image and a decoder which generates the output image from a feature vector
(see Figure 3.6). The two Discriminative Networks are simply binary classifiers with
four convolutional layers which work on image at a scale of patches, hence the name
PatchGAN [14]. To solve the optimization problem, ADAM optimizer was used
[26].
More information about the architecture and the implementation is in Appendix A.
A working implementation was used in this master thesis, since the goal is to evaluate
how GANs can improve segmentation.

1More architecture details can be found at https://github.com//Adi-iitd/AI-Art
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3.1.4. CycleGAN + Kullback-Leibler divergence

Kullback-Leibler divergence (KL) is a non-symmetric measure of the dif-
ference between two probability distributions p(x) and q(x) over the same dis-
crete random variable x [13]. DKL(p(x), q(x)) is defined as: DKL(p(x)‖q(x)) =∑
x∈X p(x) ln p(x)

q(x) and measures the amount of information lost when q(x) is used to
approximate p(x). In this definition p(x) represents the “true” distribution of data
while q(x) is the approximation of p(x).
The cycle consistency loss in 3.2 is calculated using the Manhattan distance between
the two image domains, this means that a pixel to pixel comparison is computed.
L1 is a very powerful metric for similarity, but because it summarizes into the
summation of the pixel-wise intensity differences, small deformation may result in
large distances.
In CycleGANs, KL divergence can be added to equation 3.3, representing the loss
of information encountered when the normalized gray-scale histogram of the image
generated by the mapping function is used to approximate the target domain. The
gray-scale histogram of an image refers to a histogram of the pixel intensity values
where the possible values go from 0 (representing black) to 255 (representing white).
Normalizing this histogram consists of transforming the distribution of intensities
into a discrete distribution of probabilities.
For example, consider a digital image of dimensions 256x256 pixels in gray-scale, let
n be a vector of length 255 representing the frequencies of each pixel intensity, rk
the number of pixels with intensity equal to nk, then for k ∈ [0, 255], p(rk) = nk

256∗256
is the discrete distribution of probabilities of the gray-scale image. The number of
bins can also be lower than the number of possible intensity values, in this case
pixels with intensity values in a certain range are summed up together.
One limitation of KL divergence is encountered when one event e is possible for
the target distribution (p(e) > 0) but it is impossible for the approximated distri-
bution (q(e) = 0), in this case DKL(p(e), q(e)) = inf . One easy way to overcome
this problem is computing KL Divergence by Smoothing the discrete distributions
of probability so that there are not zero values of probabilities [12].
The KL divergence Loss is then defined as:

LKL(Gx, Gy) = DKL
x∼pdata(x)

(p(x), p(Gy(Gx(x))))+ DKL
y∼pdata(y)

(p(y), p(Gx(Gy(y)))) (3.5)

and the full objective function the network optimizes:

LCycleGAN+KL(Gx, Gy, DX , DY ) = LCycleGAN(Gx, Gy, DX , DY )+λKLLKL(Gx, Gy)
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3.1 Image to Image translation

(3.6)

Where λKL controls the relative importance of the KL loss.
The optimal mapping functions are:

G∗x, G
∗
y = arg min

Gx,Gy

max
DX ,DY

LCycleGAN+KL(Gx, Gy, DX , DY ). (3.7)

3.1.5. UNIT

Another popular architecture for unsupervised Image to Image translation is UNIT
[17], which stands for UNsupervised Image-to-image Translation. As CycleGAN,
UNIT also aims to map images from one domain to another using only unpaired
data, but with the difference of trying to overcome this difficulty introducing a
shared-latent space assumption. UNIT goal is to learn the joint distribution p(x, y),
where X and Y are two image domains, given their marginal distributions p(x) and
p(y). The assumption is that for each pair of images (x, y), where x ∈ X and y ∈ Y ,
there exists a “code” z ∈ Z such that both images can be recovered from this space
[17].
In more details, beside the Generators there exists two other functions called En-
coders EX and EY , such that z = Ex(x) = Ey(y) and x = Gx(z), y = Gy(z).
The mapping functions to be learnt by the model are Fx→y = Gy(Ex(x)) and
Fy→x = Gx(Ey(y)), shown in Figure 3.7, where the arrow “→” indicates the di-
rection of the mapping function which will perform image to image translation (i.e.
x→ y shows that an image x ∈ X is translated into an image in Y domain).
The architecture of this model is based on GANs, with the difference that also vari-
ational autoencoders (VAEs) are used for each of the two encoder-generator pairs.
Autoencoders are a type of NN which try to learn the representation of the data by
compressing it into a compact representation, and uncompressing the representation
such that the ouput matches the input data. Variational autoencoders are based on
the autoencoders structure with the following assumptions:

1. The data is generated by a directed graphical model p(x|z);
2. The encoder aims to learn an approximation qφ(z|x) to the posterior distri-

bution pθ(x|z) where φ is the parameter of the encoder and θ the one of the
decoder;

3. The prior over the latent variables is a multivariate Gaussian pθ(z) ∼ N(0, I).
The objective functions of the VAEs for UNIT are defined as:

LV AEx(Ex, Gx) = λ1DKL(qx(zx|x), pθ(z))− λ2Ezx∼qx(zx|x)[log pGx(x|zx)] (3.8)
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Figure 3.7.: UNIT: X and Y are the two image domains, Z is the latent space which
contains latent representations which pairs of corresponding images from X and Y can
be mapped to.

LV AEy(Ey, Gy) = λ1DKL(qy(zy|y), pθ(z))− λ2Ezy∼qy(zy |x)[log pGy(y|zy)] (3.9)

where qx(zx|x) ∼ N(zx|Eµ,1(x), I), qy(zy|y) ∼ N(zy|Eµ,1(y), I) with Eµ,1(x) and
Eµ,1(y) being the mean vectors output from the encoders and I the identity matrix.
DKL is Kullback-Leibler divergence, while pGx and pGy are modeled using
Laplacian distributions [17]. VAE loss aims to adapt the latent space according to
the image domains, minimizing the distance between probability distributions. KL
divergence term is a measure of how the distribution of domain specific code, zx or
zy, diverges from the prior distribution pθ(z). In the second term, minimizing the
negative log-likelihood term is equivalent to minimize the absolute distance between
the image and the reconstructed image [17].
The GAN objective functions in this case are formulated as follows:

LGANx(Ey, Gx, Dx) = λ0Ex∼pdata(x)[logDX(x)]+λ0Ey∼qy(zy |y)[log(1−DX(Gx(zy)))]
(3.10)

LGANy(Ex, Gy, Dy) = λ0Ey∼pdata(y)[logDY (y)]+λ0Ex∼qx(zx|x)[log(1−DY (Gy(zx)))]
(3.11)

Besides these objective functions, also the cycle-consistency constraint is used to
make sure that there is consistency in passing from one distribution to the other
one. It is defined as:
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LCCx(Ex, Gx, Ey,Gy) = λ3DKL(qx(zx|x), pθ(z)) + λ3DKL(qy(zy|xx→y), pθ(z)) +
−λ4Ezy∼qy(zy |xx→y)[log pGx(x|zy)]

(3.12)

LCCy(Ey, Gy, Ex,Gx) = λ3DKL(qy(zy|y), pθ(z)) + λ3DKL(qx(zx|yy→x), pθ(z)) +
−λ4Ezx∼qx(zx|yy→x)[log pGy(y|zx)]

(3.13)

where xx→y = Gy(zx ∼ qx(zx|x)) and yy→x = Gx(zy ∼ qy(zy|y)), with xx→y ∈ Y ,
yy→x ∈ X indicating the translated images.
The cycle-consistency constraint has the same purpose of the one from CycleGAN,
with some adjustments to the framework.
The learning problem to be solved in UNIT can be summarized into the following:

E∗x, E
∗
y , G

∗
x, G

∗
y = arg min

Ex,Ey ,Gx,Gy

max
DX ,DY

LV AEx(Ex, Gx) + LV AEy(Ey, Gy)+

+LGANx(Ey, Gx, DX)+LGANy(Ex, Gy, DY )+
+LCCx(Ex, Gx, Ey, Gy)+LCCy(Ey, Gy, Ex, Gx).

