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Abstract

Different road users follow different behaviors and intentions in the trajectories that
they traverse. Predicting the intent of these road users at intersections would not only
help increase the comfort of drive in autonomous vehicles, but also help detect potential
accidents. In this thesis, the research objective is to build models that predicts future posi-
tions of road users (pedestrians,cyclists and autonomous shuttles) by capturing behaviors
endemic to different road users. Firstly, a constant velocity state space model is used as
a benchmark for intent prediction, with a fresh approach to estimate parameters from the
data through the EM algorithm. Then, a neural network based LSTM sequence modeling
architecture is used to better capture the dynamics of road user movement and their de-
pendence on the spatial area. Inspired by the recent success of transformers and attention
in text mining, we then propose a mechanism to capture the road users’ social behavior
amongst their neighbors. To achieve this, past trajectories of different road users are for-
ward propagated through the LSTM network to obtain representative feature vectors for
each road users’ behaviour. These feature vectors are then passed through an attention-
layer to obtain representations that incorporate information from other road users’ fea-
ture vectors, which are in-turn used to predict future positions for every road user in the
frame. It is seen that the attention based LSTM model slightly outperforms the plain LSTM
models, while both substantially outperform the constant velocity model. A comparative
qualitative analysis is performed to assess the behaviors that are captured/missed by the
different models. The thesis concludes with a dissection of the behaviors captured by the
attention module.
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1 Introduction

Traffic safety is a big concern because of increasing mobility needs and large numbers of ca-
sualties in traffic with approximately 1.3 million killed each year[38]. Accidents often happen
as results of misunderstandings and improper reactions in interactions between road users.
This is especially true in the case of urban traffic, where vulnerable road users (pedestrians
and cyclists) are at high risk of harm in collisions with vehicles. Autonomous vehicles (AV)
are envisioned to improve traffic safety, because of their faster reactions and full compliance
to traffic rules. Despite ambitious promises, and intensive test activities, the first autonomous
vehicle prototypes without human back-up driver are allowed to operate in very limited ar-
eas and traffic conditions in the latest months [40], and there is a lot of skepticism about the
remaining work until autonomous vehicles will be able to truly safely operate in any traffic
conditions. One of the main reasons for these challenges is the concern about the safety of in-
teraction of AVs with other road users, especially vulnerable ones. Like an experienced driver,
AV needs to understand their behavior, intentions and reactions to its maneuvers early and
plan its motion accordingly. This is to both not provoke unsafe, dangerous reactions by unex-
pected maneuvers, and to proactively minimize accident risks for possible future evolution
of traffic situations. Also in the case of slow traffic situations, an AV can plan maneuvering
actions so that it doesn’t need to unnecessarily stop and halt at many places. An AV can
better plan its own trajectory if it is able to model the intent of road users and predict the be-
havior of different road users in an environment. Also, in general if we were able to predict
intent of different road users in a system, we could develop warning systems and indicators
at intersections to prevent risks of collisions and accidents.

1.1 Objective

Through this thesis, we look at developing such an intent prediction framework based on
trajectory data of different road users. In this thesis, we will be working on data from in-
frastructure sensors that are able to record traffic movements in a given road segment during
long times with high accuracy. The chief dataset is collected by Viscando AB at the Linköping
University campus. This dataset specifically consists of trajectories of various road users in-
cluding pedestrians, cyclists and an autonomous shuttle over an area of roughly 1300 square
meters. The objective of this thesis is to explore models for the concerned data and construct
a robust baseline/benchmark model along with a suitable final model. It will also be of great
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1.2. Contributions

interest to understand behaviors of different road users and where the models are able to/
not able to capture information. Specifically, we are interested in achieving these research
objectives:

• Study relevant methods and design a suitable baseline model for intent prediction,
which learns parameters from the data and is interpretable as well as robust.

• Design a more complex model that better captures dynamics of road user movement
and also factors in social behaviors of road users in traffic.

• Compare and assess these models and understand what behaviors are captured/not
captured by each of these models.

1.2 Contributions

In our work, we start by exploring the dataset and making suitable pre-processing to the
raw dataset. Constant velocity[26] and acceleration models are very popular in the ob-
ject/vehicle tracking literature and they are also considered as a good baseline for intent
prediction. Therefore, a baseline constant velocity model is developed but with a significant
change as compared to previous work in the domain of object tracking. In our work, we esti-
mate the parameters of the constant velocity model through data for each road user, instead
of heuristically assigning values to the parameters. This is achieved through the Expectation-
Maximization algorithm[33]. Through uncertainty estimates, we measure the difference be-
tween the predicted distribution and the actual trajectory. After setting up the baselines and
error estimates, we move on to construct a vanilla long short term memory (LSTM) model
[10] to better model the dynamics of a road user’s trajectory and capture location specific
movements from the training data. This is then built up to a novel pooled LSTM model to
account for social dependence between other road users. For this, we use a self-attention[37]
based architecture to pool and weigh the hidden layer outputs of several LSTM networks, so
that predictions are made for every road user in the frame. We then conclude our work by
assessing where the models fail in predicting behavior and also try to gauge what behaviors
are successfully captured by the models.

1.3 Uniqueness

There has been extensive research done on intent prediction in the past [24][27][1][29] . How-
ever, many of these studies lack large objective datasets on the interaction of road users with
autonomous agents intended to operate in spaces shared with pedestrians and cyclists, such
as autonomous shuttles or small delivery vehicles. There are three notable differences be-
tween a majority of the past research and our work:

• Many of these research studies deal with open source datasets with shorter trajecto-
ries, as on-board sensors of moving vehicles are used. On the other hand, our data
is acquired through a stationary infrastructure sensor which collects sufficiently long
trajectories for each road user over long time periods, days to years.

• Also, many of these experiments [24] [17] concern themselves with image data. In our
case the sensor is already equipped with an AI system that tracks and identifies distinct
road users. Therefore, we work with position data of each road user in time.

• Most studies[24][27][1][29] also deal with one kind of road user. For example, some of
them model vehicles on a highway, whereas others model pedestrians in a crowd. In
this paper, we have interactions between three kinds of road users: cyclists, pedestrians
and shuttles and this has seldom been modeled.

2



1.3. Uniqueness

• A novel method for intent prediction is proposed that uses a self-attention mechanism
on past trajectories of road users in a scene, to predict the future positions for all road
users in the scene.

3



2 Related Work

In this section, relevant literature is briefly presented and ideas from these papers are dis-
cussed. Also, the context of our research is highlighted , where the similarities as well as
differences between past papers are discussed.

Methods related to human pose detection and intent prediction have been well explored
in the past. Recently, there have been advancements in the field of human pose detection
and the literature is substantially rich ([9],[7]). Human pose detection is also an important
feature to further predict action/intent of a pedestrian. It has been shown that human pose
is important to measure distance between humans, and also if two pedestrians are making
eye-contact or not ([3]). Pose estimation techniques are implemented by [24] to construct
intermediate features which are later used to determine the crossing behavior of pedestrians.
For our problem, we are more focused on intent prediction methods without considering
pose, as the dataset consists of trajectories and not of images. It is also of further interest to
see if models that only rely on position data, perform well without the use of richer feature
information such as pose/gestures.

2.1 Classification problems

There are two broad divisions of study in intent prediction, amongst which the first looks
at classifying intent into separate classes. For example, a binary prediction is enough when
predicting whether a pedestrian is going to cross the road or not. A person is detected to be
bending, starting or stopping based on silhouettes gathered from stereo-vision data in [17].
On the other hand, [16] tries to predict if a person is going to the cross the road based on
augmented features derived from a dense optical flow. A procedure based on graph con-
volution is used in [19] to extract spatiotemporal relationships between other objects in the
frame and previous time steps, so that they are useful in assessing whether a pedestrian will
cross the street or not. In the trajectory data present for our case, there aren’t too many turns
or chances for collisions. For this reason, our area of focus is chiefly on trajectory prediction,
where instead of binary/multiple classes, a path is predicted for pedestrians.

4



2.2. Trajectory prediction problems

2.2 Trajectory prediction problems

Explicit modeling methods

The first class of solutions in trajectory prediction problems pertain to explicit modeling meth-
ods, where the pedestrians/vehicles are modeled based on the laws of physics . Constant
velocity models, constant acceleration, constant turn models incorporate basic laws of kine-
matics to predict future positions. There are also more complex non-linear models such as the
extended Kalman filter[14], unscented Kalman filter[36] which can instead be used to model
the dynamics of pedestrian movement. An interacting multiple model[21] is used in [41] that
combines two such physics-based models and adjusts model parameters to improve its pre-
dictive accuracy. A comparative study across various such filter-based models is performed
by [30] , where path prediction accuracy is assessed. In our work, the Kalman filter constant
velocity model is used as the baseline owing to its simple yet robust design[31]. However,
unlike normal implementation where model parameters are chosen heuristically, in this the-
sis, parameters are estimated from the data. The filter-based approaches are successful in
modeling short range predictions (ă 1 second), but fail when predicting over longer time
horizons [20]. There are certain methods such as ([12],[20]) which attempt to model long-
term predictions using concepts of particle filters, dynamic bayesian networks and gaussian
processes. However, these methods were implemented on a highway dataset for predicting
lane changes, where the vehicles move in a more deterministic fashion than pedestrians at
intersections.

Planning based approaches

There are also related planning-based approaches through which the end-goal/general in-
tent of a pedestrian is inferred and the path of a pedestrian is "planned" based on this end
goal. For example, this end-goal is modelled as a hidden state in [15] and the intent is mod-
eled as a stochastic policy conditioned on the end-goal. An innovative way is tried in [39]
for assigning trajectories to certain clusters of a Gaussian mixture model through which in-
tent is modelled. This modeled intent then determines the path traversed by a pedestrian.
A novel way of combining this so-called planning based approach and path prediction ap-
proach is used in [29]. They do so by using an inverse-reinforcement learning network to
learn the reward function and later use this reward function as an input to a sequence model-
ing network (such as a recurrent neural network [22]) that predicts future trajectories. These
solutions require modeling of a goal which then influence the path being planned. However,
it would be convenient to avoid this two-step process and directly model both the path and
the goal/intent.

Sequence learning based architectures

The last class of solutions of particular interest to us involve sequence-learning based archi-
tectures to model the temporal nature of trajectories and some of them also try to account for
the social interactions between pedestrians. A long short term memory (LSTM) network[11]
is used in [28] to preserve patterns in the long past trajectories of pedestrians that is other-
wise not preserved in non-gated architectures like the recurrent neural networks (RNN)[22].
Through an architecture of dual LSTM networks, trajectories were predicted for all surround-
ing vehicles in [42]. A spatiotemporal LSTM was constructed by [5] that measured not only
temporal patterns but also the spatial interactions between multiple vehicles. They also mod-
ified the LSTM network so as to limit the vanishing gradient problem. In recent past, [1]
has been regarded as a seminal paper that combined the success of an LSTM network and
integrated social modeling through a pooling layer. An LSTM network was used to model
the plain vanilla behavior of the ego user and his/her neighbors. The hidden states of these
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2.2. Trajectory prediction problems

neighbors were combined based on their proximity to the ego user and this combined hidden
layer was then used for prediction.

Figure 2.1: Pooling in the Social LSTM

In the above figure, the black dot concerns the ego-road user and the other dots signify the
neighbors. We see that the red and purple hidden states are added as they belong to a specific
region. This kind of pooling creates a tensor that partially preserves social information of the
different neighbors. An excellent review of other deep learning approaches for trajectory
prediction is present in [35].

Attention

In the above mentioned deep-learning based frameworks, trajectory prediction is generally
considered as a sequence to sequence task, where the past trajectory sequence is used to pre-
dict the future trajectory. A novel idea of using attention coupled with a RNN was used by
[2] to improve performance in a sequence to sequence sentence translation task. Attention
selectively focused on certain parts of the input sentence to help generate the translated se-
quence. The idea of self-attention was made popular by [37], where the attention mechanism
relates to different positions of the same sequence in order to obtain a representation of that
sequence. It is to be noted that both [37],[2] use the concept of soft attention. According to
[32], soft attention models take a weighted average of the entire input space and thus are
deterministic and can be trained through backpropagation. Hard attention on the other hand
selectively focuses on an approximate area of the input with the help of attention scores (for
example by sampling based on the attention score, only certain discrete areas of the input can
be obtained). A more detailed technical review of soft-attention has been presented in Sec-
tion 3.6. After the large success of attention mechanisms in the natural language processing
domain, attention is beginning to be used in other domains as well. Attention was used to
selectively focus on certain areas of an image to caption them in [43]. Temporal attention has
already been used to improve trajectory prediction, to focus selectively on some parts of the
past trajectory. Beyond just focusing on some parts of a sequence, the concept of attention
can be used instead to focus on certain neighbors of a ego road user, to in-turn incorporate
their features in determining the trajectory of the ego-user. Soft-attention was used in [8] to
model the temporal nature of the trajectory and hard-attention was utilized for attending to
neighbors, where attention weights are calculated based on the distance between road users.
However, the importance/attention that road users give each other depend on factors other
than distance. For example, a road user would mostly be concerned with someone coming in
the opposite direction, rather than someone in the same lane. It would be more natural for a
model to learn these dependencies rather than manually encode these behaviours.

Methods used in this thesis

In this thesis, we would like to propose a novel soft self-attention approach to model the
relationships between various road users and predict future positions of all these road users.
The individual past trajectories of road users are encoded through an LSTM network, and
then attention is applied to the encoded feature vectors of all road users (social self attention)
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2.2. Trajectory prediction problems

in the scene. As a result, the output feature vectors of each road user contain information from
other road users in the same scene. We hypothesize that this would lead to better trajectory
predictions for all road users in a scene. In conclusion, there are 3 models built as follows:

• A dynamic constant velocity model, where the novelty is that parameters are estimated
from the data instead of being set heuristically.

• A plain robust LSTM network that uses the full length past trajectory, to model the
future positions of road users.

• A novel LSTM network combined with an attention encoder to predict future positions
of all road users by baking in social dependencies between different road users.

All of these methods are elaborated upon in further sections.

7



3 Theory

This section will elaborate and build upon all the theoretical foundations required to imple-
ment most of the methods presented in this paper. Firstly, we will look at defining Kalman
filter models and some properties related to these models. Then, we focus on the constant
velocity model and derive the expectation maximization algorithm in order to estimate pa-
rameters from the data. We then shift our attention to recurrent neural network based ar-
chitectures that can be implemented on time series data. Specifically, the scope of long short
term memory models, transformer models on our problem and dataset is studied in more
detail and depth.

