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1 Background

Much of modern deep learning research focuses on generative models. These models
aim to sample from an unknown, highly complex distribution p(z). Sampling can mean
generating text (as in large language models), creating new images, or, in our context,
producing plausible future states of a dynamical system.

For image generation the goal is to learn to draw new samples from p(z) using only
the examples we have observed. Several classes of generative models exist, including
autoregressive models, variational autoencoders, diffusion models and flow-matching
approaches. In recent years, continuous-time formulations such as score-based diffusion
and flow matching have emerged as powerful tools for high-quality generation. The
central idea behind these approaches is to construct a continuous transformation between
a base distribution (e.g. a Gaussian) and the target distribution p(x) by learning a
vector field that defines an ordinary differential equation (ODE) or stochastic differential
equation (SDE).

(b) Flow matching model transforming one image into another.

These continuous generative frameworks can be naturally transferred to spatiotemporal
physical systems (see Figure . Instead of sampling a single realistic image we now
ask the model to produce a probabilistic forecast of the next state p(x; | z;—1), or a con-
ditional forecast given observations p(x; | yi, x¢+—1), the latter formally connects to data
assimilation/Bayesian filtering. Generative models provide a flexible route to represent
multimodal uncertainties, non-Gaussian error structures, and complex spatiotemporal
correlations that are typical for chaotic PDE-driven systems.

One example of a spatiotemporal forecasting problem is weather forecasting. The
Earth’s atmosphere is a high-dimensional and inherently chaotic system, where ac-
curate and efficient weather forecasting is essential for detecting extreme events and
issuing timely warnings. Recent years have witnessed remarkable progress in applying
machine learning to weather prediction (Ben-Bouallegue et al.,|2023]). These data-driven




(a) Diffusion model transforming noise into a probabilistic forecast.

models can match or even outperform existing Numerical Weather Prediction (NWP)
systems, while producing forecasts in a fraction of the time (Lam et al., 2022} Bi et al.,
[2023; [Pathak et al., 2022). While early approaches focused on deterministic predictions,
the field has increasingly shifted toward probabilistic ensemble forecasting
[2023; [Bonev et al.l 2025} |Alet et al., |2025)). In our group, we have explored probabilistic
weather prediction using both latent-variable and diffusion-based approaches. For an
overview of our work so far see (Oskarsson et al., 2023| [2024} |Andrae et al., [2025; [Larsson|

et ], 2025)

2 Data description

You will work with trajectories from a spatiotemporal
system governed by a chaotic PDE, called the surface
quasi-geostrophic equations (SQG). This PDE is a sim-
plified mode[” of atmospheric dynamics and is therefore
challenging to forecast accurately. We have worked ex-
tensively with this system and have used it ourselves in
our research. This means that it’s easy to generate data
and train models within our codebase.

“The main dataset used in these projects will be generated using
the framework available at https://github.com/jswhit/sqgturb,
The dataset can be flexibly produced to match the specific require-
ments of each project.

3 Projects

We offer several projects related to Probabilistic Spatiotemporal Forecasting, as detailed
below, accompanied by some related work. Our ambition is to find suitable candidates
for multiple projects. We envision to then set up a collaborative environment for the
involved students, to encourage collaboration on generic questions related to working
with the data and getting familiar with the application area.

Note that you can apply to multiple projects at the same time.


https://github.com/jswhit/sqgturb

3.1 New types of probabilistic forecasting models

Probabilistic forecasting of entire trajectories.

Many current approaches model p(x¢41 | ;) and obtain multi-step trajectories by au-
toregressive sampling. While effective in practice, autoregressive schemes can struggle
with long-range dependencies and error accumulation. This project targets direct mod-
eling of the joint conditional distribution p(xy1.7 | 2+), allowing generation of entire
future trajectories in a single (or few) pass(es). [Ho et al.| (2022)); |Liu et al.| (2024)

Forecasting trajectories from marginals using correlated noise.

Building on a recent method that learns p(x:ya¢ | 2+, At), one can generate full trajec-
tories by injecting strongly correlated Gaussian noise during sampling. The student will
implement and train such a diffusion-based model, then systematically study how the
temporal correlation structure of the noise affects trajectory quality, ensemble spread,
and calibration. |Andrae et al.| (2025])

Training and evaluating a CRPS-based model.