(3.14)

Where λ0, λ1, λ2, λ3 and λ4 are hyperparameters controlling the impact of the many
objective terms in final objective function.

3.1.5.1. Implementation

The network architecture for UNIT used in this work is inspired by [17]. The
network architecture is made of a total of six subnetworks: two generator networks,
two discriminator networks and two encoders networks. The two encoder networks
consist of three convolutional layers and four basic residual blocks; the Generative
Networks are made of three generator residual blocks and three deconvolutional
layers as decoder; the two Discriminator Networks consist of six convolutional layers
(see Figure 3.8). To solve the optimization problem, the ADAM optimizer was used
[17].
More information about the architecture and the implementation are in Appendix A.
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Figure 3.8.: UNIT architecture, consisting of two encoders, two generators and two
discriminators.

3.2. Evaluation methods

As this thesis objective is to enhance performance of the company tool, the evalu-
ation of the results does not focus mainly on the quality of the images generated
by GANs, but on the predictions obtained using them as input in the segmentation
model. Gray-scale prediction patches are first converted into binary images and
then evaluated against corresponding patches of the binary ground truth images
(Figure 2.2).
Thresholding, in image processing, is the simplest method for image segmentation
and the method adopted to convert a gray-scale image into a binary image. Each
pixel is replaced according to the following rule:

Ii,j =

0 Ii,j < T

1 Ii,j ≥ T
(3.15)

where T ∈ [0, 255] is the threshold and (i, j) ∈ [0, height]x[0, width] where height xwidth
being the image (I) size. As a result, the problem can be performed as a binary
classification.

3.2.1. Measures of performance for classification methods

Binary classification problems involve classifying data into two classes (i.e. Positive
and Negative) which represent the possible outcome of an algorithm. There are
plenty of methods to measure performance in classification, both numerical and
graphical. First, the calculation of a metric called confusion matrix is required.
It compares predicted classes with true classes (see Table 3.1) showing how many
examples are correctly classified, True Positive (TP) and True Negative (TN), and
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how many are misclassified, False Positive (FP) and False Negative (FN). A False
Negative is also called Type II error, while a False Positive is also called Type I
error. A confusion matrix is the base for the calculation of all other performance
measures.

True classes
Positive Negative

Predicted classes Positive True Positive False Positive
Negative False Negative True Negative

Table 3.1.: Confusion Matrix for a binary classifier.

Accuracy is one of the most used measures for classification performance, defined
as the ratio between correctly classified samples and the total number of samples:

Accuracy = TP + TN

TP + TN + FP + FN
(3.16)

However, accuracy does not take into account how data is spread between TP and
TN, resulting in not very accurate estimations for samples where classes are not
balanced.
Two metrics, which are less sensitive to this problem, are Sensitivity (also called
True Positive Rate or Recall), representing the ratio between the positive
correctly classified samples and the total number of positive samples, and Speci-
ficity (also calledTrue Negative Rate), the ratio of correctly classified negative
samples and total number of negative samples:

Sensitivity = TP

TP + FN
= TP

P
(3.17)

Specificity = TN

FP + TN
= TN

N
(3.18)

Thus, Specificity represents the proportion of correctly classified negative sam-
ples, while Sensitivity is the proportion of correctly classified positive samples.
A measure which reflects the positive predictive value is Precision, defined as the
proportion of correctly classified positive samples to the total number of positive
predicted samples:
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Precision = TP

FP + TP
(3.19)

F1 score is the harmonic mean of Precision and Recall, interpreted as their
weighted average, and is ranged between 0 and 1. High values of F1 score indicate
high classification performance.

F1 = 2 ∗ (Recall ∗ Precision)
Recall + Precision

(3.20)

F1 score takes into account both false positive and false negative, that is why it is
widely used instead of accuracy to evaluate how good a model is, especially with
uneven class distribution [1].
One common way to evaluate decision making systems or machine learning systems
is the ROC curve (receiver operating characteristics curve). The ROC
curve offers a graphical illustration of the trade-off between a test sensitivity and
specificity and depicts TP rate (on the y-axis) against FP rate (on the x-axis), for
each threshold value. Each threshold generates only one point in the ROC curve.
The lower left corner of the curve, (0,0), represents a classifier where there is no
positive classification and all negative samples are correctly classified; the lower right
corner, (1,0), represents a classifier where all positive samples are correctly classified
and the negative samples are misclassified. The perfect classifier is represented by
that point in the ROC space where all positive and negative samples are correctly
classified in the upper left corner (0,1), that is why this point is called Ideal operating
point [1].
Comparing different classifiers using their ROC curves can be performed calculating
the area under the curve (AUC) metric, which is a value bounded between
0 and 1, where 1 represents the optimum value. Given two classifiers A and B, for
example, A is said to achieve better performance than B if AUCA > AUCB.
Another curve, used to compared different classifiers, is Precision-Recall curve
(PR curve). As ROC, PR curve is also calculated across different threshold
values. In this case, the relationship between precision (on the y-axis) and recall
(on the x-axis) is showed instead. Given two different classifiers, the one with better
classification performance generates a curve which is the closest to the upper right
corner. A drawback of PR curve is that it completely ignores the performance of
correctly handling negative examples (TN) [1].

3.2.2. Image Similarity Measures

Image similarity is the measure of how similar two images are, in this context it helps
to measure how similar predictions and corresponding ground truth patches are.
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Black and white images can be seen as matrices where each location is represented
by a pixel containing 0 (black) or 1 (white). The most traditional and simple
method to measure distances between two images I and J , both with size M ∗ N ,
is calculating the Mean Square Error (MSE). MSE is a pixel-based metrics,
calculating the mean square error between each pixels for the two images I and J :

MSE(I, J) = 1
M ∗N

M∑
i=1

N∑
j=1
|I(i, j)− J(i, j)|2. (3.21)

According to this measure, the higher the similarity, the lower the MSE is. One
of the biggest disadvantages of MSE is being poorly correlated with human per-
ception of visual system [22]. For example, given three images I , J and K, with
MSE(I, J) = MSE(I,K) does not always imply that I and K are similar.
To overcome this problem and to extract structural information from images, in
other words to extract the inter-dependencies that are present in spatially close
area, a more qualitative metric is used, the Structural similarity Metric:

SSIM(I, J) = (2µIµJ + c1)(2σIJ + c2)
(µ2

I + µ2
J + c1)(σ2

I + σ2
J + c2)

(3.22)

with:
• µI = 1

MN

∑M
i=1

∑N
j=1 I(i, j);

• µJ = 1
MN

∑M
i=1

∑N
j=1 J(i, j);

• σ2
I = 1

MN−1
∑M
i=1

∑N
j=1(I(i, j)− µI)2;

• σ2
J = 1

MN−1
∑M
i=1

∑N
j=1(J(i, j)− µJ)2;

• σIJ = 1
MN−1

∑M
i=1

∑N
j=1(I(i, j)− µI)(J(i, j)− µJ);

• c1 = (k1L)2 and c2 = (k2L)2 two variables to avoid instability in cases when
µ2
I + µ2

J is too close to zero;
• L is dynamic range of pixel value (2#bits per pixel − 1) [22];
• k1 and k2 are two small constants.