3.1 Kalman Filter

State space models represent a group of probabilistic graphical models that describe the de-
pendence between a hidden state variable and an observed state variable. The hidden state
consists of information that is hidden/latent as opposed to an observed state variable. As
an example, one can think of noisy measurements of object position from a sensor as the ob-
served state, whereas the actual object position can be considered as a hidden state. These
models that incorporate the hidden state and observed states are very useful as they capture
long range temporal dependencies between observations, while maintaining sparsity.

Figure 3.1: An illustration of the state space model

8



3.1. Kalman Filter

In the Figure 3.1, Xt represents the latent/hidden state space variable. Xt is independent
of X0:t´2 given Xt´1 showing us that the hidden state exhibits Markovian properties. This
essentially means that the future hidden states only depend on the present hidden state and
does not depend on past history. On the other hand, the measured variable Zt is independent
of Z0:t´1 given Xt . The model can entirely described using the following two equations:

Xt = AXt´1 + ηt

Zt = CXt + ϵt
(3.1)

where ηt and ϵt are distributed as N(0, Q) and N(0, R) respectively. Here A and C govern
the dynamics of the state space transition and the emission between state space and observed
state respectively. The covariance matrices Q and R represent the state space transition co-
variance matrix and the emission state covariance matrix.

Estimators of the hidden state

In the Kalman filter, the primary focus is to obtain estimates of the hidden state Xt given
the observations Y1:n upto time n. The estimation of the hidden state Xt at the current time
step given data till the current time step Yt is called as the filtering problem. This can be
considered as when n = t. When n ą t, the problem is called smoothing, where estimates
of Xt are estimated given observations in the future. Lastly, when n ă t the problem now
pertains to prediction as estimate of Xt is obtained only using the observations before t. The
expectation of Xt given observations Y1:n can be written as:

Xn
t = E(Xt|Yn) (3.2)

Apart from measuring just these estimates, the Kalman filter by construction gives us good
ways to measure the precision/uncertainty of estimates. For example the covariance Pn

t can
be defined as :

Pn
t = E((Xt ´ Xn

t )(Xt ´ Xn
t )

1) (3.3)

The covariance between the estimates at different time steps t1 and t2 can be written as:

Pn
t1,t2

= E((Xt ´ Xn
t1
)(Xt ´ Xn

t2
)1) (3.4)

Consequently, the one-lag covariance smoother, which is nothing but covariance between
consecutive estimates of the hidden state, can be defined as:

Pn
t,t´1 = E((Xt ´ Xn

t )(Xt´1 ´ Xn
t´1)

1) (3.5)

The means and covariances defined above give us a good idea about the moments (or
the characteristics) of the distribution of Xt which will prove to be useful when information
regarding Xt is required.

Filtering and Prediction

In the previous section, the filtered, predicted and smoothed estimates were defined, but not
calculated. In order to calculate these estimates of means and covariances, there are well
defined filtering and smoothing algorithms. In this section and the next, relevant algorithms
are presented to compute the estimates defined in the previous section. The proofs for these
algorithms and properties are presented in detail in [34].

For a state space model defined in Eq. 3.1, assuming the initial conditions as X0
0 = µ0 and

P0
0 = Σ0, for t = 1, 2...n

Xt´1
t = AXt´1

t´1

Pt´1
t = APt´1

t´1 A1 + Q
(3.6)

9



3.2. Constant Velocity Model

with.

Xt
t = Xt´1

t + Kt(Zt ´ CXt´1
t )

Pt
t = [I ´ KtC]Pt´1

t

(3.7)

where
Kt = Pt´1

t C1[CPt´1
t C1 + R]´1 (3.8)

Here Kt is called as the Kalman gain. This decides the weight that needs to be placed on
the measurements relative to the previous state in deciding the next state. If the measure-
ments are accurate, then more weight is placed on the current measurement. When the state
is known accurately, the previous state is given importance to predict the next. Starting from
X0

0 and P0
0 , we can compute the one-step predictive estimates X0

1 and P0
1 using Eq. 3.6. Using

Eq. 3.7 and Eq. 3.8, the filter estimates X1
1 and P1

1 can then be computed. This entire process
can be iteratively repeated until Xn

n and Pn
n are computed. For the case of prediction beyond

t ą n, Eq. 3.6 can be used to compute Xn
n+1 and Pn

n+1. The filter distribution Xn+1
n+1 and Pn+1

n+1
can then be assumed to be the same as the predictive distribution. In this way, multi-step
ahead prediction would be similar to iteratively stacking multiple one-step predictions. For
more detailed proofs regarding Eq. 3.6, Eq. 3.7 and Eq. 3.8 please refer to [34].

Smoothed Estimates

For the model specified in Eq. 3.1 with initial conditions Xn
n and Pn

n obtained through Eq. 3.6,
Eq. 3.7 and Eq. 3.8, for t = n, n ´ 1, ...1,

Xn
t´1 = Xt´1

t´1 + Jt´1(Xn
t ´ Xt´1

t ),

Pn
t´1 = Pt´1

t´1 + Jt´1(Pn
t ´ Pt´1

t )J1
t´1,

(3.9)

where

Jt´1 = Pt´1
t´1 A1[Pt´1

t ]´1 (3.10)

Starting from t = n, the smoothed estimates can be computed backwards using the filter
and predicted estimates obtained in the filtering step. Also the lagged one-step covariance
estimates defined in Eq. 3.5 can be obtained through a similar algorithm. Assuming Kt,Pn

n , Jt
are defined from the filtering, smoothing steps and with initial condition

Pn
n,n´1 = (I ´ KnC)APn´1

n´1 (3.11)

,the lagged one-step covariance estimates can be obtained for t = n, n ´ 1, ...2

Pn
t´1,t´2 = Pt´1

t´1 J1
t´2 + Jt´1(Pn

t,t´1 ´ APt´1
t´1 )J1

t´2 (3.12)

Again, the proof for all of these properties can be found in [34].

3.2 Constant Velocity Model

In the 1 dimensional constant velocity (CV) model, the latent positions and velocities can be
described as follows:

xt = xt´1 + ẋt´1∆t + η1
t

ẋt = ẋt´1 + η2
t

(3.13)

As can be seen, the current position at time t (represented by xt) when added to the distance
that the object has traversed in ∆t timesteps, can give a good indication of the object’s final
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3.2. Constant Velocity Model

position. Here, the assumption made is that the object is moving at constant velocity between
time step t ´ 1 and t, giving rise to the name of this model. In real life, we can assume some
noise that offsets the position. Also it can be seen that velocity at time step t in addition to
some random noise, gives the velocity at time t + 1. The mean velocity is constant from time
step t ´ 1 to t. Therefore if ẋt is known at time t, then E[ẋt+1], E[ẋt+2], ..., E[ẋn] = ẋt.

Zxt = xt + ϵt (3.14)

The final position measurement at time t (represented by Zxt ) is the same as the actual posi-
tion offset by some measurement noise. Since, the data consists of two coordinates, the same
model can be rewritten in a slightly different way as below:

Xt = AXt´1 + ηt

Zt = CXt + ϵt
(3.15)

where

Xt =


xt
ẋt
yt
ẏt

 , A =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


The state space consists of the x-coordinate, velocity along the x-axis, y-coordinate and

velocity along the y-axis. The matrix A is obtained from the two dimensional form of Eq.
3.13 and it governs the state space transition.

Z =

(
Zxt

Zyt

)
, C =

(
1 0 0 0
0 0 1 0

)
The measured state consists of the observed x and y-coordinate with emission between

state and observation being governed by C. Also η and ϵ are normally distributed with 0
mean and covariance matrices Q, R respectively.

A heuristic approach to choose the transition and emission covariance

If we assume that the random noise is a random acceleration, then through laws of kinematics
[13], we can approximate the next state xt, ẋt, yt, ẏt as follows:

xt = xt´1 + ẋt´1∆t +
∆t2

2
ηx,t´1

yt = yt´1 + ẏt´1∆t +
∆t2

2
ηy,t´1

ẋt = ẋt´1 + ∆tηx,t´1

ẏt = ẏt´1 + ∆tηy,t´1

(3.16)

Here ηx,t´1 and ηy,t´1 are considered to be random noisy accelerations. This can be written
in the form of Eq. 3.15 where

ηt =


∆t2

2 ηx,t
ηx,t

∆t2

2 ηy,t
ηy,t
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3.3. Single trajectory data likelihood and the need for the EM algorithm

Since ηt „ N(0, Q) , the covariance of the noise matrix Q can be written as

Q = E(ηtη
T
t )

= E(


∆t2

2 ηx,t
ηx,t

∆t2

2 ηy,t
ηy,t

(∆t2

2 ηx,t ηx,t
∆t2

2 ηy,t ηy,t

)
)

=


∆t4

4 σ2
ηx

∆t2

2 σ2
ηx 0 0

∆t2

2 σ2
ηx σ2

ηx 0 0

0 0 ∆t4

4 σ2
ηy

∆t2

2 σ2
ηy

0 0 ∆t2

2 σ2
ηy σ2

ηy



(3.17)

In the above equation, E(η2
x,t), E(η2

y,t) is substituted with σ2
ηx and σ2

ηy . Further, assuming that
σ2

ηx = σ2
ηy = σ2

η , we get the following expression for Q

Q = σ2
η


∆t4

4
∆t2

2 0 0
∆t2

2 1 0 0
0 0 ∆t4

4
∆t2

2
0 0 ∆t2

2 1

 (3.18)

If it is assumed that measurement noise in one direction is independent of the measure-
ment noise in another direction, the covariance matrix R can be written as:

R =

(
σ2

ϵx 0
0 σ2

ϵy

)
(3.19)

It is a design choice to choose appropriate σ2
η , σ2

ϵx, σ2
ϵy. Once these parameters are chosen, all

the parameters in the model represented by Eq. 3.16 are known.
However, in this paper, we aim to estimate parameters such as Q, R with the help of data

and not by assigning heuristic values as in Eq. 3.18 and Eq. 3.19. We thus disregard the
assumption that noise affects the dynamics of motion in a specific way as in Eq. 3.16. This
gives us more flexibility in our design to choose the best parameters through data-centric
methods. The best parameters can be obtained by maximizing the likelihood of observed
data with respect to the parameters. This is elaborated in further detail in the next section.

3.3 Single trajectory data likelihood and the need for the EM algorithm

As mentioned in the previous section, we aim to maximize the likelihood of data and in-turn
obtain the maximum likelihood parameters. Let us say that the trajectory length was n, the
hidden states were X0, X1, X2...Xn and the observations were Z1, Z2, Z3..., Zn with the model
being described as:

Xt = AXt´1 + ηt

Zt = CXt + ϵt
(3.20)

It can be assumed that X0 „ N(µ0, Σ0) where
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3.4. Expectation and Maximization step

µ0 =


0
0
0
0



Σ0 =


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100


(3.21)

The mean is a zero matrix with the covariance matrix having high uncertainty around
the mean. Since all these distributions are normal, the complete data log-likelihood can be
written as below:

´2 log p(X0:n, Z1:n) = n log |Q| +
n

ÿ

i=1

(Xt ´ AXt´1)
1Q´1(Xt ´ AXt´1)

+ n log |R| +
n

ÿ

i=1

(Zt ´ CXt)
1R´1(Zt ´ CXt)

+ log |Σ0| + (X0 ´ µ0)
1Σ´1

0 (X0 ´ µ0) + constant

(3.22)

As can be seen, the log-likelihood is dependent on not just the parameters A, C, Q and
R, but also on the hidden states. These hidden states are latent and only the estimators of
the hidden states can be calculated through properties mentioned in Sections 3.1 3.1. At this
stage, ideas from the Expectation Maximization (EM) [6] algorithm can be used. EM algo-
rithm is generally used in missing data scenarios, where the likelihood cannot be maximized
because the data itself is missing. In our case, the hidden states can be considered to be miss-
ing data and the observed states can be considered as non-missing data. Assuming some
model parameters, one can obtain estimators and moments for these hidden states/missing
data which can in-turn be used to find the expected data log-likelihood given the current pa-
rameters and the observed data. Now, this expected data log-likelihood can be maximized
with respect to new parameters and analytical update equations can be obtained for each
parameter. This updated parameter can in-turn be used to calculate fresh estimators and
moments for the missing data and the process can be repeated until convergence of param-
eters. It has been shown in [6] that the EM algorithm converges to the maximum likelihood
estimate. Therefore, instead of calculating the data log-likelihood and maximizing it with re-
spect to the parameters, we can instead use the two-step iterative Expectation Maximization
algorithm that briefly entails the following:

• Given current values of parameters and the measured data, the expected complete data
log-likelihood is calculated through a closed-form expression

• Maximize the expected data log-likelihood with respect to the new parameters and up-
date each parameter. These new parameters are then used to again compute the ex-
pected data log-likelihood and this iteration continues until parameters converge

3.4 Expectation and Maximization step

The derivation for the EM step presented for the single trajectory case has been independently
derived and is presented below. However, this derivation can also be found in [34]. The
extension to multiple trajectory time-series in the next section has also been independently
derived. This extension of the EM algorithm to multiple time-series sequences was not found
in relevant literature to the best of our knowledge.
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3.4. Expectation and Maximization step

Single trajectory

The expected data log-likelihood for a single trajectory of length n can be written as follows,
where ϕj´1 represents the older parameters:

´2E[log p(X0:n, Z1:n)|ϕj´1, Z1:n] = n log |Q| + n log |R| + log |Σ0|

+ E[
n

ÿ

i=1

(Xt ´ AXt´1)
1Q´1(Xt ´ AXt´1)|ϕj´1, Z1:n]

+ E[
n

ÿ

i=1

(Zt ´ CXt)
1R´1(Zt ´ CXt)|ϕj´1, Z1:n]

+ E[(X0 ´ µ0)
1Σ´1

0 (X0 ´ µ0)|ϕj´1, Z1:n] + constant

(3.23)

It can be noticed that the matrix products of each individual term in the summation is a scalar
and using the property that A = trace(A) if A is scalar, one can write Eq. 3.23 as follows:

´2E[log p(X0:n, Z1:n)] = n log |Q| + n log |R| + log |Σ0|

+ E[tr(
n

ÿ

i=1

(Xt ´ AXt´1)
1Q´1(Xt ´ AXt´1)]