Proper scoring rules such as the Continuous Ranked Probability Score (CRPS) provide
a principled alternative to SDE-based methods such as diffusion models. Training mod-
els using CRPS can yield very fast predictive sampling, but it is not obvious which
architectures and design choices make this approach effective in high-dimensional spa-
tiotemporal settings. This project will train CRPS-optimized models, evaluate their
performance, and explore architectural or training modifications. |Alet et al.| (2025)

Probabilistic Forecasting with Stochastic Interpolants and Follmer Processes
Flow matching and stochastic interpolants generalize diffusion models to arbitrary start-
ing distributions. For forecasting, these methods can be used to construct diffusion-like
transforms that map x; to x;411 (see Figure . The project will implement such
interpolant-based forecast models and compare their sample efficiency and predictive
performance to standard diffusion approaches. |(Chen et al.| (2024])

3.2 Adapting new generative models to probabilistic forecasting

Distributional Flow/Diffusion models compared to Flow/Diffusion models
In this project we aim to compare forcasting models based on standard flow/diffusion
models with distributional diffusion models. The focus is on assessing whether this leads
to improved uncertainty quantification and forecast skill. [Bortoli et al.| (2025))

Exploring Techniques for Faster Sampling in Flow Models

Sampling from flow-based models typically requires numerous forward passes through
a neural network, which can be computationally expensive. This project investigates
approaches such as consistency models and rectified flows to accelerate sampling while
maintaining model performance. Boffi et al.| (2025)

Pyramidal Flow Matching

Pyramidal flow matching has recently been applied successfully to video generation. In
this project, we aim to adapt this framework for forecasting dynamical systems, where
multi-scale temporal dynamics play a central role. The approach will be compared
against traditional autoregressive flow matching models to assess potential improvements
in forecast skill and efficiency. [Jin et al.| (2025)

Learning from Observations

In real-world applications, the full state of a dynamical system is rarely observed. In-
stead, we only have access to sparse and partial observations. This project aims to
investigate methods for learning data assimilation models, which reconstruct the com-



plete current state from limited observations, or forecasting models, which predict future
states while only observing sparse partial observations of states. |Xiang et al.| (2024));
Alexe et al.| (2024); Vaughan et al.| (2024]))

3.3 Latent spaces

Learning latent dynamics for probabilistic forecasting with flow-based gen-
erative models.

Flow-based generative models are invertible and map data to a latent space in which
samples are approximately Gaussian. This latent representation enables smooth in-
terpolation and compact parametrization of complex fields. The project aims to learn
spatiotemporal dynamics in that latent space: build forecasting models, perform tempo-
ral interpolation, and generate ensemble perturbations from single observations. |Bodin
et al.| (2025)

Latent Diffusion or Flow Matching for Forecasting Physical Systems
Training and sampling flow-based models directly in data space is computationally ex-
pensive. Recent advances demonstrate that learning a compressed latent representation
of the data and performing diffusion or flow matching in this latent space can offer a
favorable trade-off between efficiency and accuracy. This project will focus on systemat-
ically comparing diffusion or flow matching models with their latent-space counterparts.
Rombach et al.| (2022)

Latent Space Forecasting

Most forecasting models operate in data space, predicting the next state ¢t + 1 from the
current state t. Longer trajectories are then obtained through autoregressive rollouts,
where each forecasted output serves as the next input. This project explores whether
learning a latent representation of the data enables forecasting directly in latent space,
allowing for arbitrarily many forecasting steps in the latent space before decoding back
to data space. |Du et al.| (2025)

4 How to apply
Apply by sending

e A CV and a transcript of grades.

e A brief motivation on why you are interested in the project(s) and which ones you
find the most interesting.

e Pointers to any past experience that makes you a particularly suitable candidate.

to both martin.andrae@liu.se, erik.larsson@liu.se. Write “Thesis Project Appli-
cation” in the subject line. We will review applications in two rounds, with deadlines
on November 1st and December 1st. Projects will be allocated based on the ap-
plications received by each date. If you want to maximize your chances of getting your
preferred project, we recommend applying early.

If you have any questions about the projects or application feel free to reach out.
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