Lower and upper bounds for SSIM are -1 and 1 and value 1 is reachable in case of
identical images with perfect structural similarity [22].
While MSE estimates absolute errors, SSIM is a perception-based model which
perceives changes in structural similarity.
To calculate similarities between segmented images two other measures are of inter-
est: Pixel Accuracy and Mean Intersection Over Union:

Pixel Accuracy = #correctly classified pixels
M ∗N

(3.23)
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Mean IoU = 1
# classes

#classes∑
k=1

TPk
TPk + FNk + FPk

(3.24)

Mean Intersection Over Union (Mean IoU or Mean IU) metric quantifies the
percentage of overlapping between the target image and the prediction separately,
and then averages over all classes to provide a global score for the semantic seg-
mentation 2 prediction. Pixel Accuracy, instead, only reports the percentage of
correctly classified pixels with no distinction of classes. Both measures are between
0 and 1, with 1 representing the highest similarity value.

3.2.3. Statistical tests to compare two paired samples

For each patch a new one is generated by GANs and, from both, segmentation tool
predictions are obtained as paired images. Enhancing (or reducing) the performance
of a segmentation tool can be seen as obtaining generated images predictions signif-
icantly more (or less) similar to ground truth patches, compared to how the original
images predictions are.

Two paired groups of samples can be calculated measuring similarities between
ground truth patches and original images predictions (s1), and ground truth patches
and generated images predictions (s2) (see Figure 4.1). Data values from s1 and s2
are not independent, because both are obtained comparing images with the same
set of ground truth patches. To establish if s1 and s2 are significantly different,
the difference between their mean value is tested with two different statistical ap-
proaches: parametric or nonparametric [20]. One of the main differences is that,
while in the first case several assumptions about the parameters of the population
distribution, from which the sample is drawn, need to be made, in the second case
fewer assumptions are necessary.

3.2.3.1. Parametric Test: Paired t-test

Student t-test is a statistical test which is used to compare the mean value of two
groups of samples. The question this test aims to answer is: are the means of the
two sets significantly different from each other?

More in particular, paired t-test is used to compare the means between two
related groups of samples s1 and s2 (i.e to compare values of blood pressure before
and after a treatment), when data values are in a pairing [20].

2Semantic segmentation describes the process of associating each pixel of an image with a class
label.
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Let d = s1 − s2 and md be the sample mean of d, sd its sample standard deviation
and n its size. Assuming that d1, . . . , dn constitute a sample from a normal pop-
ulation N (µd, σ2

d) having unknown mean µd and unknown standard deviation σd.
Saying that there is no difference between the two paired groups translates into the
statement that µd = 0, so the hypothesis to test is:

H0 : µd = 0
H1 : µd 6= 0 (3.25)

The null hypothesis H0 can be rejected when the estimator of the population mean
µd, represented by the sample mean md, is far from 0. Estimating the unknown
standard deviation with the sample standard deviation and setting a significance
level α, H0 is rejected, in favor of the alternative hypothesis, if the p-value of the
t statistic value t = md

sd
∗
√
n, with degrees freedom df = n − 1, is less than

half the chosen significance level α (two-sided test). The p-value represents the risk
indicated by the t-test table for the calculated t value [20].

A paired t-test needs to satisfy the following assumptions:
1. The data are continuous;
2. The differences for the matched-pairs follow a normal probability distribution;
3. The sample of pairs is a random sample from its population.

It has been proved that paired t-test is robust to violation of the normality assump-
tion of the differences in the samples, when some conditions hold, such as sample size
is 25 or more per group [8]. In case of large samples, then, the normality assumption
does not need to be tested.

3.2.3.2. Nonparametric Test: One-sample Permutation Test

Hypotheses tests can also be used in situations where the underlying distribution of
the data is not required to have any particular form. Because the validity of these
tests does not rest on the assumption of any particular parametric form (such as
normality) for the underlying distribution, these tests are called nonparametric [20].
permutation tests are a class of nonparametric tests which test the hypothesis
for which relabeling the observed data is justified by exchangeability of the observed
random variables .
In case of paired data, d = s1 − s2 is calculated. The permutation test is based on
the idea that under the null hypothesis, di, with i ∈ [1, n], is symmetric around the
mean valuemd. Under H0, di is equally likely to be lower or higher in value thanmd.
Let Zi = +1 or −1 with probability 1

2 for each observation di. Calculating the mean
on the 2n possibilities of sign vector Z, or on a fixed number of sign flips, multiplied
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by the observations d (d∗Zj with j ≤ 2n ), allows to generate a conditional empirical
null distribution of the test statistic [18]. The hypothesis to be tested can be then
translated into:

H0 : µd = md

H1 : µd 6= md (3.26)

where the null hypothesis H0 can be rejected if the p-value of the test is less than the
chosen significance level α. The p value is defined as the percentage of test statistic
values x such that |x−md| ≥ 0 in the conditional empirical null distribution.
For example, let X = {0.5, 0.4, 0.3} and Y = {0.2, 0.8, 0.1} be the values of SSIM
between three ground truth images and three patches before (X) and after (Y ) style
transfer. Let D = X − Y = {0.3,−0.4, 0.2} and md = 1

3(0.3 − 0.4 + 0.2) = 0.03.
Choosing 4 as fixed number of sign flips, four possible outcomes of sign vector Z are
shown in Table 3.2. The test p-value is 1, because all four trials give as results a
value which is lower or equal to −md and higher or equal to md . For a significance
level α = 0.05 the null hypothesis can not be rejected, resulting in no significant
improvement, in SSIM, after style transfer.

D D ∗ Z1 D ∗ Z2 D ∗ Z3 D ∗ Z4
0.3 0.3 -0.3 0.3 -0.3
-0.4 0.4 -0.4 0.4 0.4
0.2 -0.2 -0.2 0.2 -0.2

mean value 0.03 0.17 -0.3 0.3 -0.03

Table 3.2.: Example of sign flipping nonparametric test. D represents the difference
between two paired samples X and Y. From the second to the fifth column, sign flipping
is performed four times. The last row, mean value, indicates the value of the test
statistic calculated for each column.

The p-value gives the probability of observing the test results under the null hy-
pothesis. The lower the p-value, the lower the probability of obtaining a result
like the one that was observed if the null hypothesis was true. In both parametric
and nonparametric tests, if the alternative hypothesis is an inequality, the test only
checks the significance of the difference between distributions (two sided test); a
disequality, instead, assesses which sample is significantly better than the other one.
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In this section, results from some of the most promising style transfer experiments
are reported. In the first part the evaluation procedure is described step by step,
while in the second part a more detailed report of results is given.