+ E[tr(
n

ÿ

i=1

(Zt ´ CXt)
1R´1(Zt ´ CXt)]

+ E[tr((X0 ´ µ0)
1Σ´1

0 (X0 ´ µ0)] + constant

(3.24)

All the expectations in 3.24 are conditioned given ϕj´1, Z1:n and is not represented explicitly.
Also using the properties that trace(AB) = trace(BA) and trace(A) + trace(B) = trace(A +
B), the inverse of the covariance matrices can be brought outside the summation as below:

´2E[log p(X0:n, Z1:n)] = n log |Q| + n log |R| + log |Σ0|

+ tr(Q´1E[
n

ÿ

i=1

(Xt ´ AXt´1)(Xt ´ AXt´1)
1)

+ tr(R´1E[
n

ÿ

i=1

(Zt ´ CXt)(Zt ´ CXt)
1)

+ tr(Σ´1
0 E[(X0 ´ µ0)(X0 ´ µ0)

1) + constant

(3.25)

After simplifying, this can be written as:

´2E[log p(X0:n, Z1:n)] = n log |Q| + n log |R| + log |Σ0|

+ tr(Q´1
n

ÿ

i=1

(E(XtX1
t ´ AXt´1X1

t ´ XtX1
t´1 A1 + AXt´1X1

t´1 A1)))

+ tr(R´1
n

ÿ

i=1

(ZtZ1
t ´ E[CXtZ1

t + ZtX1
tC

1 ´ CXtX1
tC

1]))

+ tr(Σ´1
0 (µ0µ1

0 + E[X0X1
0 ´ µ0X1

0 ´ X0µ1
0])) + constant

(3.26)

The moments of hidden states at various t = 1, 2, ...n needs to be computed given the en-
tire observed data trajectory (Z1, Z2...Zn). This would correspond to estimating the smoothed
moments of hidden states. From Eqs. 3.4 and 3.5, we can express E(XtX1

t), E(XtXt´1) as:

E(XtX1
t) = Pm

t + Xm
t Xm

t
1

E(XtXt´1) = Pm
t,t´1 + Xm

t (Xm
t´1)

1
(3.27)
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3.4. Expectation and Maximization step

Substituting this in the equation 3.26 we get

´2E[log p(X0:n, Z1:n)] = n log |Q| + n log |R| + log |Σ0|

+ tr(Q´1[S11 ´ AS1
10 ´ S10 A1 + AS00 A1])

+ tr(R´1(MZZ + MXZ ´ MXX))

+ tr(Σ´1
0 (µ0µ1

0 + E[X0X1
0 ´ µ0X1

0 ´ X0µ1
0])) + constant

(3.28)

where

S11 =
n

ÿ

t=1

(Xn
t (Xn

t )
1 + Pn

t )

S10 =
n

ÿ

t=1

(Xn
t (Xn

t´1)
1 + Pn

t,t´1)

S00 =
n

ÿ

t=1

(Xn
t´1(Xn

t´1)
1 + Pn

t´1)

(3.29)

and

MZZ =
n

ÿ

i=1

(ZtZ1
t)

MXZ =
n

ÿ

i=1

Zt(Xn
t )

1C1 ´ CXn
t Z1

t

MXX =
n

ÿ

i=1

CPn
t C1 + CXn

t (Xn
t )

1C1

(3.30)

All the smoothed estimates Xn
t , Pn

t , Pn
t,t´1 can be obtained by following the filtering, smooth-

ing steps in Section 3.1, 3.1. Once these smoothing steps are substituted, one can obtain
update equations for Q and R as follows:

Eq. 3.28can be differentiated with respect to Q´1 and R´1 to obtain:

B ´ 2E[log p(X0:n, Z1:n)]

BQ´1 = nQ ´ [S11 ´ AS1
10 ´ S10 A1 + AS00 A1]

B ´ 2E[log p(X0:n, Z1:n)]

BR´1 = nR ´ [MZZ + MXZ ´ MXX ]

(3.31)

Q =
[S11 ´ AS1

10 ´ S10 A1 + AS00 A1]

n

R =
[MZZ + MXZ ´ MXX ]

n

(3.32)

The values of Q and R can be initialized with the heuristic covariance matrices obtained in
section 3.2, by setting σ2

η , σ2
ϵx and σ2

ϵy as 1, 0.01 and 0.01 respectively.

Q0 = σ2
η


∆t4

4
∆t2

2 0 0
∆t2

2 1 0 0
0 0 ∆t4

4
∆t2

2
0 0 ∆t2

2 1


R0 =

(
σ2

ϵx 0
0 σ2

ϵy

) (3.33)
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3.5. Constant Acceleration model

Extending the EM algorithm for multiple trajectory time series

The previous section dealt with estimating parameters for a single time series. However,
in the case of our data, there are multiple time-series trajectories and one needs to estimate
parameters for an entire collection of such trajectories. Therefore the expected complete data
log-likelihood is maximized for multiple trajectories instead of one trajectory.

maximize E[log p(X1,0:n1 , Z1,1:n1 , X2,0:n2 , Z2,1:n2)
..., Xj,0:nj , Zj,1:nJ )]

Here J represents the number of trajectories, nk represents the length of kth trajectory and the
expectation is conditioned given the current value of parameters and observed data.

In order to maximize this, one can assume that these trajectories are independent and
identically distributed. This assumption may not be entirely valid in our case as discussed
more elaborately in Section 2.3. However, this assumption makes simplification easier and
also largely holds true.

maximize E[log p(X1,0:n1 , Z1,1:n1)p(X2,0:n2 , Z2,1:n2)..., p(Xj,0:nJ , Zj,1:nJ )]

The expected complete data log-likelihood can be written as E[log p(X1:J , Z1:J)] for sim-
plicity. Thus, the expected log-likelihood of all trajectories is the sum of expected log-
likelihood of individual trajectories and can be written as:

´2E[log p(X1:J , Z1:J)] =
J

ÿ

i=1

(ni log |Q| + ni log |R| + log |Σ0|

+ E[
ni
ÿ

t=1

(Xi,t ´ AXi,t´1)
1Q´1(Xi,t ´ AXi,t´1)]

+ E[
ni
ÿ

t=1

(Zi,t ´ CXi,t)
1R´1(Zi,t ´ CXi,t)]

+ E[(X0 ´ µ0)
1Σ´1

0 (X0 ´ µ0)] + constant)

(3.34)

By solving similar steps as in the above equations we obtain update equations as follows:

Q =

řJ
i=1[Si,11 ´ AS1

i,10 ´ Si,10 A1 + ASi,00 A1]
řJ

i=1 ni

R =

řJ
i=1[Mi,ZZ + Mi,XZ ´ Mi,XX ]

řJ
i=1 ni

(3.35)

A similar update step can also be used to obtain maximum likelihood estimates for the
other parameters A, C. The EM algorithm can thus be iteratively used until convergence
of all parameters and more details about the implementation of this algorithm is present in
Algorithm 1.

3.5 Constant Acceleration model

The constant acceleration model assumes that the objects have constant acceleration, instead
of constant velocity. The same constant velocity model with slight adjustments can be rewrit-
ten as below:

Xt = AXt´1 + ηt

Zt = CXt + ϵt
(3.36)

16



3.6. Neural Network based Architectures

where

Xt =



xt
ẋt
ẍt
yt
ẏt
ÿt

 , A =



1 ∆t ∆t2

2 0 0 0
0 1 ∆t 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆t ∆t2

2
0 0 0 0 1 ∆t
0 0 0 0 0 1


Now, the state space consists of the positions, velocities and accelerations along the x and

y-direction. Accordingly A has also changed to incorporate acceleration in the calculation of
position and velocities.

Z =

(
Zxt

Zyt

)
, C =

(
1 0 0 0 0 0
0 0 0 1 0 0

)
The observed state contains the observed positions as before. The matrix C is responsible
for obtaining positions from the hidden state. As before η and ϵ are normally distributed
with 0 mean and covariance matrices Q and R respectively. The parameter estimation ap-
proach discussed in the previous section can also be extended to the constant acceleration
model. The only difference is that certain parameters have different values and dimensions
for parameters A, C, Q and R.

3.6 Neural Network based Architectures

The construction of a Kalman filter makes it very intuitive to use on time series data. How-
ever, a Kalman filter suffers from some limitations. Mainly, a Kalman filter cannot model
non-linear distributions as all dependencies are linear. There are other non-linear state space
models which can be used as an alternative to the Kalman filter. However, due to reasons
discussed later in Section 5.2, we resort to explore neural network based architectures. The
subsequent sections aim to introduce the foundations and intuitions behind the mechanics of
various neural network architectures.

Artificial Neural Networks

In many machine learning tasks, one would want to approximate the dependent variable Y
as a function of independent variables X.

Y „ f (X)

Equipped with the data for both Y and X, the function f needs to be approximated. Artificial
Neural Networks are widely used for their capability to be excellent function approximators
[18]. The working of an Artificial Neural Network (ANN) is loosely inspired from the neural
connections in the brain. ANN consists of multiple neurons that are conceptually similar to a
biological neuron. All these neurons are stacked together in a hidden layer. A typical neural
network consists of multiple such hidden layers coupled with an input and an output layer.
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3.6. Neural Network based Architectures

Figure 3.2: An illustration of neural connections in an ANN

The input layer consists of the input features/data vector. There are connections between
every neuron in the hidden layer and the input layer. Every connection carries an associated
weight that transforms the input to the output of every neuron as below:

a1
j = σ(

n f
ÿ

i=1

(XiW1
i,j) + b1

j )

σ(x) =
1

1 + exp(´x)

(3.37)

Here a1
j is the output at the jth neuron of the first hidden layer and n f is the number of input

features. W1
i,j refers to the weights between the input and the first hidden layer, whereas b1

j

refers to the bias of the jth neuron in the hidden layer. A non-linear activation function is
used to transform a linear transformation of the the input Xi to the output a1

j . The non-linear
activation used above is a sigmoid activation. Many other activation functions such as tanh,
ReLU can also be used. The purpose of these activations is to obtain a non-linear transforma-
tion of the input Xi. An ANN further consists of multiple hidden layers that perform similar
transformations to a1

j . The final layer of an ANN is called as the output layer as it takes the
output obtained from the last hidden layer and transforms it to a vector having the same di-
mensions as the target feature. Therefore, there are connections between each neuron in the
last hidden layer to every neuron in the output layer as below:

al
j = σ(

nl
ÿ

i=1

(al´1
i W l

i,j) + bl
j) (3.38)

Here nl´1 refers to the size of the last hidden layer l ´ 1 and the output at the jth neuron is cal-
culated as the dot product of the hidden layer output with the output neuron weights added
to the bias of the output neuron. An activation function may be applied here, depending on
the target feature. If the target feature is categorical, it may be useful to use a sigmoid func-
tion activation that squishes the values between 0 and 1. This entire transformation of input
through multiple hidden layers and activations to the final output is termed as a forward
pass.

Most of the ingenuity in an Artificial Neural network lies in tuning the weights and biases
of these networks, given the target data. Having computed the "predicted" outputs from the
forward pass, it becomes paramount to construct some error metric to gauge the difference
between predicted and actual target vectors. For the problem of regression, a simple mean
squared error metric can be utilized. The problem can now be termed as minimizing this
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loss function/error metric, by fine-tuning the weights of the network. This loss function
represented by F(x) is multi-variate, as it is dependent on many weights and biases. The loss
function reduces the fastest in the direction of its negative gradient. Using this observation,
the weights can be updated as below

Wn+1 = Wn ´ α∇F(Wn) (3.39)

α signifies the learning rate which represents the size of the steps taken towards reaching
the minima. In the above equation, it will thus be necessary to compute the gradients of
the objective function with respect to each of the weights and biases. For this, gradients of
loss are computed with respect to the activations of the final layer. Using the chain rule of
differentiation, the gradients of loss with respect to the previous hidden layer’s weights and
biases can be computed.

BF
BW l

j,k
=

BF
Bal

j

Bal
j

BW l
j,k

(3.40)

The chain rule can be applied multiple times to compute gradients backwards for all
weights and biases. This part of tuning the weights is referred to as backpropagation and
is responsible for training the network.

The idea for training the network is to compute the loss function for the entire data (such
as MSE) and then use backpropagation to tune the weights and repeat the process until con-
vergence. However, this becomes computationally slow and also requires loading the entire
dataset into the memory. On the other hand loss and gradients can only be calculated for ev-
ery data point in our dataset and gradient updates can be made for every forward pass. This
is called as stochastic gradient descent[25], but this gives noisy updates to the parameters.
In practise, the solution is to combine these two ideas to feed-forward mini-batches of data
through the network. Average loss and gradients are computed and weights are updated
over the complete mini-batch. A complete pass through the entire dataset is called an epoch.
The network is trained through multiple epochs until the error estimate/loss function starts
converging.

Recurrent Neural Networks

The working of a recurrent neural network (RNN) shares similarities to the working of an Ar-
tificial Neural Network. Both ANNs and RNNs contain layers and activation functions with
many parameters that are tuned to approximate the target variable Y as a function of input
features X. The standard ANN discussed above has connections between the input features
and the target feature through neurons and hidden layers. However, when the input/target
features are temporal (or correlated across time), there exists no such connections between
features separated through time. Thus, the standard ANN cannot be used to model temporal
dependencies in the data. RNNs on the other hand have proven to be a modern standard in
dealing with time series data. The intuition behind how RNN deals with temporal data can
be understood by borrowing some concepts studied in the Kalman Filter section5.1. In the
Kalman Filter, there is a hidden state (ht) that affects the measured output (yt). At the same
time, the hidden state itself is temporal in nature as the next hidden state is dependent on the
previous hidden states. As a result of this cross-dependence, the output states themselves are
temporally related to each other. The Elman network [22] introduced in 1990 which is one of
the most widely used RNN variant uses this concept of a hidden state to good use.

ht = σh(Whxt + Uhht´1 + bh)

yt = σy(Wyht + by)
(3.41)

where Wh, Uh, Wy, bh,by represent parameter weight,bias vectors and σh,σy represent activa-
tion functions.
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Figure 3.3: A time unfolded representation of the Elman network

As can be seen there is a hidden layer at time t which is dependent on the input at time t
and the hidden layer from the previous time t ´ 1 through activation functions and respective
weights. The previous hidden layer acts as some sort of memory/ past context which when
coupled in a specific way with the present input, gives the present context. This present
context ht influences the output yt through more such weights and activation functions. Wh
controls the amount of information that should be passed from the input to the hidden state.
Similarly, Uh controls the information flow between past and present hidden state. Lastly, Wy
dictates the information flow between the hidden state and the output vector. The same pa-
rameter vectors are used for each time step t. Thus, through these hidden states, the network
develops some sort of a memory through which time is represented via its effect in interme-
diate computations. The network’s parameters are trained using the same backpropagation
principles present in an ANN.

