SEMINAR EXERCISES IN PROBABILITY THEORY 732A63

PER SIDÉN

3. Transforms

Exercise 3.1

Suppose X has probability function $p_X(k) = (1 - \theta)\theta^{k-1}$, k = 1, 2, ..., for $0 \le \theta \le 1$ and that Y has density function $f_Y(y) = 2y$, $0 \le y \le 1$.

- (a) Derive the probability generating function of X.
- (b) Derive the moment generating function of Y.
- (c) Let $S_X = Y_1 + Y_2 + \ldots + Y_X$ be the sum of X i.i.d. random variables with the same distribution as Y, and assume that Y_1, Y_2, \ldots, Y_X are all independent of X. Compute the characteristic function of S_X .

Exercise 3.2 (3.1 in Gut's book)

The non-negative, integer-valued, random variable X has generating function $g_X(t) = \log(1/(1-qt))$. Determine P(X = k) for k = 0, 1, 2, ..., E(X), and Var(X).

Exercise 3.3 (3.6 in Gut's book)

Show, by using moment generating functions, that if $X \sim L(1)$, then $X \stackrel{d}{=} Y_1 - Y_2$, where Y_1 and Y_2 are independent, exponentially distributed random variables.

Exercise 3.4 (3.34 in Gut's book)

Suppose that X is a nonnegative, integer-valued random variable, and let n and m be nonnegative integers. Show that

$$q_{nX+m}(t) = t^m \cdot q_X(t^n)$$
.

Exercise 3.5* (3.5 in Gut's book)

Let $Y \sim \beta(n, m)$ (n, m integers).

- (a) Compute the moment generating function of $-\log Y$.
- (b) Show that $-\log Y$ has the same distribution as $\sum_{k=1}^{m} X_k$, where X_1, X_2, \ldots are independent, exponentially distributed random variables.

Remark. The formula $\Gamma(r+s)/\Gamma(r) = (r+s-1)\cdots(r+1)r$, which holds when s is an integer, might be useful.

Exercise 3.6* (3.26 in Gut's book)

The number of cars passing a road crossing during an hour is Po(b)-distributed. The number of passengers in each car is Po(p)-distributed. Find the generating function of the total number of passengers, Y, passing the road crossing during one hour, and compute E(Y) and Var(Y).