4.1. Evaluation Procedure

The evaluation procedure mainly consists of six different steps:
1. Style transfer evaluation: style transfer methods, described in sec. 3.1, are

first trained and then tested on leica test patches, generating, as result, fake
zeiss patches. Initially, a qualitative evaluation is given, comparing the images
before and after style transfer. Then, Y, Cb and Cr color channels histograms
of the generated and of the real zeiss images are compared both visually and
numerically (KL divergence).

2. Prediction: the patches generated applying style transfer to the test set
(fake zeiss) with different models and the test patches themselves (leica)
are all given as input to the segmentation tool for prediction. The tool is pre-
trained by ContextVision on WSI zeiss images from the train set described
in chapter 2;

3. Ground truth patches extraction: for each of the patches in the test set,
a ground truth patch is extracted from the corresponding ground truth image.
Each patch is resized (from approximately 20x20 pixels to 256x256 pixels) such
that it can be compared to the predictions obtained in the previous step;

4. Overall evaluation: ROC, precision vs recall, F1 vs threshold curves and
AUC are calculated for both fake zeiss sets and leica test set across
different thresholds on the predicted patches. For each model the best thresh-
old is chosen according to the best F1 score value. Confusion matrices and all
metrics related to them are reported, to compare models between each other
and each model with the baseline represented by predictions on leica test
set;

5. Local evaluation: for each model, and for the baseline test set (leica), each
patch is compared with its ground truth patch, obtained in step 2, through
image similarity measures, generating vectors of measures with the same length
of the test set. For each of these vectors some summary statistics are reported;
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6. Statistical analysis for comparison: step 1-4 help to point out how the
models different from each other and from the baseline set (leica). To eval-
uate the significance of these differences, parametric and nonparametric hy-
pothesis testing is used on the paired data vectors obtained in step 4.

Figure 4.1.: Evaluation procedure shown at a patch level. First, Leica test set (baseline
set) is used as input of a style transfer model generating Fake Zeiss test set. In step 1, the
generated patches are qualitative evaluated. In step 2 predictions from the segmentation
tool are obtained for both Leica test set and Fake Zeiss test set. In step 3 ground truth
patches are extracted from ground truth images. Predictions on before and after style
transfer patches are compared with ground truth images in an evaluation step, patch
by patch, in step 5. Repeating steps 1, 2, 3 and 5 for all patches in Leica Test Set, an
overall evaluation can be computed (step 4) and statistical analysis (step 5) can be used
to assess improvement in performance of the segmentation tool.

4.2. Simulations Results

Both CycleGAN and UNIT have complex architectures, made of four and six net-
works respectively, resulting in a large number of hyperparameters. Related works
[23, 24, 21] demonstrated the success of the default CycleGAN architecture and set-
tings [26] in histopathology. Because of the long training times those models require
and of the limited time available, this work aims to discover how the amount of
training data, number of epochs, different loss functions and different GANs influ-
ence the performance of the Image to Image translation problem and therefore of
the segmentation model.
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Different style transfer models are trained on datasets made of randomly selected
images from the training patches obtained in chapter 2. Two different datasets are
used for training: Dataset 1, made of 40,000 patches, and Dataset 2, made of 4,000
patches. Each of the sets contains half Zeiss and half Leica training patches, in
order to “learn” both ways mapping functions. While CycleGAN can be trained on
both large and small amount of data, UNIT requires much more computer memory
to process large datasets, for this reason, in the experiments, it is only trained on
Dataset 2.

After training, all models are tested on one test set of 2,000 images, randomly
selected from Leica testing patches in Table 2.1, and are assessed on five sets of
2,000 images, obtained in the same way.

4.2.1. Dataset 1

The following table shows the methods used on Dataset 1 with the number of epochs
and the loss functions details:

Methods # epochs loss functions

CycleGAN 90 adversarial + cycle consistency

CycleGAN + KL 70 adversarial + cycle consistency + KL divergence

Table 4.1.: Summary of methods used on Dataset 1: models, number of epochs and loss
functions.

In generating new patches, no matching images in the target domain are available
for comparison so it is hard to judge the performance of the model. Visually it is
important to ensure that the patch texture is preserved also in the synthetic image
and that the style looks similar to the target one (in Figure 2.3 an idea of the
different styles is given).

In Figure 4.2, a few examples of the results obtained applying the above mentioned
methods are showed. Texture details are preserved after style transfer and tissue
is distinguished from the white background correctly. Both models maintain these
characteristics, CycleGAN + KL sharpens the difference between darker and lighter
areas compared to CycleGAN.

To have a numerical idea of how similar the generated images and Zeiss images styles
are for both models, a comparison between Y, Cb and Cr color histograms is shown
in Figure 4.3 and KL divergence (Table 4.2) is calculated per channel, to compare
with results from chapter 2. The two channels with the greatest improvement, af-
ter style transfer, are Cb and Cr. On the overall patches, CycleGAN+KL seems
to learn chrominance better than simple CycleGAN does, especially Cr (confirming
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Figure 4.2.: Before and after Style Transfer. The first column on the left contains three
Leica original patches from the test set, while the other two columns on the right contain
the style transferred images with CycleGAN and CycleGAN+KL respectively.

the sharpness in Figure 4.2). Looking at the gray scale version of the original im-
ages, CycleGAN is more capable to represent the target domain (see Y Channel in
Table 4.2).

Y Channel Cb Channel Cr Channel

KL(Zeiss,Fake Zeiss)
CycleGAN 0.11 0.02 0.10

CycleGAN+KL 0.26 0.03 0.05

Table 4.2.: Kullback-Leibner divergence between Zeiss and Fake Zeiss Y, Cb and Cr
color histograms for all methods trained on Dataset 1.
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Figure 4.3.: Comparison between Y, Cb and Cr color histograms for Zeiss and Fake
Zeiss images: CycleGAN on the top and CycleGAN+KL on the bottom.

4.2.1.1. Measurements of performance of the classifier on different methods

Tumor segmentation predictions are calculated for leica test set and for the two
fake zeiss sets obtained by applying the style transfer methods described above.
Before choosing the best threshold, to transform gray scale images into binary im-
ages, the methods are visually compared across thresholds (0 ≤ t ≤ 255) using ROC
curve (Figure 4.4), PR curve, plotting F1 values against thresholds (Figure 4.5) and
calculating AUC (Table 4.3).

According to ROC curve and AUC, the performance of the tumor classifier network
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increases on stain normalized images with CycleGAN compared to the original Leica
images. The ROC curve for the untransferred images is always below the one for
CycleGAN and the one for CycleGAN+KL transferred images, and this translates
into a lower value of AUC as shown in Table 4.3. CycleGAN outperforms Cycle-
GAN+KL by 3.6% in AUC and increases the original performance by 16% in average
AUC.

Figure 4.4.: ROC curves generated over predictions calculated on CycleGAN and Cy-
cleGAN+KL transferred patches (fake zeiss) and Original untransferred patches
(Leica). The highest value of AUC is obtained with CycleGAN.

Methods AUC

Original 0.644±0.013

CycleGAN 0.747±0.007

CycleGAN + KL 0.721±0.008

Table 4.3.: AUC mean values and standard deviation calculated over 6 sets of test data
consisting of 2000 patches each, for models trained on Dataset 1.