RNNs have been used with high degrees of success on a variety of tasks. However, the
novel idea used in an RNN to unroll the network across multiple time steps also proves to
be its downfall. As the number of time-steps increases, the network is unrolled over many
layers. Let us say that the output at the last layer was dependent on the first one. When
the network tries to learn this dependency and the gradients at the last layer are small, the
gradients vanish as we move backwards through the many layers present in the network.
This is referred to as the vanishing gradient problem [23]. As a result, earlier layers don’t
learn and the signal is lost. On the other hand if the gradients begin large at the last layer,
gradients will get larger as they are backpropagated through to the input. Therefore, the
weights near the input layer will be large and as a result will forward propagate larger signals,
making the error estimates very large. This is known as the exploding gradient problem. The
mathematics of gradient vanishing and explosion are present in [23]. In conclusion, Elman
Networks were successful in solving relatively simple problems and as sequences scaled up
in size and complexity, these networks frequently struggled.

Long Short Term Memory

The Long Short Term Memory (LSTM) network [11], introduced in 1997 was designed to
combat many of the problems that RNNs were facing. LSTMs are special kinds of RNN
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architecture that operates in the same loop-like way of an RNN. However the architecture
of an LSTM cell is markedly different as it has a gated circuit that controls information flow
from previous time step to current time step.

Figure 3.4: LSTM gated architecture

In the figure above, the rectangular boxes are fully connected layers with trainable pa-
rameters. The circular boxes refer to element-wise operations between different vectors. h, x
and C refer to the hidden state vector, input feature vector and the cell state vector respec-
tively. The LSTM can be thought of as making three separate decisions at each time step:
forget/keep information, update information and output information using the memory. To
understand these three decisions, a forward pass in this LSTM is elaborated upon.

• Firstly, the feature vector from the current time step (xt) and the previous hidden state
vector (ht´1) are concatenated. For convenience, this concatenated state is referred to as
the concatenated input vector from here on. This concatenated input vector is passed
through a feed forward layer with a sigmoid activation. The output from this activation
is later element wise multiplied with the previous cell state. The purpose of this stage
(also called the input gate) is to forget irrelevant information from the previous state.

ft = σ(W f ¨ [ht´1, xt] + b f ) (3.42)

• Secondly, the concatenated input vector is passed through two feedforward layers: one
with sigmoid activation and another with tanh activation. The output from the tanh
function decides the update that should be passed into memory for each value and is
termed as candidate memory. The output from the sigmoid activation, also referred to
as the input gate decides which values needs to be updated. The element wise multipli-
cation of the candidate memory and the input gate combines update information and
updates only specific values in this vector. The present cell state is the sum of what we
decided to keep from the previous cell state and the updates from the new concatenated
input vector.

it = σ(Wi ¨ [ht´1, xt] + bi)

C̃t = tanh(WC ¨ [ht´1, xt] + bC)

Ct = ft ˚ Ct´1 + it ˚ C̃t

(3.43)
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• Lastly, the concatenated input vector is passed through another feedforward layer with
a sigmoid activation, also referred to as the output gate. The tanh function is applied on
the cell state and the vector from the output gate is element wise multiplied to obtain
the new hidden state. This essentially regulates what information from the cell state
needs to be passed on to the hidden state.

ot = σ(Wo[ht´1, xt] + bo)

ht = ot ˚ tanh(Ct)
(3.44)

It can be shown that in these kinds of gated units, the gradients don’t vanish exponentially
fast ([10]) because of the cell state and that’s why it becomes pertinent to use LSTMs in long-
trajectory time-series methods.

Self Attention and Transformer Encoders

Transformers have revolutionized the field of natural language processing and computer vi-
sion in the last couple of years. They have enabled greater transfer learning potential in ma-
chine learning problems and their mechanisms chiefly rely on the concept of attention and
self-attention. Attention was first introduced in [2] to improve performance of sequence to
sequence tasks in natural language processing. A popular example of sequence to sequence
modeling is translation of an input sequence from one language (say English) to another lan-
guage (say French). The traditional approach to this translation task consisted of encoding
entire English sentences into a fixed length vector through an encoder. The decoder then
used this fixed length vector to then produce a sequence in French. Here, the encoder needs
to compress the whole sentence into a fixed length vector, which may lead to some loss in
information. In [2] the model was allowed to automatically search for parts of the source
sequence which are most relevant for predicting the next target word, instead of just having a
fixed length encoded vector. Thus, in this way attention was used to model the dependencies
between the source and a target sequence. Self attention was first introduced in [4] to capture
the dependencies between different tokens in the same sentence. The word "self" is used to
refer to the fact that attention is now being computed between different tokens of the same
sentence/sequence. For example in the sentence "John went to the store because he wanted
milk", the word "he" needs to be associated with "John". Thus, Self attention is the mechanism
through which the model understands these kind of dependencies between different tokens
in the same sequence. In our case, we have multiple road users traversing and each of their
behaviors is influenced by some other road user’s behavior. Therefore it becomes important
to try and bake these inter road user dependencies in the model. If we consider the collection
of trajectories at a particular time to be a sequence, then self-attention refers to this between-
sequence/inter-trajectory dependencies. We propose to use the self attention mechanism in
our problem through a transformer encoder architecture. The transformer encoder architec-
ture was introduced in [37], where the transformer was used to process an entire sentence
as a whole in a non-recurrent fashion. The recurrent nature of LSTMs or RNNs made their
performance dependent on whether the hidden state was preserving information from pre-
vious time steps. By processing entire sequences as one, the Transformer architecture had
no risk of losing past information. Transformers have revolutionized the field of natural lan-
guage processing and computer vision, because of their capability to adapt to different tasks.
Through this section, this architecture and its constituent building block of self attention will
be discussed in detail. The intuition behind how self-attention captures dependencies in a
sequence is also elaborated in detail.
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Figure 3.5: Transformer encoder architecture

The transformer encoder architecture consists of a self attention layer followed by a feed
forward layer. Let us say that the input to the transformer architecture is a feature vector,
where a feature vector somehow represents the individual behavioural state of one road user.
At a particular point of time, we may have multiple road users and thus a collection of feature
vectors collected into a matrix. Let us assume that there are p feature vectors and d is the
dimension of each feature vector, also called as the embedding dimension.

Q = XWQ

K = XWK

V = XWV

(3.45)

The feature matrix (X) we have is firstly multiplied with three trainable parameter matrices
WQ, WK and WV . Each of these matrices have a dimension of d ˆ w. Therefore for each feature
vector we obtain a query vector, a key vector and a value vector. As a matrix, we obtain the
query (Q), key (K) and value matrices(V) of dimension p ˆ w.

Next, the query matrix is multiplied with the transpose of the key matrix. To understand
the intuition behind this, let us say that p = 2 or that there are two feature vectors. Therefore
the resulting QKT will be a 2 ˆ 2 matrix.
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Figure 3.6: An illustration of QKT for a 2 ˆ 2 matrix

The first cell (1,1) of this matrix is the dot product between the query vector of the first
feature and the key vector of the first feature. This can be thought of as the score that first
feature vector gives itself. It becomes more interesting when we look at the second (1,2) and
third cell (2,1). The second cell is the dot product between the query vector of the first feature
and the key vector of the second feature. This can be thought of as the score/importance that
the first feature gives to the second feature. Similarly the third cell is the score/importance
that the second feature gives the first feature and the fourth cell is score/importance the sec-
ond feature gives itself. Therefore, the resulting matrix represents the importance/attention
that every feature vector gives every other feature vector. This entire matrix is divided by
the square root of the dimension of the key vectors, that serves a more practical purpose of
having stable gradients. Then the softmax function is applied over the resulting matrix to
normalize the scores into some kind of a probabilistic distribution. The row sum of the re-
sulting matrix is 1 and each cell of a row represents how important that particular cell is for
the row.

Now the resulting normalized score matrix obtained is multiplied with the value matrix.
Essentially, every row of the resulting matrix is the weighted sums of different feature’s value
vectors, weighted by the normalized score of a feature. The nth row will consist of the sum of
the weighted value vectors of each feature, weighted by their importance relative to the nth

feature.

Z = so f tmax(
QKT
a

dk
)V (3.46)

There can also be multiple-attention heads where there are multiple WQ, WK and WV
matrices for each attention head. As a result we would obtain Z1, Z2...Znatt as the output of
these attention heads. These outputs are concatenated and multiplied with another trainable
parameter WO to obtain Znet

Znet = Wo(concat(Z1, Z2...Znatt)) (3.47)

Each feature vector in the Znet matrix is then passed through two feed-forward layers,
with the first feed-forward layer having a ReLu activation to obtain Zout. The input and
the output of both the multiple-attention head layer and the feed-forward layer are added.
These connections between the input and the output is termed as a residual connection and is
implemented for the practical purpose of limiting the vanishing gradient problem. Also, layer
normalization is applied where inputs are normalized across all the features as opposed to
batch-normalization which normalizes inputs across the mini-batch. The number of elements
in a batch varies (depending on the maximum sequence length) and this leads to different
number of elements in each batch. As a result, the normalization constant used in batch-
normalization varies across batches and this leads to large-fluctuations during training. This
is why layer normalization is used instead of batch-normalization.

At the end of the transformer encoder, an output feature vector is produced for each fea-
ture vector input. The nth output feature vector incorporates information from all the input
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features with respect to the nth input feature vector. The details regarding how these neural
network architectures are implemented for the specific problem in our thesis is elaborated in
the Section 5.3, 5.2
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4 Data

Through this section, we present details regarding the features, quantity and quality of data.
Further, through data exploration and visualization, key facets and characteristics of the data
are presented. Lastly, important pre-processing steps that suitably mould the data for later
algorithms are enumerated.

The data has been supplied by Viscando, whose technology tracks all road users to un-
derstand movement patterns, traffic flow and human behaviour. Installed on static road in-
frastructure like light posts or building walls, Viscando’s sensor OTUS3D detects, classifies,
and tracks all road users using 3D vision and AI. Images simultaneously captured by two
spatially separated cameras are converted into a dense 3D point cloud. Point clustering is
then applied to the point cloud to detect single road users and to estimate their sizes and
3D shapes. Then, the objects are classified using shape- and appearance-based AI methods.
Finally, object tracking using Kalman filter is applied to compute trajectories of different ob-
jects, with time-resolved position, speed, acceleration and heading. In case the measurement
system consists of several sensors, the detections from individual sensors are merged before
tracking. Two such vision sensors were placed on the lightpost of the Linköping University
campus. The data collected over a week contains trajectories of pedestrians, cyclists and the
autonomous shuttles, collected in collaboration with the EU project SHOW.
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(a) Sensor positions and approximate fields of view (b) Top view of the arena

Figure 4.1: A map of the ground and the sensors

(a) Cyclists (b) Shuttles (c) Pedestrians

Figure 4.2: Line plots for trajectories of road users

As can be seen from Fig. 4.1a, the field of vision of the sensor covers an area of 70 ˆ 21
metre squared. Also the actual measurement area represented in Fig. 4.1b is reconstructed by
projecting the captured images of the area to the ground, and merging them together.
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Figure 4.3: Number of road user trajectories across the week

The feature names of the data exported from the measurements along with their definition
and type are tabulated below:

Feature Name Definition Variable type
ID Unique ID assigned to each road user Continuous

Timestamp Time at which road user was tracked Time
x Tracked X-Coordinate of a road user Continuous
y Tracked Y-Coordinate of a road user Continuous

Speed Tracked speed of a road user Continuous
Type Indicator for cyclist, pedestrian and shuttle Categorical

Table 4.1: Definition and type of variables in the dataset

Type No. of trajectories Avg speed (km/h) Avg Trajectory Length (s)
Pedestrians 24639 4.6 30

Cyclists 35373 14.0 13
Shuttles 208 6.6 21

Table 4.2: Characteristics of each road user in the dataset

4.1 Data Manipulation

Through the analysis of sampling times, there was an interesting observation made. Sam-
pling time is defined as the time difference between any two consecutive observations for
the same road user. It can also be thought of as the inverse of sensor frequency, where the
sensor frequency is defined as number of frames captured per second. Table 4.3 shows the
distribution of sampling time in the data.

Sampling Times (in seconds) Frequency

Between 0.05 and 0.2 3540
0.24 822904

Between 0.3 and 1.5 8524
Greater than 1.5 4472

Table 4.3: Distribution of sampling times

Times User 1 User 2 User 3

09:10:40:00 [x1, y1] [x2, y2] [x3, y3]
09:10:40:20 [x1

1, y1
1] [x1

2, y1
2] [x1

3, y1
3]

09:10:40:40 [x2
1 , y2

1 ] [x2
2 , y2

2 ] [x2
3 , y2

3 ]
09:10:41:00 [x3

1 , y3
1 ] [x3

2 , y3
2 ] [x3

3 , y3
3 ]

Table 4.4: Aligned road users’ data

It is seen that the sampling time is not constant throughout the data. Most of the data
has a sampling time of 0.24 seconds. However, there are cases where the sampling time is
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higher/lower because of real-time data processing jitter observed in sensors. It is important
to maintain a constant sampling time, because then we can have a common time axis for all
road users. Then, one can align different road user’s data as Table 4.4, and at any particular
time, the positions of all road users in the frame are known. In order to make the sampling
time uniform, positions and speeds of road users need to be calculated for a common time
scale. It was decided to choose a time scale of 0.2 seconds because of its proximity to the most
frequent sampling time (0.24 seconds) and for convenience. Let us say a road user’s position
was known at 0.24, 0.48,0.72, 0.96 seconds the road user’s position at 0.2, 0.4, 0.6, 0.8 and 1
second needed to estimated. Simple cubic interpolation was used to interpolate positions and
speeds to the nearest 0.2th second. Now the data had a uniform sampling time of 0.2 seconds.
By taking the 5th observation of every road user, dataset with a sampling time of 1 second
was also created. Thus, there were two final datasets each with sampling times of 0.2 second
and 1 second respectively.

4.2 Data processing for recurrent neural networks

Every road user maps out a trajectory which keeps evolving as the road user moves through
the frame. A frame corresponds to the positions of different road users in the observed area
at a given instant of time. In order to predict where the road user will be in the future, his/her
past trajectory is of utmost importance. Therefore, it is desired that the network predicts the
coordinates at time step t + s given the input trajectory until time t. For the network to be
able to do its best job predicting, data needs to be packaged in an [input1

t , target1
t ] fashion

where input represents what the network needs to know about road user 1 in order to predict
the future positions or target. The input trajectory of a road user 1 at time t consist of feature
representations from each time step 1, 2, ...t of his/her trajectory . In turn each of these fea-
ture representations at time k are the road user’s position (x1

k , y1
k) and two dummy variables

(ped, cyc) signifying whether the road user is a pedestrian or cyclist. Notice that these two
dummy variables will be the same for each time step t = 1, 2...n. The target feature is the po-
sition of road user s steps later, or in other words, x1

t+s, y1
t+s needs to be predicted. The data

structure also called as the Individual Trajectories data structure will consist of two columns
[input, target] and the equations below (Eq. 4.1 ) help in understanding how each row of
[input, target] will look like. The Kalman Filter EM Algorithm and the Vanilla LSTM network
introduced later in Section 5.1, 5.2 will be trained on this data structure after applying some
exclusions that is mentioned later in Section 4.2.

input1
t = [[x1

1, y1
1, ped, cyc], [x1

2, y1
2, ped, cyc], ...[x1

t , y1
t , ped, cyc]]

target1
t = [x1

t+s, y1
t+s]

(4.1)

If the data is structured in a different way, there is more information that can be leveraged. In
the above representation, the input features at time t consist of a road user’s past trajectory
and the target feature consists of the road user’s future trajectory. However, at time t there
may be m multiple road users in the scene, influencing each other’s behaviour. At time t
it would certainly be more interesting to tell the network that there are other road users in
different coordinates at the same time. Thus, the input feature needs to be packaged such that
all the current road users’ trajectories are present. Consequently the target feature should
consist of all the road users’ future coordinates. Therefore the representation of the entire
scene (and not just one road user) at time t [inputt, targett] will look as in Eq. 4.2. The data
structure called as the Frames data structure will consists of multiple rows of such frames and
the Attention based LSTM network introduced later in Section 5.3 will be trained on this kind
of a data structure.

inputt = [input1
t , input2

t ...inputm
t ]

targett = [target1
t , target2

t , ...targetm
t ]

(4.2)
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where inputk
t and targetk

t are obtained from Eq. 4.1

Data Exclusions

There are some exclusions applied to the data and the reason for applying these exclusions
are elaborated in this section.

When analyzing the distributions of speed, there were some observations which had a
very high speed (ą50 kmph). On further analysis, it was seen that this happened mostly at
the start frame when the road user was captured. It is important to know that in the data
given to us, the first three frames of the tracked road user is discarded as they will contain
noisy tracked estimates of positions and speeds. Speeds are derived from previous positions
and sometimes it may be the case that speed estimate in the fourth/fifth frame is also noisy,
because uncertainty in measuring speed is higher than uncertainty in measuring position
(as the speeds are derived from the positions). Therefore, for safe measure these road users
(ă 0.5%) are discarded in our analysis.

It is also mandated that the trajectory of a road user consists of at least two seconds (which
is two timesteps steps in a 1 second sampled data and 10 timesteps in a 0.2 second sampled
data) for future predictions. This is done so that there is enough input to the network, be-
fore a network starts predicting. This serves the purpose of eliminating noise from too few
observations to make a prediction. This exclusion is applied to all these datasets.

There are some interesting cases when constructing the Frames data structure. There may
be three road users at the time of observation, but s time steps later, one of them (or all) may
have left the frame. In this case for the missing road user who left the frame, the target fea-
tures are populated as NaNs (not a number/missing value). As mentioned later in Section
5.3, the network does not calculate loss over these cases. There may be also be cases where
a new road user entering the scene has just one second of data, whereas all other road users
have history that extends multiple seconds into the past. Thus, one row of the Frames data
structure has some road users with a good past and some road users without the minimum
two seconds. One option here would be to remove this new road user from the observa-
tion (input) and prediction (target). However, that road user, even with one observation,
may be influencing the scene as his/her entrance to the scene may cause a change in behav-
ior for all other road users. Therefore his/her data removal may violate the natural social
structure present in the scene. In order to avoid this problem , that entire timestamp’s scene
[inputt, targett] is removed from the data. In the next timestamp, this new road user will have
two prior timesteps of features and if no other road users freshly enter the scene, this scene is
included for training. This step doesn’t exclude entire road users’ trajectories, but predictions
are not performed on some time steps in these road users’ trajectories.

Another interesting case that is observed in the Frames data structure is that two pedes-
trians/ two cyclists are very close to each other throughout their trajectory. Sometimes the
distance between the two road users is 0 throughout the trajectory. This means that one of the
road users was detected as two road users. These kinds of observations were removed from
the dataset. Also, two road users can be quite close to each other when they are walking.
For example, if acquaintances are walking together, they do not maintain a lot of distance
between them. A heuristic cutoff of 20 cm is used as the minimum distance between any
pair of road users throughout their trajectory. This means that if two road users maintain a
distance of less than 20 cm at all points in their trajectory, only one road user is considered as
we assume that one road user was detected as two. Through this cutoff, ă 1% of road users
were removed.

It is worthy to mention that there is still some noise in the data. The Figure 4.4 represents
clusters of start and end points for pedestrians and cyclists. It is seen that for pedestrians,
the start and end points are detected at the borders of the frame which is to be expected.
However, sometimes cycles start getting detected late or stop getting detected too soon. This
may be because of errors in calibration that results because of the shift in object position when
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the objects move between two fields of views. It maybe happening more for cyclists because
cycles are relatively faster and their trajectories are more volatile leading to these trajectory
breaks.

(a) Pedestrian start
positions

(b) Pedestrian exit
positions

(c) Cyclist start posi-
tions

(d) Cyclist exit posi-
tion

Figure 4.4: Start and end points of detected positions for cyclists, pedestrians

The trajectory breaks don’t affect the CV or LSTM model too much, as these models can
still train on the observed part of the trajectory. But these trajectory breaks will affect the
training of the Attention based LSTM model as the undetected road user may be influencing
the trajectories of the detected road users. However, since this noise cannot be eliminated
without removing many frames/trajectories we proceed with the assumption that this noise
doesn’t affect training too much.

After all the cleaning, roughly 25% of road users were removed, of which most of them
had a very short trajectory length (ă 2 seconds). The Individual Trajectories data structure can
be used for the Kalman Filter CV model training and for the Vanilla LSTM network. The
Frame data structure can be used for the attention based LSTM network’s training as this net-
work tries to model the social behavior. To make matters more convenient, the trajectories
present in the Frames data structure are used to train the Kalman Filter network, LSTM net-
work and the Attention based LSTM network. This is because it would be interesting to see
how these methods compare when trained and tested on the same data.
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5 Methodology

In this section, the rationale behind choosing the methods mentioned in the theory is elabo-
rated. Further, implementing these theoretical methods on the specific data is presented in
more detail.

5.1 Constant Velocity Model and the Kalman Filter

The data as we have studied in the previous section consists of pedestrians, cyclists and shut-
tles. The trajectories of all these road users are present from the moment they were detected
by the sensors to the moment their detection was stopped. These trajectories themselves are
temporal in nature as the position in the future is correlated with the position in the past.
Multiple trajectories thus can be treated as multiple time series/autoregressive sequences. A
solution often used when dealing with time-series specific problems is the Kalman filter. The
Kalman filter as mentioned in Section 3.1 constructs dependencies between a latent variable
and an observed variable.

Xt = AXt´1 + ηt

Zt = CXt + ϵt
(5.1)

where ηt and ϵt are distributed as N(0, Q) and N(0, R) respectively.
From the above equation, we see that the latent variable has temporal dependencies and

the observed variable is a function of the latent variable. If the model parameters and the
hidden states in Eq. 5.1 are known, one can calculate the future hidden states and future
observed states. The advantage of a Kalman filter is that one can make n-step predictions not
only for the means of the observed states, but also for the uncertainty around the observed
states. This makes the Kalman filter useful in calculating predictions ahead of time. In the
case of our problem, the latent variable is assumed to be the actual positions and speeds of a
road user. The observed variable is the measured position that is obtained from the data. This
setting along with specific parameters for A and C is used in the constant velocity model.
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5.1. Constant Velocity Model and the Kalman Filter

Xt =


xt
ẋt
yt
ẏt

 , A =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 Z =

(
Zxt

Zyt

)
, C =

(
1 0 0 0
0 0 1 0

)

The constant velocity model has been extensively used in the object tracking literature.
The tracking problem deals with obtaining noise free estimates of positions given noisy sen-
sor measurements of an object’s position. The constant velocity model is considered as a
robust method for tracking and can also be extended to prediction ([31] ). This has already
been done before and the constant velocity model is generally considered as a solid, robust
baseline for intent prediction. For all these reasons, it was decided to go ahead with a CV
model albeit with a slight change in implementation.

The values of Q, R are usually empirically chosen in CV models. However, in this pa-
per we aimed to estimate Q, R through data driven approaches. This was achieved through
the EM algorithm whose theoretical details are present in Section 3.4. In order to estimate
parameters for these multiple trajectories, one solution is to model all these road users sepa-
rately/uniquely. However, there are a large number of unique road users and the built model
cannot be extended to a new road user entering the frame. The other solution is to divide the
road users by some behaviours and model these road users collectively. For example, pedes-
trians, cyclists and shuttles can be uniquely modelled. One can also further model these
categories into subcategories based on how fast or how slow they are moving at the start of
the frame. In this paper, parameters will be estimated separately for pedestrians, cyclists and
shuttles.

Algorithm 1 EM Algorithm for multiple trajectories parameter estimation

Ensure: Q, R are symmetric matrices
1: Initialize µ0, Σ0, Q0, R0 from 3.21 and 3.33
2: A, C is known according to 3.15
3: for road users r do
4: while Qk and Rk have not converged do
5: for each trajectory i of trajectory length ni do
6: Run the forward filtering step to obtain Xt

t , Pt
t 3.1

7: Run the backward smoothing step to obtain Xni
t , Pni

t , Xni
t,t´1, Pni

t,t´1 3.1
8: Compute S00,S11, S10 and S00 3.29
9: Compute MZZ, MXZ, MXX 3.30

10: Qi Ð [S11 ´ AS1
10 ´ S10 A1 + AS00 A1]

11: Ri Ð [MZZ + MXZ ´ MXX ]
12: end for
13: Qk Ð

ř

Qi
ř

ni

14: Rk Ð

ř

Ri
ř

ni

15: Qk = 0.5[Qk + QT
k ]

16: Rk = 0.5[Rk + RT
k ]

17: end while
18: end for

The algorithm above calculates Q, R for pedestrians, cyclists and shuttles. This algorithm
can be extended to calculate A, C as well or calculate all of these parameters for some other
linear Gaussian state space model such as the Constant Acceleration model. Once parameters
are obtained, the task of prediction is pretty straightforward. For the first b timesteps, no
prediction is done and filtered estimates of the hidden state are obtained. This is called as
the burn-in period to give a good starting point for the hidden states. After b timesteps are
complete, the Kalman filter is propagated forward (using again the filtering algorithm in
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5.2. Vanilla Long Short Term Memory networks

Section 3.1) s steps ahead to obtain the latent and measured state. The mean, covariance of
the latent and measured state can be estimated through simple forward filtering as illustrated
in Fig. 5.1.

Figure 5.1: Illustration of predicted means and covariances

Fig. 5.2 gives an intuition behind the predictions in the CV model. At t = 1, 2, 3, the
positions of the road user is known (represented by Z1, Z2, Z3) and this phase is known as
the observation window. At t = 1, 2, 3, hidden state estimators can be calculated using the
known positions Z1, Z2, Z3 through the filtering algorithm. The estimated velocity in the
observation window is a function of the distance the road user has travelled in every time
step. The velocity at t = 3 will be higher than the velocity at t = 2 since the road user travels
more distance between Z2 and Z3 than between Z1 and Z2. During prediction, the last known
velocity ẋ3 is assumed to be the mean velocity at t = 4, 5, 6. Therefore during prediction, the
Kalman Filter CV model extrapolates state dynamics from the last known observation point
into the future.

Figure 5.2: An illustration for the intuition behind prediction in the CV model

5.2 Vanilla Long Short Term Memory networks

There are three major limitations to using the CV model for predictions:

• The transition from the hidden state at time t to the hidden state at time t + 1 is a linear
transition. The emission between the hidden state and the observed state is also linear.
However, the behaviour of road users is highly non-linear and modeling through this
kind of a linear Gaussian state space model is not ideal.

• The number of parameters in the hidden state is very few. Usually pedestrian/cyclist
behavior cannot be explained only through their past positions and speeds. For exam-
ple a cyclist when executing a turn, traverses a curve and this curve is dependent on
the speed he/she has when making this turn. There are many more such behaviors and
in-turn more parameters that decide trajectory of a road user.

• It is also difficult for filters to capture the spatial and social dependence of a road users’
trajectory.
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5.2. Vanilla Long Short Term Memory networks

One way of solving these limitations is to resort to non-linear state space models. How-
ever, it has been seen ([30]) that they don’t offer considerable lift from a CV model. This is
probably because even these models assume some kind of road user behavior which is not
always displayed by a road user in isolation. A road user can alternate between behaviors
such as constant velocity or constant acceleration or constant turn depending on the situa-
tion. Also, as the non-linear model complexity increases, it becomes increasingly difficult to
use parameter estimation algorithms such as the EM algorithm as calculating closed form
update equations for the parameters become increasingly complex.

Therefore, it may be necessary to move away from filter-based models and rather look
at an unlikely philosophical off-shoot of the Kalman Filter. The below equation governs the
mechanics of the Elman network. This network also has a hidden state propagating forward
in time and an observed state which is a function of the hidden state.

ht = σh(Whxt + Uhht´1 + bh)

yt = σy(Wyht + by)
(5.2)

where Wh, Uh, Wy, bh,by represent parameter weight,bias vectors and σh,σy represent ac-
tivation functions. This is a widely used RNN-variant and improves on the Kalman Filter as
all the relationships between the hidden states and the observed state is non-linear. With the
help of backpropagation, all the parameter weights and biases can be obtained through train-
ing on the data. If the parameters are known, the network can be propagated forward in time
to obtain estimates of ht and yt. Thus these networks are more complex and at the same time
easier to train as analytical closed form expressions need not be derived as in 3.35. This make
it a top choice for understanding patterns in temporal data. However, when the trajectory
lengths are long these networks suffer from the vanishing gradient or the exploding gradient
problem. To overcome these shortcomings of an RNN, Long Short Term Memory (LSTM)
was introduced. Moreover LSTM networks have also been widely used with high degrees
of success in intent prediction tasks ([1])[27]). The idea behind using an LSTM network for
our problem is to better capture the dynamics of a road user’s trajectory, compared to the CV
model.