In Figure 4.5, on the left side, F1 score is plotted against threshold values, while pre-
cision and recall are plotted on the right side. For the original images the best value
of the F1 score is obtained for threshold toriginal = 14, while for the CycleGAN gen-
erated images it is obtained for threshold tCycleGAN = 119 and the CycleGAN+KL
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generated images for tCycleGAN+KL = 102. Knowing that 0 refers to black pixel
values and 255 to white pixel values, predictions from original images result to be
darker than the ones from generated images. PR curve for the untransferred images
outperforms the one for transferred images only for low threshold values, as shown
in Figure 4.5, at the same time CycleGAN and CycleGAN+KL seem to have more
or less the same behavior, with slightly higher values of precision and recall for the
first model, compared to the second.

Figure 4.5.: On the left F1 score plotted against different thresholds values, on the right
PR curve calculated on results obtained training on Dataset 1.

After finding the best thresholds according to F1 score, thresholding is performed
for all patches and confusion matrices are calculated:

Methods TP FP TN FN

Original 5.78% 5.44% 81.82% 6.96%

CycleGAN 6.86% 5.68% 82.33% 5.14%

CycleGAN + KL 6.37% 6.84% 81.06% 5.73%

Table 4.4.: Confusion matrices for transferred and untransferred patches predictions
results in percentage on the overall number of pixels, for models trained on Dataset 1.

CycleGAN increases the number of true positive and true negative but it also results
into a bigger number of false positive and lower number of false negative. These
observations prove the higher value of accuracy, precision and recall as shown in
Table 4.5. CycleGAN+KL fails in detecting true negative compared to the original
untransferred images and this affects the accuracy by 1 percentage point, resulting
in a higher number of false positive. This model still outperforms the original
untransferred images in terms of true positive but not as much as CycleGAN does.
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Methods Accuracy Precision Recall F1

Original 0.874±0.004 0.47±0.02 0.47±0.03 0.47±0.01

CycleGAN 0.895±0.002 0.53±0.01 0.57±0.01 0.55±0.01

CycleGAN + KL 0.875±0.003 0.46±0.02 0.51±0.02 0.48±0.02

Table 4.5.: Performance of segmentation tool on images before (Original) and after (Cy-
cleGAN, CycleGAN+KL) style transfer.

4.2.1.2. Image Similarity Measures on different methods

After evaluating the models considering all the patches as an overall image, a more
local analysis is done. SSIM, pixel accuracy, Mean Intersection Over Union and MSE
are calculated between each prediction and the corresponding ground truth patch for
the untransferred set and the transferred set with CycleGAN and CycleGAN+KL
respectively (see Figure 4.6). In Table 4.6 the mean and standard deviation values
are reported for all image similarity measures showing an overall improvement of
the performance of the segmentation tool on transferred images. CycleGAN shows
improvement for all measures, beside that, standard deviation values are somewhat
high and this questions if the improvement can be considered statistically significant
or not. CycleGAN+KL, instead, only outperforms the original untransferred images
in SSIM, while results in lower performance for all the measures calculated on a
pixel to pixel comparison.

Methods SSIM Pixel accuracy Mean IU MSE

Original 0.81±0.24 0.88±0.21 0.85±0.24 8060.93±13623.30

CycleGAN 0.85±0.24 0.89±0.19 0.86±0.24 7030.84±12732.60

CycleGAN + KL 0.83±0.24 0.87±0.21 0.84±0.24 8172.35±13487.79

Table 4.6.: Image similarity measures between predicted and ground truth patches for
Leica original images and images transferred with CycleGAN and CycleGAN+KL.

4.2.2. Dataset 2

To be able to run UNIT, a lower number of training data is used and on the same
set CycleGAN and CycleGAN+KL are also trained.

The following table shows the methods used on this set, with the number of epochs
and the loss functions details:
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Methods # epochs loss functions

CycleGAN 70 adversarial + cycle consistency

CycleGAN + KL 70 adversarial + cycle consistency + KL divergence

UNIT 90 adversarial + cycle consistency + VAE

Table 4.7.: Summary of methods used on dataset 1: models, number of epochs and loss
functions.

In Figure 4.7 some examples of the results obtained applying the three methods in
Table 4.7 are shown. Using a smaller amount of training data, influences the back-
ground for CycleGAN and CycleGAN+KL, without modifying the texture of the
image. It applies changes more on color level. UNIT, instead, does not always show
preservation of the structure but modifies the image also reducing the background
information in some areas.

Figure 4.7.: Before and after Style Transfer. The first column on the left contains three
Leica original patches from the test set while the other three columns on the right
contain the style transferred images with CycleGAN, CycleGAN+KL and UNIT.

A comparison between Y, Cb and Cr color histograms is shown in Figure 4.8 and
KL divergence (Table 4.8) is calculated per channel to compare with results from
chapter 2 and with results obtained training on Dataset 1. All style transfer methods
showed improvement in Y, Cb and Cr channels, however, training on a smaller
dataset, negatively affects the results (as shown in Figure 4.7), especially on Cr
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channel. UNIT results are the closest to real Zeiss style in terms of colors, but they
lose morphology information.

Y Channel Cb Channel Cr Channel

KL(Zeiss,Fake Zeiss)
CycleGAN 0.35 0.06 0.32

CycleGAN+KL 0.22 0.12 0.37
UNIT 0.09 0.07 0.09

Table 4.8.: Kullback-Leibner divergence between Zeiss and Fake Zeiss Y, Cb and Cr
color histograms for all methods trained on Dataset 2.

4.2.2.1. Measurements of performance of the classifier on different methods

Tumor segmentation predictions are calculated for leica test set and for the three sets
obtained applying style transfer methods described above. ROC curve (Figure 4.9),
PR curve , F1 values against thresholds (Figure 4.10) and AUC values (Table 4.9)
are then calculated.

According to ROC curve and AUC, the performance of the tumor classifier network
increases regardless the method, but it reaches the best result with CycleGAN+KL.
The ROC curve for the untransferred images is always below the others, resulting in a
lower value of AUC, as shown in Table 4.9. Despite that, the values of AUC are lower
than the ones obtained in Table 4.3, but CycleGAN+KL shows high performance,
similar to CycleGAN trained on Dataset 1. UNIT and CycleGAN trained on Dataset
2 show very similar performance in the ROC curve, in average, though, the first
method results in a 3.7% of improvement in AUC compared to the first one. The
model with the highest AUC value, trained on this dataset, increases the original
performance by 15% in average.
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Figure 4.9.: ROC curves generated over predictions calculated on CycleGAN, Cycle-
GAN+KL, UNIT transferred patches (fake zeiss) and Original untransferred patches
(Leica). The best performance according to AUC is obtained with CycleGAN+KL.

Methods AUC

Original 0.644±0.013

CycleGAN 0.699±0.006

CycleGAN + KL 0.740±0.008

UNIT 0.725±0.012

Table 4.9.: AUC mean values and standard deviation calculated over 6 sets of test data
consisting of 2000 patches each.