The implementation of this network is done on PyTorch. The data is fed into the network
in the format mentioned in Eq. 4.1.Every neural network takes as input batches of data of
size b. The forward step is done on the entire batch of data and this basically means that mul-
tiple tuples input1, input2, ..., inputb are clustered together and fed forward into the neural
network. Each of these inputs consist of feature representations of the entire trajectory. At a
particular time step t a feature representation consists of the x,y coordinate as well as dummy
variables indicating the type of road user. Therefore each of these inputs are of size t ˆ 4
where t signifies trajectory length. Inside a batch of data, the first input may have a trajectory
length of 200, whereas the second input may have a trajectory length of just 10. In order to
train a neural network, this trajectory length must be constant throughout the batch. This is
because internal computations (such as calculation of intermediate outputs in a network) are
done on the entire batch together. Therefore every trajectory in the batch is appended with
multiples of [0, 0, 0, 0] until they reach a length of the longest trajectory in the batch. This con-
cept is known as padding and is quite prevalent in dealing with varying length sequences.
Thus, b ˆ tmax ˆ 4 is the dimension of the input data where tmax represents the maximum tra-
jectory length in the batch. However, more computations are performed over these padded
indices and this costs quite a lot of computation time. In order to save compute time and not
make the network calculate over these padded indices, there is a very clever idea called as
packing implemented in PyTorch. Let us say that there were varying length trajectories in
one batch. If the lengths of these trajectories were passed as input, internally the trajectories
would be sorted and stacked like the image below.
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5.2. Vanilla Long Short Term Memory networks

Figure 5.3: Padded sequences sorted by decreasing lengths

At time step 1 and 2 in Fig 5.3, the effective batch size that is considered by the network
for computation is 6. This means that all the 6 observations are used for calculation of internal
states. At the third time step, the effective batch size is now 5, indicating to the network that
the compute now needs to be performed only for the first five observations in the entire batch.
Thus, by using this concept of an effective batch size at each time step, the network knows
how to ignore padded values.

For a trajectory length of t, the network produces the hidden states at each time step
h1, h2...ht of size h for an LSTM cell. The final hidden state ht can be considered as a good
representation of the trajectory as it contains information from previous time steps. Multiple
such LSTM cells can be stacked one after the other so that the output of one LSTM cell is
the input to another. If there are n layers, then n final hidden states are obtained in total
(h1

t , h2
t , ..., hn

t ). All of these final hidden states are concatenated to obtain a total dimension of
nh. This concatenated hidden state is then finally passed through a feedforward layer which
brings down the dimensions required such that for each trajectory, the output from the LSTM
and feedforward layer is k-dimensional.

Figure 5.4: The architecture of the Vanilla LSTM approach

h, n are the hidden layer size and the number of hidden layers and these are design choices
that are made to tune the network’s performance. In addition k can be chosen to represent
two different kinds of predictions:

• The final predictions can be made to represent the x and y coordinate of the road user
at time step t + s. If (xi, yi) and (x̂i, ŷi) represent the actual and predicted positions at
observation i and nobs represents total number of observations,

MSE =

řn
i=1(xi ´ x̂i)

2 + (yi ´ ŷi)
2

nobs
(5.3)

Mean squared error can be used as a loss function which needs to be minimized. An
alternative metric that can be measured is the average final displacement error (AFDE),
which is the displacement between the final predicted and actual position. This is com-
puted as follows:

AFDE =

řn
i=1

a

(xi ´ x̂i)2 + (yi ´ ŷi)2

nobs
(5.4)
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5.3. Attention based LSTM network

In our case, MSE is used as the loss function. For every batch, MSE is computed and
the gradients for this loss are back-propagated through the network to obtain an update
for each parameter in the network. In this case, the feedforward layer brings down the
dimension coming out of the LSTM output to 2.

• Instead of directly predicting the positions, one can also predict the means and covari-
ances of a normal distribution such that

(x̂t, ŷt) „ N(µt, σt, ρt) (5.5)

where µt, σt, ρt represent the predicted means, covariances and correlation coefficient.
The log-likelihood of observing (xt, yt) given this normal distribution can be written as

log(p(xt, yt|µt, σt, ρt)) = log(N(µt, σt, ρt))

= log N(

(
µt,x
µt,y

)
,

(
σ2

t,x ρtσt,xσt,y
ρtσt,xσt,y σ2

t,y

)
)

(5.6)

where µt,x, µt,y, σt,x, σt,y, ρt represent the predicted x and y-coordinate means, their re-
spective variances and also the correlation coefficient The objective is to now max-
imize the log-likelihood in Eq. 5.6 and it was individually derived that for a bi-
variate normal distribution,maximizing the log-likelihood is equivalent to minimizing
f (xt, yt, µt,x, µt,y, σt,x, σt,y, ρt) where f is given in the below equation.

f (xt, yt, µt,x, µt,y, σt,x, σt,y, ρt) = log(σt,xσt,y) + 0.5[log(1 ´ ρ2
t )] + 0.5(xt ´ µt,x)

2σ2
t,y

+ 0.5(yt ´ µt,y)
2σ2

t,x ´ ρt(yt ´ µt,y)(xt ´ µt,x)σt,xσt,y

(5.7)

Instead of the network predicting σt,x, σt,y, ρt, the network can instead be made to pre-
dict log(σt,x), log(σt,y) and arctanh(ρt)) for numerical stability. In addition to µt,x and
µt,y the network predicts a 5-dimensional output. Hence the feedforward layer in this
case brings down the dimension coming out of the LSTM output to 5. It can also be the
case that the position of a road user more closely resembles some other known distri-
bution, other than the normal distribution. However, for this paper, the assumption is
that a road user’s final position is normally distributed with some mean and covariance
matrix.

5.3 Attention based LSTM network

There is one limitation to the approach used in the above section. The Vanilla LSTM model
tries to model the dynamics of individual trajectories in the best way possible. However,
sometimes road user dynamics are also governed by some other road user in the vicinity. For
example, if there was a cyclist coming in front of a pedestrian, either of them will move away
from the point of collision. Also, there are cases when two pedestrians moving in the same di-
rection move similarly as one follows the path that the other has taken subconsciously. Road
users tend to make these complex maneuvers that takes into consideration other road users
without seemingly thinking a lot about it. Therefore, when it comes to predictions, it becomes
important to incorporate the social aspect of behaviors in a road user’s trajectory. The vanilla
LSTM network by itself cannot be used to model dependencies between different trajectories.
This is because all of these different trajectories constitute different time-series sequences and
a vanilla LSTM can be used to model these trajectories one at a time. To model all these trajec-
tories together, one would need to combine/pool these networks’ outputs as done in [1]. The
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5.3. Attention based LSTM network

Social-LSTM [1] is a benchmark paper that has shown to capture social interactions between
different road users to a reasonable extent. The principle of a social LSTM is to combine the
workings of a Vanilla LSTM with a so-called social pooling layer. At a particular frame, all
road users’ features are passed into a plain LSTM network. This LSTM network then pro-
duces hidden states for each of these road users. These hidden states represent what a road
user would do without the presence of other social factors. If a pedestrian’s trajectory needs
to be predicted, then their neighbors’ (who are within a certain spatial distance) hidden states
are stacked in a specific way to construct a pooled tensor (Fig 2.1). Neighbor hidden states
outside a certain radial distance are discarded. The pooling thus manually combines hidden
states based on their proximity to the ego-road users. However, it would be more interest-
ing to let the network itself selectively choose which neighbors’ hidden state is important in
determining the ego road users’ trajectory. In our paper, Attention discussed in 3.6 is used
in soft-assigning weights to the different hidden states. Soft-assignment of weights ensures
all neighbours’ hidden states are considered, with some hidden states being more important
than others. In conclusion, the output representation coming from the LSTM network for
each road user is passed through an attention layer which learns how to assign weights and
combine the different hidden states . The hypothesis for building this kind of a network is
that:

• The LSTM networks should output a representation of a road user’s behavior without
any social influence

• If a road user’s trajectory was changed due to some other road user(s) in the network,
this behavior should be captured by the attention layer

Practically, this is implemented as a transformer encoder architecture which basically con-
sists of multi-head attention layer and a feedforward layer as mentioned in Section 3.6 . The
format of data that is passed into the network is mentioned in Eq. 4.2. Essentially, the num-
ber of road users in a frame is another dimension that is added to the previous data used
for the Vanilla LSTM network. The input to the vanilla LSTM network was of dimensions
b ˆ lmax ˆ 4, where b represents batch size and lmax represents the longest trajectory length
in the batch. The output coming from the LSTM network for each road user is of dimension
b ˆ nh where h is the dimension of the hidden state. In total there will be r hidden states
for all road users present in the frame. In a batch of frames, there may be instance with dif-
ferent number of road users in each frame. A network cannot take variable sized input and
therefore one option is to pad the hidden states outputted from the LSTM network and then
pass it into the transformer. However, the idea of packing cannot be used in a transformer
as a transformer computes on all instances of time at once. There is no recurrent nature in
a transformer and because of this, the concept of effective batch size cannot be used. One
solution is to use the concept of attention masking where attention scores are not calculated
for padded positions in the input. The concept used in this thesis is to batch together all
frames/instances where the number of road users are same. For example there may be mul-
tiple instances/occurrences when there are 4 road users in a frame. All these instances are
batched together and sent into the Attention based LSTM network. The number of road users
in a frame can range between 0 to 20.
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5.3. Attention based LSTM network

Figure 5.5: Distribution of number of road users in the same frame

Again, a feedforward network is used to bring down the dimension of the output coming
from a transformer to b ˆ k where k represents the output dimension (can be equal to 2 or 5
depending on the loss function used as in Section 5.2). The final predictions are made for all
the road users in the frame and the loss for every training instance can be the MSE loss or
the log-likelihood loss presented in the previous section. In the case that the road user has
exited the frame at prediction time, the actual positions of the road user is unknown. In these
circumstances, loss is not calculated for these road users.

Figure 5.6: Architecture of the self-attention based LSTM
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6 Results and Discussion

In this section, we will focus on the quantitative and qualitative results obtained through
applying the various methods on our data. Firstly there are two datasets: the dataset with
a sampling time of 0.2 seconds and a dataset with sampling time 1 second. For convenience
we will call them 0.2s dataset and 1s dataset respectively. The Kalman Filter constant velocity
(CV) model has been trained and tested on both these datasets, whereas the neural network
models have been trained and tested on 1s dataset. This is because it is computationally
more expensive to train the network on the 0.2s dataset, as there are 5 times the number of
observations. The chosen dataset is then split into train/test/validation. Since this data was
collected over a week, 4 days of this week including a weekend day have been chosen for
training. 2 days (including another weekend day) of data have been used for validation with
the remaining 1 day used for test. Also, for the purposes of training, a minimum of 2 seconds
of past trajectory is required as mentioned in the data exclusions section. This means that all
trajectories are at least 2 seconds old. Given trajectories up till time t, the prediction task is
to approximate the position of the road user s steps ahead. If s is chosen to ă 1 second, the
prediction although accurate won’t be helpful since all reactions to this prediction should be
made in less than 1 second and this isn’t practically possible. If s is chosen to be very high
(say ą 6 seconds), the predictions themselves will deviate a lot from the actual positions,
since there is high scope for change in trajectory with such a large window in a slow-traffic
setting. Therefore it was decided to predict 3 seconds into the future and this setting applies
to all the results mentioned here.

6.1 Constant Velocity Model

For this model, the train/test/validation split was done on 0.2s dataset and 1s dataset. Algo-
rithm 1 was used on the training data to obtain parameter estimates for Q, R. It was seen that
these matrices converged in 10-15 iterations/passes through the data. The obtained parame-
ters were then used to propagate the model forward and obtain the mean and covariance of
prediction. The below table tabulates the mean squared error of 3s ahead prediction on the
test,validation dataset for the three different road users.
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6.2. Hyperparameter-tuning for the networks

Road User 0.2s Dataset 1s Dataset

Pedestrian 1.4 1.2
Cyclist 2.8 3.7
Shuttle 2.4 2.4

Total 1.9 2.2

Table 6.1: 3s ahead mean squared error on val-
idation

Road User 0.2s Dataset 1s Dataset

Pedestrian 1.2 1.2
Cyclist 2.7 3.6
Shuttle 1.7 1.2

Total 1.8 2.2

Table 6.2: 3s ahead mean squared error on
test

Apart from MSE, the likelihood of observing the actual position given the predicted mean
and covariance can be estimated. The average log-likelihood estimate which is a proper-
scoring rule can be constructed as below:

řn
i=1

řti
t=1 log(p(xt, yt)|µx,t, µy,t, Σt)

řn
i=1

řti
t=1[1]

(6.1)

Road User 0.2s Dataset 1s Dataset

Pedestrian -3.3 -2.3
Cyclist -3.8 -3.4
Shuttle -3.4 -2.7

Total -3.5 -2.7

Table 6.3: Avg log-likelihood on validation

Road User 0.2s Dataset 1s Dataset

Pedestrian -3.3 -2.3
Cyclist -3.8 -3.4
Shuttle -3.4 -2.4

Total -3.5 -2.7

Table 6.4: Avg log-likelihood on test

As can be seen from Tables 6.1 6.2, the MSE is almost similar for all road users except
for cyclists where MSE is lower for the 0.2s dataset. This is because cyclists tend to move
faster and a higher sampling time will give relatively more information. Also Tables 6.3
6.4 present the average log-likelihood score. The reason that the log-likelihood for cyclists
is lower for the 0.2s dataset compared to the 1s dataset, even when the MSE is lower for
the former is because both distributions have very different covariance matrices and hence
differently shaped distributions. The model built on the 0.2s dataset has a larger covariance
matrix at the time of prediction. It is to be noted that 3s ahead prediction for the 0.2s dataset
implies a 15 step ahead prediction. The covariance matrix blows up as shown in 5.1 when
taken 15 steps ahead and this leads to a flatter distribution. The large covariance matrix
implies a non-informative /flat distribution leading to a lower log-likelihood estimate. From
this, we can see that the covariance matrix Q, R estimated from the 0.2s dataset is not very
informative.

6.2 Hyperparameter-tuning for the networks

Vanilla LSTM

For all the neural network based experiments, the batch size was set to 64 and the learning
rate to 0.0005. For the vanilla-LSTM, the number of layers and the size of hidden layers are
two important hyperparameters. To tune them, a coarse grid hyperparameter tuning was em-
ployed where the different networks were trained on combinations of different parameters.
The networks’ validation MSE is shown below:
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6.2. Hyperparameter-tuning for the networks

Hidden Layer Size Number of LSTM layers Validation MSE

2 1.18
3 1.1610
4 1.16

2 1.13
3 1.1316
4 1.10

2 1.09
3 1.1220
4 1.09

2 1.08
3 1.0925
4 1.07

2 1.05
3 1.0528
4 1.05

Table 6.5: Hyperparameter tuning for the LSTM network

We would want to select the hyperparameters that lead to the lowest validation MSE. As
can seen from Table 6.5 above, the validation MSE is very similar for the last three entries and
the least complex network amongst these three networks was chosen (highlighted in green)

Attention based LSTM

To train this network, parameters were shared from the trained LSTM network and dropout
of 0.1 was implemented in the transformer encoder layer. Dropout arbitrarily drops some
percentage (10 in this case) of neurons from training to prevent the model from overfitting. A
similar cross-validation as in the above section was performed, with an additional parameter
of number of attention heads.

Hidden layer size No. of Layers No. of heads Validation MSE

2 1.052 4 1.1

2 1.043 4 1.03

2 1.05

20

4 4 1.04

2 0.992 4 0.99

2 0.983 4 0.99

2 1.04

28

4 4 1.00

Table 6.6: Hyperparameter tuning for the Attention based LSTM network
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6.3. Quantitative comparison between the different methods

6.3 Quantitative comparison between the different methods

The best models were chosen through hyperparameter tuning and the MSE obtained on the
test data for different road users is tabulated below:

Road user
Models CV LSTM TLSTM

Pedestrian 1.20 0.68 0.66
Cyclists 3.57 1.63 1.47
Shuttles 1.23 1.37 1.61

Total 2.19 1.08 1.00

Table 6.7: Comparison of Test MSE for different models across road users

For convenience the Attention based LSTM network is also referred to as the TLSTM net-
work (standing for Transformer based LSTM) and the plain LSTM network is referred to as
just the LSTM network. It is seen that the LSTM based models substantially outperform the
CV model. The TLSTM model is only able to outperform the vanilla LSTM model slightly.
The MSE is in general highest for cyclists, followed by shuttles and then pedestrians. Cyclists
tend to move faster and are thus more unpredictable in terms of estimating positions. There
are very few data points for the networks to learn behavior of shuttles and therefore a con-
clusion cannot be drawn for this population. Pedestrians move more predictably and that’s
why their errors are lower across all models. An in-depth comparison of these models, and
why they perform the way they do is presented in the subsequent section.

Also, another hypothesis is that the TLSTM model fares better than the Vanilla LSTM
model when the number of road users in the same frame increases. To test this, we have taken
the ratio of MSE error between the TLSTM model and LSTM model for different number of
road users in the same frame.

Figure 6.1: Ratio of MSE between TLSTM vs LSTM across number of road users in a frame

This ratio is supposed to be 1, if they perform equally well (represented by the dotted
black line in Fig. 6.1. It is expected that the ratio between these errors decrease (or that the
TLSTM model performs better and better) as the number of users in the same frame increase.
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6.4. Qualitative Analysis

However when the number of road users increase, detecting and tracking these road users
get harder and noisy detections/estimates of positions are obtained. Also the frequency of
occurrences of a high number of road users in the same frame is low (Fig 5.5), leading to some
noise,because of insufficient training data.

6.4 Qualitative Analysis

The above section dealt with quantitatively comparing different models. It would also be
interesting to assess the behaviors that these models try to capture. Therefore this section is
dedicated to visualizing predictions made by these models, in an attempt to delineate and
differentiate these models better. This was achieved by building a simulation module and
manually visualizing certain IDs. Mostly, the analysis in this section deals with cyclists and
pedestrians as we believe the models haven’t understood shuttle patterns because of the lim-
ited data.

Figure 6.2: Map of the ground frame

For convenience, in all the figures above the vertical axis is called as the y-axis and the
horizontal axis is called as the x-axis. Pedestrians and cyclists usually move longitudinally
along the y-axis and in some instance take turns or slight maneuvers so that their x-coordinate
also changes. Along the left end of the image there is an entrance to the building and cycles
are parked along the left border of the image.
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6.4. Qualitative Analysis

(a) Pedestrians (b) Cyclists

Figure 6.3: Distribution of x-coordinates for road users

As seen in the above image, cyclists generally move closer to the center of the axis. Pedes-
trians usually traverse on the ends of the frame, specifically on the right as there is a pedes-
trian walkway present there.

In all the figures from here on, the solid black line represents the past trajectory, the dotted-
line represents the future trajectory. In some images, an arrow will be showcased to illustrate
the start position and direction of the road user. The blue, green and red crosses represent
the 3-step ahead prediction for the constant velocity model, vanilla LSTM network (referred
to as the LSTM network) and the Transformer/Attention based LSTM network (referred to
as the TLSTM network). For conveniences,each of these trajectories are also labelled with the
type of road user (Cyclist, Pedestrian, Shuttle) and a unique ID (1,2,3..) for each road user to
isolate and differentiate trajectories. Also the frame numbers added to the images indicate
the moment from which predictions are being made. Frame 1 signifies the prediction made
from the first 2 seconds of trajectory input, frame 2 signifies the prediction made from the
first 3 seconds of input and so on. After individually studying many trajectories and running
simulations of the videos, some behaviors were seen for the various models on the given
data. It is to be pointed out that the trends seen here aren’t a representative trend for the
entire dataset and is rather a representative from a sample. These samples were obtained by
looking at entries where one model’s error is lower compared to the other models, so that the
behaviors captured/missed by the models are assessed.

CV model vs LSTM based models

There are quite a few instances where the constant velocity models are not able to capture
behaviors that are captured well by the LSTM based models. The first of these instances is
when the constant velocity model is not able to capture self-corrections made by pedestrians
and cyclists alike. This is when a pedestrian/cyclist is correcting his/her course, so that their
trajectory is not obtuse and is parallel to one of the axes.
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6.4. Qualitative Analysis

(a) Cyclist 0 Frame 2 (b) Cyclist 0 Frame 3

(c) Cyclist 1 Frame 1 (d) Cyclist 1 Frame 2

Figure 6.4: Course correction trajectories for road users

As can be seen from Fig. 6.4 usually pedestrians and cyclists tend to correct their course, so
that they move parallel to the y-axis. This kind of behavior is not captured by a CV model as
they tend to just extrapolate current state dynamics forward in time and don’t recognize such
spatial dependencies. This maneuver was frequently exhibited by pedestrians and cyclists
alike and was well captured by the LSTM based networks.

Another kind of maneuver observed in the dataset is a turn. A turn can be defined as
a sharp change in direction of a road user. The self-corrections that were discussed above
were acute changes in direction (this can be heuristically defined as ă 60˝). A turn is an ob-
tuse/significant change in direction (ą 60˝). These turns are hard for even human observers
to detect and now we will be looking at cases where the LSTM based models are able to detect
turns that were otherwise undetected by the CV model.
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6.4. Qualitative Analysis

(a) Cyclist 2 -Frame 2 (b) Cyclist 2 - Frame 3

(c) Cyclist 3 Frame 2 (d) Cyclist 3 Frame 3

(e) Cyclist 4 -Frame 1 (f) Cyclist 4 - Frame 2

Figure 6.5: Turning maneuvers exhibited by road users

In Fig 6.5a and Fig. 6.5b , the cyclist takes a turn toward the right, which has been correctly
predicted by the LSTM based networks. The network would have assessed that the road user
needs to correct his/her trajectory. The movement of the cyclist towards the negative y-axis
in the first two seconds may have indicated to the network that the cyclist will turn right.
Note that the CV prediction is not present in both these figures, as it predicts the user to be
far outside the frame (from just extrapolating state dynamics). Figures 6.5c 6.5d 6.5e and 6.5f
on the other hand are more complicated turns. These turns are perpendicular or even obtuse.
There is a hint albeit slight in both these cases that the user might go towards the positive y-
axis, which may be helping the network predict these turns. There are again many such cases
found in the data where a turn has been correctly predicted by both the LSTM networks.
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6.4. Qualitative Analysis

Now, we will be looking at the few cases where the CV model has performed better than the
two LSTM based networks.

(a) Cyclist 5 -Frame 5 (b) Cyclist 5 - Frame 7

(c) Cyclist 6 Frame 1 (d) Cyclist 6 Frame 4

Figure 6.6: Trajectories where road users don’t course correct

In these cases we notice that the road users don’t course correct and these cases are un-
usual in the dataset. In such situations, it is noticed that the LSTM networks always try for
course-correction at a suitable place and eventually as the past trajectory length gets longer in
the same straight line, they go for a more conservative (and not immediate) course-correction
close to the end of the frame.
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6.4. Qualitative Analysis

(a) Cyclist 7 -Frame 1 (b) Cyclist 8 - Frame 1

Figure 6.7: Trajectories where velocities are estimated incorrectly by the LSTM based net-
works

The above figures represent some infrequent situations when the LSTM based network
either overestimates or underestimates the velocity of cyclists. Cyclists usually show higher
variance in their speed and as a result, their velocities are hard to estimate. In the above cases,
the cyclist is travelling at a constant velocity and is thus captured well by the CV model. On
the other hand the LSTM based networks add some noise as they have seen just two seconds
of past trajectory data. However, it has to be pointed out that these are rare occurrences and
don’t represent the majority of cases where the LSTM based network either capture velocity
better or to the same extent as the CV model.

LSTM vs TLSTM

In the previous section, we compared qualitatively the behavior of a CV model vs neural
network based models. In this section, we will look at comparing the two LSTM models to
assess the behaviors that are captured by one and not another. In addition to the legends
from the previous plots, the present plots also consists of white points. These white points
represent the position of other road users in the scene at the time of prediction. This means
that if the network was predicting the ego road user’s position at time t using trajectory
information till time t ´ 3, then the white points represent all other road users present at time
t. This adds another dimension to the image and conveys how close the ego-user’s actual
trajectory was to some other road users.

(a) Pedestrian 1 -Frame 1 (b) Pedestrian 2 - Frame 1 (c) Pedestrian 3 - Frame 1

Figure 6.8: Turn trajectories correctly predicted by TLSTM
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6.4. Qualitative Analysis

Figures 6.8b and 6.8c are turns at the entrance. After the first two seconds, the attention
based network is correct in assessing that the pedestrian will turn left for both these cases.
Another interesting observation is that this happens with other co-pedestrians as is repre-
sented from the white points. The same is the case with 6.8a where the pedestrian turns
right and then moves towards the negative y-axis. It is to be pointed out again that many
pedestrians move in groups in this data. These pedestrians usually have similar trajectories
and maintain a very small distance from each other. These group movement patterns may be
better assessed by the Attention based LSTM networks and hence they may be able to better
predict turning maneuvers exhibited by groups of pedestrians.

(a) Cyclist 9 -Frame 2 (b) Cyclist 9 - Frame 3

Figure 6.9: Trajectories of one of the cyclists at different times

(a) LSTM predictions (b) TLSTM predictions

Figure 6.10: 3s ahead predictions for both cyclists (9&10) in the frame

In Figures 6.9a and 6.9b we clearly see that both the LSTM network and CV model pre-
dict the user to go somewhere left where there is another cyclist. On the other hand, the
TLSTM network maintains some distance from the other road user on the left. Figures 6.10a
and 6.10b refer to 3s ahead predictions made by both the LSTM and TLSTM network re-
spectively for both cyclists in the frame. We notice that the LSTM predictions lead to some
intersection in trajectories, whereas the TLSTM predictions keep the road users roughly par-
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6.4. Qualitative Analysis

allel to each other. This maybe because the TLSTM network pays attention to the road user
on the left and takes care to keep distance from that road user. In this dataset, head on colli-
sions/intersections are rare as people usually move parallel to each other and in some cases
maintain very less distance from each other. Therefore, we did a simulation of two pedestri-
ans such that they are on a collision course. We compared the predictions of the LSTM and
the TLSTM network to see where they are different.

(a) LSTM prediction for acute collision (b) TLSTM Prediction for acute collision

(c) LSTM Prediction for perpendicular
collision

(d) TLSTM Prediction for perpendicular
collision

Figure 6.11: Simulation of trajectory collision

It is noticed from Figures 6.11a and 6.11b that for an acute collision, both of them seem to
course correct trajectories of A and B. The distance between the final predictions for A and B
is slightly greater for the TLSTM network compared to a LSTM network. However, the more
interesting observation is seen in 6.11c and 6.11d where the TLSTM network avoids collision
between the two road users whereas the plain vanilla LSTM predicts both road users to be
approximately in the same spot. Also, given below is the attention matrix extracted from the
network when it was making the prediction. This is similar to the matrix explained in Fig
3.6. It can be seen that in both these cases, road users are giving each other some attention. In
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6.4. Qualitative Analysis

the acute collision case, one of the road users gives the other road user lesser attention, even
though it is expected to be symmetric for both these road users. In the perpendicular collision
case, road user A gives much lesser attention to B than B gives to A. This can be reasoned on
the basis that it is usually the responsibility of a person who is crossing (or moving on the
lesser travelled direction) to pay attention to other road users on the main way.

Road User A B

A 0.92 0.08
B 0.63 0.37

Table 6.8: Attention for perpendicular collision

Road User A B

A 0.78 0.21
B 0.58 0.41

Table 6.9: Attention for acute collision

There were very few cases where the LSTM model was outperforming the TLSTM model.
Even in such cases, both the models were far away from the actual predictions. Thus, the
LSTM predictions could not be used as a gold standard. In conclusion the TLSTM model
either performed better or similar to the LSTM model. However, on the general quantitative
level there isn’t a substantial lift in performance for the TLSTM model in comparison with
the LSTM model for the following possible reasons:

• People mostly move across the y-axis parallel to each other, since the lane that we are
studying, connects important destinations in the university. Barring one entrance and a
small cycle parking, there is not much reason for the road user to move to the left/right.
Therefore most trajectories are longitudinal and rarely involve road users intersecting.
This is reflected in the quantitative error metrics which don’t show substantially high
lift.