In Figure 4.10, in the left plot F1 scores are compared for each method at different
threshold values. For the original images the best value of the F1 score is obtained
for threshold toriginal = 14, for the CycleGAN+KL generated images it is obtained
for threshold tCycleGAN+KL = 143, for the UNIT generated images it is obtained for
threshold tUNIT = 125 and for the CycleGAN generated images it is obtained for
threshold tCycleGAN = 123. CycleGAN and UNIT show similar results in terms of
F1 scores vs threshold, being above CycleGAN+KL curve before t = 100 and then
below it. PR curves show that precision and recall values are affected by the lower
number of training data used for the models to learn, in fact, the curves have lower
values of F1 compared to the ones in Figure 4.5.
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Figure 4.10.: On the left F1 score plotted against different thresholds values, on the
right the PR curves.

After finding the best thresholds according to F1 score, thresholding is performed
for all patches and confusion matrices are calculated:

Methods TP FP TN FN

Original 5.78% 5.44% 81.82% 6.96%

CycleGAN 6.06% 6.66% 81.37% 5.92%

CycleGAN + KL 6.49% 7.29% 80.87% 5.35%

UNIT 6.07% 7.50% 80.54% 5.90%

Table 4.10.: Confusion matrices for transferred and untransferred patches predictions
results in percentage on the overall number of pixels, for models trained on Dataset 2.

All methods increase the number of true positive and decrease the number of false
negative, but they have worst performance in detecting true negative and they also
negatively affect the number of false positive. For this reason, even if the graphical
methods from the previous analysis showed the success of style transfer methods,
precision does not show such an improvement for transferred images compared to
untransferred images, as reported in Table 4.11.
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Methods Accuracy Precision Recall F1

Original 0.874±0.004 0.47±0.02 0.47±0.03 0.47±0.01

CycleGAN 0.878±0.007 0.46±0.02 0.52±0.01 0.48±0.01

CycleGAN + KL 0.882±0.006 0.47±0.02 0.55±0.01 0.51±0.01

UNIT 0.872±0.002 0.43±0.01 0.51±0.02 0.47±0.01

Table 4.11.: Performance of segmentation tool on different stain normalization methods
on Dataset 2.

4.2.2.2. Image Similarity Measures on different methods

SSIM, pixel accuracy, Mean Intersection Over Union and MSE are here calculated
between each prediction and the corresponding ground truth patch for the untrans-
ferred set and the transferred set with CycleGAN, CycleGAN+KL and UNIT. In
Table 4.12 the applied methods do not show any improvement in performance of
the segmentation tool for both pixel to pixel and structural measurements. Cycle-
GAN+KL method results in same pixel accuracy, Mean Intersection Over Union
and MSE values of Table 4.6. CycleGAN, instead, shows to be more sensitive to
the number of training data, having a significant decrease in performance for all
measurements.

Methods SSIM Pixel Accuracy Mean IU MSE

Original 0.81±0.24 0.88±0.21 0.85±0.24 8060.93±13623.30

CycleGAN 0.80±0.28 0.87±0.20 0.84±0.24 8174.79±13206.01

CycleGAN + KL 0.81±0.27 0.87±0.21 0.84±0.25 8218.20±13572.94

UNIT 0.81±0.27 0.87±0.23 0.83±0.26 8708.02±14648.69

Table 4.12.: Image similarity measures between predicted and ground truth patches
for Leica original images and images transferred with CycleGAN, CycleGAN+KL and
UNIT.

4.2.3. Statistical testing to assess significance of differences in
Image Similarity Measures distributions

The ground truth patches, the predictions are compared with, have a lower resolu-
tion. For this reason the image similarity measures are not 100% accurate. Beside
that, this does not influence the objective of the thesis work because what needs to
be significant is the improvement of the performance of the segmentation tool on
style transferred images, instead of original images.
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At this point, the Image Similarity Measures are calculated between Leica predic-
tions and ground truth patches and between Fake Zeiss predictions and ground
truth patches resulting in two vectors of paired data for each of the methods de-
scribed above. The significance of the difference between them is now investigated
for the models which resulted in higher values of one among the measures calculated
in the previous subsections.

4.2.3.1. Paired t-test:

Because of the size of the test set, testing the normality of the difference between
samples is not needed. Anyways, a visual inspection of the distribution of the
differences between paired data for each measure is showed in Figure 4.11.

Figure 4.11.: To test the assumption of normality, a variety of methods are available,
but the simplest is to inspect the data visually using a tool like a histogram. All graphs
show an approximate bell-shape which is typical of real-world data to not be perfectly
normal.

In Table 4.6, predictions obtained on CycleGAN generated images showed to be
more similar to the ground truth, compared to original Leica images predictions,
according all similarity measures. In fact, SSIM, Pixel Accuracy and Mean IoU
for CycleGAN are above and MSE is below the respective measures calculated for
original images.
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The following table shows the probabilities of observing the test results under the null
hypothesis where the null hypothesis states that there is no difference between the
image similarity measures calculated between original images prediction and ground
truth images, and style transferred images prediction and ground truth images.

SSIM Pixel Accuracy Mean IU MSE

p-value 1.39 ∗ 10−28 9.245 ∗ 10−7 0.001 9.245 ∗ 10−7

test statistic −11.26 −4.92 −3.28 4.92

Table 4.13.: Paired t-test results for SSIM, pixel accuracy, mean IU and MSE mea-
sures calculated between original images prediction and ground truth images, and style
transferred images (CycleGAN method from sec. 4.2.1) predictions and ground truth
images.

Because of the low of p-values, there is less than 5% chance of obtaining a result
like the one that was observed if the null hypothesis was true so the null hypothesis
can be rejected.
But what about CycleGAN+KL trained on Dataset 1? Can this method be con-
sidered significantly different for some of the measurements? After assessing the
normality of the differences, a paired t-test is performed using transferred images
predictions from CycleGAN+KL method trained on Dataset 1 (Table 4.14), show-
ing that the null hypothesis can not be rejected for pixel accuracy, mean IU and
MSE because the p-value is too high, while can be rejected for SSIM, as supposed
by looking at Table 4.6. This means that the segmentation tool does not change
performance with the aid of style transfer on most all the metrics but SSIM.

SSIM Pixel Accuracy Mean IU MSE

p-value 2.887 ∗ 10−09 0.645 0.277 0.645

test statistic −5.964 0.461 1.087 −0.461

Table 4.14.: Paired t-test results for SSIM, pixel accuracy, mean IU and MSE mea-
sures calculated between original images prediction and ground truth images, and style
transferred images (CycleGAN+KL method from sec. 4.2.1) prediction and ground truth
images.

Because of the high values of AUC obtained by CycleGAN+KL trained on Dataset
2, a t-test is performed also for this method prediction results (Table 4.15). The null
hypothesis is rejected for SSIM and mean IU but can not be rejected for pixel accu-
racy and MSE. Both those measures have low p-values, but, as shown in Table 4.12
and tested with a one side test, mean IU does not support the hypothesis of im-
provement using style transfer.
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SSIM Pixel Accuracy Mean IU MSE

p-value 0.032 0.485 0.015 0.485

test statistic −2.141 0.698 2.420 −0.698

Table 4.15.: Paired t-test results for SSIM, pixel accuracy, mean IU and MSE mea-
sures calculated between original images prediction and ground truth images, and style
transferred images (CycleGAN+KL method from sec. 4.2.2) prediction and ground truth
images.

4.2.3.2. One-sample Permutation Test

Under the assumption that the data have a symmetric distribution (see Figure 4.11),
the hypothesis to test in this nonparametric method is that the sample of standard-
ized differences is distributed symmetrically about 0, against the alternative that
the sample of standardized differences comes from a population with mean different
from 0.

The number of signs flips for the permutation test is set equal to 10,000. At each
step the sign of random elements in the sample are flipped and the overall mean
value is calculated. The results obtained from this test are reported in the following
table:

SSIM Pixel Accuracy Mean IU MSE

p-value 0.00009 0.00009 0.002 0.00009

test statistic −0.04 −0.02 −0.01 1030.09

Table 4.16.: Sign flipping test results for SSIM, pixel accuracy, mean IU and MSE
measures calculated between original images prediction and ground truth images, and
style transferred images (CycleGANmethod from sec. 4.2.1) prediction and ground truth
images.

Also in this case the null hypothesis is rejected in favor of the alternative hypothesis,
because of the low p-values obtained.

For CycleGAN+KL trained on Dataset 1 and CycleGAN+KL trained on Dataset 2,
results of nonparametric tests are reported in Table 4.17 and Table 4.18, confirming
the previous reasoning, done for the parametric tests.
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SSIM Pixel Accuracy Mean IU MSE

p-value 0.00009 0.656 0.267 0.640

test statistic −0.024 0.002 0.004 −111.421

Table 4.17.: Sign flipping test results for SSIM, pixel accuracy, mean IU and MSE
measures calculated between original images prediction and ground truth images, and
style transferred images (CycleGAN+KL method from sec. 4.2.1) prediction and ground
truth images.

SSIM Pixel Accuracy Mean IU MSE

p-value 0.030 0.494 0.015 0.478

test statistic −0.008 0.002 0.008 −157.271

Table 4.18.: Sign flipping test results for SSIM, pixel accuracy, mean IU and MSE
measures calculated between original images prediction and ground truth images, and
style transferred images (CycleGAN+KL method from sec. 4.2.2) prediction and ground
truth images.
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Figure 4.6.: In the first row the original Leica image is showed, with its prediction gen-
erated by ContextVision segmentation tool and the ground truth image the prediction
needs to be compared with (on the right). The second and the third row are respectively
the outputs of CycleGAN and CycleGAN+KL models when the original Leica image
was used as input, with their prediction and the same ground truth image. All measures
are reported for the three cases, they are calculated after transforming both prediction
and ground truth into binary images according to the best threshold. CycleGAN, in
this case, shows a great improvement of performance of the segmentation tool during
prediction, recognizing the patch as cancer area.
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Figure 4.8.: Comparison between Y, Cb and Cr color histograms for Zeiss and Fake
Zeiss images: first CycleGAN, second CycleGAN+KL and third UNIT. 57





5. Discussion

In this thesis work, unlike other relative works [21], the segmentation model is
not included in the stain transfer network architecture but they are considered as
separate. For this reason, first the methods and then the results and their evaluations
are discussed.

5.1. Methods

Using GANs [11] in Digital Pathology is a quite challenging task. Pathologists ana-
lyzing tissues using very accurate microscopes are pretentious about image quality,
so they increase the expectations of synthetic images. Hence, the Image to Image
translation problem in this context needs to take into account tissue morphology
more than in other style transfer problems (e.g. transferring Picasso painting style
to a picture). The choice of using patches instead of images with original dimensions
is both due to the networks memory consumption and to the preservation of details.
The patch size is chosen to be 256x256 pixels because it showed to be successful in
the literature [21, 24], but it would be interesting to test how increasing it affects
the stain transfer problem. Training both CycleGAN and UNIT networks showed
interesting behaviors.
The first trials on CycleGAN failed in recognizing the difference between background
information and tissue, the output of the testing set, in fact, resulted in images with
reversed darker tissues and white background. One possible explanation was having
too few patches with background in the training data, such that the network was
not able to understand this difference, but the problem persisted when increasing
this number so the motivation does not stand. Another possible explanation is that
CycleGAN is trained on patches of 256x256 pixels, while the original images can
be 50,000x50,000 pixels, and the field of view can therefore be too small for the
network to recognize background pixels. The output resulted to be very sensitive
to the initialization of parameters and its randomness, so one solution used during
simulations was running the model, checking after few epochs the saved samples and
restarting the training in case the phenomenon appeared. The choice of the number
of epochs also resulted from several trials and analysis of loss functions behaviors
and as trade-off with the number of training patches. Without changing the number
of epochs, training CycleGAN on a small (sec. 4.2.1) or on a large (sec. 4.2.2) dataset
affects the results mainly on a color level (see Figure 4.2 and Figure 4.7), softening
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and enhancing the color contrast respectively. CycleGAN shows to have the power
of keeping the shape of the object and not producing distorted images. This is
probably the main reason why the method fits the objective well.
The CycleGAN+KL model was first introduced as a solution to the background-
tissue reversing problem. During learning the mapping functions, the distance be-
tween the gray scale histograms of the generated and target image is asked to be
minimized. Adding a KL divergence loss did not succeed in achieving this goal,
but showed to sharp color contrast more than simple CycleGAN did (sec. 4.2.1,
sec. 4.2.2).
Beside CycleGAN, a more complex unsupervised Image to Image translation method
was used: UNIT. Instead of four as in CycleGAN, six networks are trained simul-
taneously in this model, increasing the running time and the complexity. Because
of computer memory limitations, it was only able to train on a dataset of 4,000
patches. To compare CycleGAN and CycleGAN+KL with UNIT, they were both
also trained on a smaller dataset. Comparing models trained on such different num-
ber of data would have been unfair. While for CycleGAN the background-tissue
reversing problem is consistent in all tested patches given the model (either all
patches were reversed or not), for UNIT it is not. Stained transferred images show
that the model affects the texture of the tissue beside the color appearance and even
if it recognizes some background areas, it is not consistent in the identification.
From a pathologist point of view, CycleGAN and CycleGAN+KL better fits the
aim of the thesis work because there is no change in morphology in the synthetic
images after style transfer. As the literature showed, though, visual judgment and
the result of a classifier can sometimes lead to two different conclusions [6], that is
why from a deep learning segmentation model point of view, the chance of obtaining
good results from deformed images can not be excluded.

5.2. Results

ContextVision’s segmentation tool and GAN methods share the same train and test
WSI set. Are the results therefore biased? Is training style transfer on the same
training set used for classification affecting somehow the performance? There is not
a certain answer for this question but having two completely different objectives, as
predicting cancer area and performing stain transfer respectively, this should be less
of a problem.
The evaluation procedure (sec. 4.1) adopted in this thesis work was formulated ac-
cording to the available resources. ContextVision’s segmentation tool predicts on
WSI in high resolution. To evaluate the performance of style transfer methods, in-
stead, predictions on patches were performed making the original evaluation method
used by the company impossible to use. Step 2 in sec. 4.1 causes information loss,
especially when ground truth patches are compared with high quality predictions,
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that is why focusing on the difference between models performance instead of looking
at each result by its own is preferred.