• At the same time there are usually few road users in a large area (of more than 1400m2),
owing to which, the density of road users is very low (Fig. 5.5) for the network to learn
complex patterns.

• Also, as mentioned in Fig. 4.4 the data is noisy to understand crowd behaviors and this
may affect the training of the TLSTM network to some degree. When there are more
road users in the frame, the network has a higher ability to learn complex behavioral
patterns. However, when the number of road users in the same frame increases, it is
harder to isolate and detect these road users independently. This becomes a Catch-
22 and therefore the best way to improve the model, is to improve data acquisition
processes.
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6.5. Networks with uncertainty

Cases where all models fail to capture behavior

(a) Pedestrian 1 entering (b) Pedestrian 2 exiting

(c) Cyclist 11 - Frame 3 (d) Cyclist 12 - Frame 2

Figure 6.12: Undetected/wrongly detected road user maneuvers

Lastly, it is interesting to look at cases where all 3 of our models fail. Figure 6.12a illustrates a
pedestrian entering the building and all three models don’t suggest that the pedestrian will
make a sharp turn. Figure 6.12b illustrates a pedestrian leaving the building and all three
models predict again that the pedestrian is going to go right and instead the pedestrian goes
left. Figures 6.12c and 6.12d represent situations when there are abrupt turns and none of
the model expect these road user maneuvers. In Figs. 6.12d the LSTM networks expects the
cyclist will take a right as the cyclist is moving with a high velocity, but he instead ends up
taking a left.

6.5 Networks with uncertainty

In this section, networks are modified to predict the means and covariances of a normal dis-
tribution. The predicted position is considered to be normally distributed with the predicted
means and covariances. This would require modifying the loss function to minimize 5.7
rather than minimizing MSE. Since now the network has to predict 5 parameters for each road
user instead of 2, the network takes longer to train and learn. Strictly speaking, a separate
hyperparameter tuning needs to be performed for this uncertainty based network. However,
in an effort to save computational time, these networks are trained with the best hyperpa-
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6.5. Networks with uncertainty

rameters obtained from 6.2. Average log-likelihood estimates are constructed using 6.1 and
Table 6.10 compares the average log-likelihood across the three models. It can be seen that the
TLSTM network has the highest average log-likelihood for all road users. However, it has to
be mentioned that the TLSTM network contains the highest number of parameters, followed
by the LSTM network. To gauge the effect of higher number of parameters, the LSTM model
was built with higher number of parameters (more layers, larger hidden size). It was seen
that the performance of the LSTM model was saturating, implying that higher parameters
had little to no impact on model performance.

Road user
Models CV LSTM TLSTM

Pedestrian -2.25 -0.95 -0.71
Cyclists -3.36 -1.93 -1.77
Shuttles -2.37 -1.63 -1.51

Total -2.72 -1.36 -1.16

Table 6.10: Comparison of Average Log-Likelihood for 3s ahead predictions across different
models and road users on test data

(a) Cyclist taking a turn- Frame 1 (b) Cyclist taking a turn- Frame 2

(c) Pedestrian - Frame 1 (d) Pedestrian - Frame 2

Figure 6.13: Uncertainty prediction bands for road users

Now, with the help of the mean and covariance matrix, one can visualize confidence in-
tervals for positions. In the case of a bivariate distribution, these confidence intervals take
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the form of ellipses as seen in the below diagram. In the Fig 6.13, 95% confidence ellipses
for the LSTM and TLSTM predictions are displayed for various road users at specific times.
Larger confidence ellipses signify higher uncertainty whereas smaller ellipses signify lower
uncertainty. It is seen in Fig. 6.13a that during the beginning of a turn there is larger un-
certainty and as the turn evolves in Fig. 6.13b, the uncertainty reduces. Also, in Fig. 6.13c
the uncertainty is higher near the entrance of B-huset and reduces in Fig. 6.13d at a place far
away from the entrance and the cycle parking.

6.6 Analysis of Attention

Attention matrices were briefly discussed through an example in Table 6.8 and Table 6.9.
It would be interesting to look at attention throughout the entire dataset, so that attention
behaviors can be generalized. For this reason, there are some additional metrics created in
this dataset as follows:

• Road user self attention: At time t the trajectories of all road users are passed as input
to the TLSTM network which predicts their positions at time t + 3. In the process of
making this prediction, the attention matrices computed are reflective of the dependen-
cies between road users at time step t. Road user self attention is the attention that a
road user pays himself/herself. The lower the value of road user self attention implies
higher attention paid to other road users in the scene. It is to be highlighted that the
self attention referred to earlier (Section 3.6 and Section 5.3) is inter-trajectory/within
sequence self attention. A sequence at time t is defined to consist of multiple trajectories
and self here refers to the same sequence. The self attention matrix at time t for a col-
lection of trajectories (or sequence) is of the form of Tables 6.8 and 6.9. However, in this
section, road user self-attention refers to the attention a road user pays himself/herself.
For all road users in a scene, this corresponds to the diagonal elements in Tables 6.8 and
6.9. In this section, all mentions of self attention refer to this road user self attention and
not the entire self attention matrix.

• Minimum Distance at the time of observation : At time t, for a particular road user
r, the closest road user’s distance is calculated. This is the minimum of all distances
between the concerned road user r and all other road users in the scene. If this distance
is low, it implies that there are one (or more) road users in close proximity to the road
user r. The analysis below excludes road users who do not have any other neighbor
road users in the frame at a given timestamp.

• Course of a road user: Let the position of a road user at time step t and t ´ 1 be rep-
resented as (xt, yt) and (xt´1, yt´1) where xi and yi represents the x and y-coordinate
of the road user at time i. Course is defined as the angle of this vector relative to the
y-axis. Mathematically, it can be written as

Course = arctan
|xt ´ xt´1|

|yt ´ yt´1|
(6.2)

The absolute differences are taken, as we disregard the sign of this angle. The higher
the angle (closer to 90˝ implies that the road user is crossing the road and lower the
angle (closer to 0˝) implies that the road user is moving parallel to the y-axis on the
main pathway.

For convenience sake, we will refer to minimum distance at the time of observation as
Min_Dist and the angle or course of a road user wrt to the y-axis as Course. Self attention
is binned into 10 discrete bins such as [0-0.1),[0.1-0.2) and so on for all road users and mean
values are calculated for Min_Dist and Course across these different bins. The resulting plot
is displayed in Fig. 6.14a and Fig. 6.14b.
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Also the entire dataset is sorted on the basis of Min_Dist and cumulative means of self
attention is plotted against the cumulative means of Min_Dist and in Fig. 6.15b. Since,
Min_Dist is sorted, the cumulative means of Min_Dist will be increasing. Against this in-
creasing trend, we would like to gauge the trend of self-attention. A similar exercise is done
in Fig. 6.15a by sorting the entire dataset on the basis of Course and plotting the cumulative
mean of self-attention against the cumulative means of Course.

(a) Metric: Min-Dist (b) Metric: Course

Figure 6.14: Plots of average values of metric vs binned-self attention

(a) Metric: Min-Dist (b) Metric: Course

Figure 6.15: Cumulative mean plots of self-attention vs the sorted cumulative means of met-
rics

From Fig 6.14a, we observe that barring the first two bins, as self-attention increases, the
average minimum distance at the time of observation increases. Also, a similar trend is seen
in Fig. 6.15b where the cumulative self-attention mean seems to increase (except a small
hiccup) as cumulative mean of Min ´ Dist increases. It is generally seen that if there is no road
user in the immediate vicinity of the concerned road user (Min_Dist is high) the self-attention
is high. From these graphs, we can infer that the network is largely able to correlate proximity
of a road user to attention. These graphs also indicate that having low values of self-attention
(<0.2) does not necessarily mean that there is another road user in close proximity. The self-
attention may have been low because of factors other than proximity (such as if the road user
is crossing the road). It may also be the case that the network has some noise and is not able
to adequately capture these interactions in some cases.

We observe from Fig. 6.14b that average angle in degrees seems to decrease as we go
to higher self-attention bins. From Fig. 6.15a we again observe that self attention seems to
sharply decrease when the cumulative mean of Course increases. Thus, the networks also
seem to be correlating the course of a road user to attention. This means that when the road
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user is crossing the street or moving at an incline towards the y-axis, the attention this road
user pays other road users is high.

From an observer’s standpoint, we would also expect that road users’ attention to other
road users depend on factors such as distance and the course of a road user. Generally, a
road user would pay more attention to closer road users. We would also expect the road user
to pay more attention when they are moving at an angle with respect to the main pathway.
Therefore,the network is constructing attention matrices that seem to take into account ex-
plainable factors such as proximity and the course of a road user. The network may also be
capturing more complex dependencies , but it is indeed encouraging that it captures depen-
dencies that one would naturally expect.
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7 Conclusion and Future work

This thesis focused on studying methods that analyze and predict the intent of road users on
a university lane. Firstly, a Kalman filter constant velocity model was built that extrapolated
state dynamics to predict future positions of road users. This constant velocity model was
robust and worked pretty well in normal scenarios when road users continued in the same
direction without much deviation. It also worked well when road users travelled at a con-
stant pace and didn’t change their pace often. A simpler auto-regressive model, which just
considers p past positions and does not consider velocities, could also be another benchmark
model that could have been implemented for this problem. We saw that the CV model failed
when the road user made course corrections, or turns in their trajectories. The CV model also
largely failed to accurately estimate velocity when road users changed their velocity abruptly.
In summary, the CV model is still a useful model and benchmark which can be extended as
follows:

• It can be used to detect anomalies in pedestrian behavior. For example, there may be
a location where a particular type of road user turns away and later course corrects.
This may be happening because of some problems in the spatial area such as an ob-
struction or bad design of the roadway. A heatmap of errors for this type of road user
can be drawn across the spatial area, to identify such locations where everyone behaves
unexpectedly and the problem can be corrected

• As mentioned in the Theory section, this model can also be extended to a constant accel-
eration model with relative ease. The parameters A, C in Eq. 5.1 can also be estimated
through the EM algorithm and these changes will make the Kalman filter model more
general and hopefully also more flexible

• The tracking employed by the sensors already use Kalman filters to obtain non-noisy
estimates of position. The prediction module presented in this paper can easily be inte-
grated into the same tracking software, so that the Kalman filter model both tracks and
predicts positions online.

The plain LSTM based model was seen to perform substantially better than the CV model.
It was successful in identifying course corrections. It learnt quickly that users move parallel
to the y-axis and if given a chance try to correct their trajectories. The model was also able
to identify some major turns because it utilized information from the entire past trajectory,
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where hints from the past such as slowing down, or a slight change in direction was picked
up by the LSTM network. It also understood the dynamics and velocity of user motion better
than a CV model. However, the LSTM network did not account for other road users in the
vicinity and this sometimes led to the network predicting collision of two trajectories. The
plain LSTM model can be extended/improved in the following ways:

• The model can be trained on the 0.2s sampled data. It wasn’t done in this thesis be-
cause of the computational resources required for training. As can be seen from the CV
model, the predictions were better in the case of 0.2s sampled data for cyclists. The 0.2s
sampled data will give a finer level of granularity in the road users’ (especially cyclists’)
movements.

• The velocity obtained as a by-product of running the Kalman filter can be used as input
for the LSTM network. If velocities along the x and y-axes for the entire past trajectory
is fed as input, along with the positions, the network will have more features to learn
from to make predictions. The network already must be learning the velocities, but
by feeding it the velocities directly, the network can focus on learning more complex
dynamics.

• Presently, only the future positions are predicted. We can also predict future trajecto-
ries which are positions at different times in the future. This is a typical sequence-to-
sequence modeling framework and can be implemented by including a decoder which
converts the interim hidden states of the LSTM cell into a sequence of future positions.

• The LSTM network can quite easily also be extended into the social-LSTM network
proposed in [1]. The hidden state feature vectors obtained from the network can be
combined for different users and predictions can be made for each road user indepen-
dently. However, the proposed TLSTM model presents a different solution to the same
problem.

• For the uncertainty based neural network, the final position of a road user was assumed
to be normally distributed. Different distributions can be examined to gauge which
distribution gives the best likelihood given the data.

The attention based LSTM borrowed the same ideas from an LSTM network, but tried to
improve upon the plain LSTM network by modeling inter-user patterns. The attention based
LSTM network marginally improved on the results from a plain LSTM with performance
being the same/better compared to a plain LSTM. Some examples and simulations showed
that this network adjusts the positions of each road user in-order to maintain some distance
between them. The attention matrices showed us that the network is learning to give high
attention to road users who are closer to each other. It is also able to correlate attention
to the angle road users make with respect to the main walkway when they are travelling.
The improvements mentioned for the plain LSTM network can also be implemented for this
network. In addition to that, this attention based network can be improved as follows:

• The number of transformer encoders can be increased to increase the complexity of
interactions captured. Also, a finer hyperparameter tuning must be performed over a
larger hyperparameter space.

• As mentioned in the results section, some trajectories were not completely detected
by the sensors. Also when the number of road users increase, detecting these road
users becomes difficult. We believe that this network can learn interactions better with
cleaner data. Therefore, importance should be given to data pre-processing to ensure
that it represents the actual behaviors and trajectories.
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• Lastly, with some more study of the attention module, it can be transferred to other
geographies, to learn more behaviors and make use of the existing knowledge of be-
haviors.

Through this thesis, the attempt was to build up a solution for intent prediction in such
a way that each new method covers for some deficiencies in the other older methods. In
this way, there were increments in each new method. Also, by gauging the outputs of each
methods, an attempt was made to understand what the models are "seeing". We believe
that this work can be used as good starting point for studying the various aspects of intent
prediction and with more detailed study, improving on the same.
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8 Ethical Considerations

The toolchain that is responsible for acquiring trajectories is executed in an embedded com-
putational unit. Therefore, images from cameras are removed directly after 3D reconstruction
and classification (typically within 20 ms). Hence personal data is neither recorded nor trans-
mitted. Therefore, the sensor is fully GDPR compliant and hence all the data used in this
thesis is compliant with anonymity norms and regulations. Also, the process of acquiring
data does not incur any harm for the environmental/living beings. Every part of this thesis
is drafted with good and responsible ethics and none of it violates any ethical consideration
to the best of my knowledge.
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