Improvements are measured comparing predictions on Leica untransferred and trans-
ferred images. Information about the performance of the segmentation tool on Zeiss
dataset are protected under non-disclosure agreement. The tumor classifier network
shows an improvement of the performance on all images obtained from stain transfer
methods compared to the untransferred ones, according to ROC curve and AUC. To
be able to assess those results, all models were tested on other five sets consisting
of 2,000 patches each (Table 4.3 and Table 4.9), showing that the worst model still
increased the mean AUC by 8.5%. After obtaining such results, the question is: can
the AUC be trusted as measure of performance? The ROC curve is built evaluating
a classification model at each classification threshold, and therefore gives an overall
evaluation of the performance. Beside that, though, classifying a cancer area from
a not cancer area translates into a binary problem which requires the identification
of a separator between classes. Do false negatives and false positives have a similar
cost? Is detecting cancer in a no cancer area better or worse than the opposite in this
context? From a medical point of view the costs are not similar, both situations have
consequences but a false negative could lead to death; for a medical devices company
point of view, instead, the tool requires to reach great performance regardless the
error committed. The best threshold is then chosen according to the best F1 score
so that the number of “false alarms” is minimized. Another indicator showing stain
transfer success is represented by F1 curves (Figure 4.5 and Figure 4.10), not by the
F1 score specifically, but by the best threshold values resulting from them. All stain
transfer methods have as best threshold, according to F1 score, values going from
102 to 143, while the segmentation model on original image has 14, which means
that predictions on patches are so dark that dark gray, corresponding to pixel value
of 20, is classified as cancer.

Confusion matrices, accuracy, precision and recall, pixel accuracy, meanIU and MSE
calculated at the best thresholds, on the overall pixels, showed the same behavior
for all models except for CycleGAN trained on Dataset 1. Stain transfer helps to
detect true positives and to decrease false negatives, but does not always succeed
in detecting true negatives causing an increase in the number of false positives
compared to the untransferred images. For this reason accuracy and precision values
do not show improvements as recall does. It is also true that all those calculations are
done between high quality predictions and low quality ground truth patches, so they
are not so accurate. An improvement of 0.002 in accuracy has a larger impact than
what it can seem because of the large number of samples it has been calculated from
(when N is very large, even small improvements will be seen as significant in a t-test).
Even if the values are close to the ones calculated for the original images, the question
is if values obtained on transferred images are significantly different compared to the
one obtained on untransferred images, and what the difference is among different
models. Paired t-tests or permutation tests could be performed to compare all
different models, the same methods trained on different amount of training data,
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AUC calculated on different datasets for transferred and untransferred images, etc.
After identifying the best model which showed to improve all measurements both on
the overall pixels and on the patch-ground truth comparison as CycleGAN trained
on Dataset 1 (increasing AUC by 16%), statistical tests confirmed this hypothesis
showing the achievement of the thesis aim.
One limitation of this thesis work is not having target values to compare the results
with: having unpaired images instead of paired, do not allow to evaluate prediction
of real Zeiss images pointing out the best possible performance.

5.3. Future Work

As explained in sec. 1.1, there are two different approaches that could be used to
improve performance in this context: increasing variability in the training data or
decreasing it adapting the testing set to its style. In this thesis work GANs helped
to face the second approach, but they could also be used in the first one, performing
data augmentation. In case, for example, few images coming from one institute
using a different scanner are available for the segmentation model to learn, GANs
could be used to perform style transfer and generate new training data [3].
What if the segmentation tool was trained on Leica instead? Would style transfer
work better in the other direction?
What if many other scanners were used to produce WSI? This thesis work only
focused on two different scanners, another idea in case WSI from many different
scanners are available, is to perform Image to Image translation for multiple domains
using only a single model as proposed by StarGAN [7].
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Are Generative Adversarial Networks an effective approach, as prepro-
cessing step, to reduce the impact that ’non-biological’ variations on
histopathology data has on the performance of a computer driven seg-
mentation tool?

Generative Adversarial Networks shows to be an effective approach for the stain
transfer problem resulting in high quality transferred images and improved clas-
sification results. On an image quality level, Zeiss image domain and Fake Zeiss
image domain (obtained applying GANs on Leica image domain conditioning on
Zeiss domain) were compared on Y, Cb and Cr color channels, showing a very
strong similarity in distribution. According to Kullback-Leibler divergence the loss
of information encountered when the transferred images are used to approximate
Zeiss domain is very low especially on Cb and Cr channels where Leica and Zeiss
domains differ the most. Quantitatively, GANs showed superior performance, al-
ways increasing the AUC of the segmentation tool (the best model reaches 16% of
improvement).
Are all the Unsupervised Image to Image translation methods able to
significantly improve predictions of the segmentation tool in the same
way?

Although the segmentation tool always outperformed, in terms of AUC, when used
to predict on transferred images compared to untransferred images, an overall im-
provement was obtained only by CycleGAN trained on 40,000 patches. UNIT shows
potential especially in learning the color and the staining style, but fails in preserv-
ing the tissue morphology and therefore produces predictions which are sometimes
worse than original Leica’s predictions. Adding KL divergence to CycleGANs loss
function, instead, showed some improvements in detecting cancer areas but per-
formed worse than original Leica images in detecting no cancer tissue, however
these patches predictions have an higher similarity structure when compared with
the ground truth patches then the original Leica images.
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A Linux computer Ubuntu 16.04 with two GeForce GTX TITAN X 12GB GPUs
was used for this thesis project. Tensorflow was used for both CycleGAN and UNIT
frameworks. Two virtual environments were created according to requirements each
implementation had.

• CycleGAN:
– CUDA 9.0
– cuDNN 7
– Python 3.5
– tensorflow 1.12.0

• UNIT:
– CUDA 8.0
– cuDNN 6
– Python 3.6
– tensorflow 1.4

In the data preprocessing part, working on WSI in python was done using the
OpenSlide library. It allows to read image data at the resolution closest to a de-
sired zoom level. The documentation is available at https://openslide.org/api/
python/.
The CycleGAN implementation used in this work is available at https://github.
com/xhujoy/CycleGAN-tensorflow while the UNIT implementation at https://
github.com/taki0112/UNIT-Tensorflow. The default hyperparameters were used
for both the implementations beside the batch size raised to 4 and the number
of epochs as reported in chapter 4. In CycleGAN the initial learning rate for
Adam optimizer is set equal to 0.0002, as default, while in UNIT equal to 0.0001.
In CycleGAN the cycle consistency loss is regularized by a factor of λcyc = 10. The
CycleGAN+KL model was obtained adding to the CycleGAN implementation the
KL divergence coded in tensorflow. For λKL a value of 0.1 was chosen. In UNIT,
instead, the regularization terms in the loss function were set to λ0 = 10, λ1 =
0.1, λ2 = 100, λ3 = 0.1 and λ4 = 100.
Training CycleGAN and UNIT requires much time, especially if the number of
training data is very large (e.g. over 10 000). CycleGAN and CycleGAN+KL
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trained on Dataset 1 required around 12 and 10 days each for 90 and 70 epochs
respectively. On Dataset 2, instead, 2 or 3 days each were enough for CycleGAN,
CycleGAN+KL and UNIT for 90, 70 and 70 epochs respectively.
For the evaluation of results, some of the evaluation metrics were inspired by https:
//github.com/martinkersner/py_img_seg_eval while the others were manually
implemented. Parametric tests were performed using Scipy library while nonpara-
metric tests using Permute (documentation at http://statlab.github.io/permute/
permute.pdf).
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