PROBABILITY THEORY LECTURE 6

Per Sidén

Division of Statistics Dept. of Computer and Information Science Linköping University

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L6

1 / 15

OVERVIEW LECTURE 6

- Modes of convergence
 - almost surely
 - in probability
 - ▶ in *r*-mean
 - in distribution
- Law of large numbers
- Central limit theorem
- Convergence of sums, differences and products.

INTRODUCTION

- We are often interested in the large sample, or asymptotic, behavior of random variables.
- We are considering a sequence of random variables X₁, X₂, ..., also denoted by {X_n}_{n=1}[∞].
- Example: what can we say about the sample mean $X_n = n^{-1} \sum_{i=1}^n Y_i$ in large samples?
 - Does it converge to a single number? (law of large numbers)
 - How fast? (central limit theorem)
 - What is the distribution of the sample mean in large samples? (central limit theorem)
- ► The usual limit theorems from calculus will not do. Need to consider that *X_n* is a **random** variable.

MARKOV AND CHEBYSHEV'S INEQUALITIES

Markov's inequality. For a positive random variable X and constant a > 0

$$Pr(X \ge a) \le \frac{E(X)}{a}$$

▶ Proof: $a \cdot I_{X \ge a} \le X$. Then $E(a \cdot I_{X \ge a}) = a \cdot Pr(X \ge a) \le E(X)$.

Chebyshev's inequality. Let Y be a random variable with finite mean m and variance σ². Then

$$\Pr(|\mathbf{Y} - \mathbf{m}| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

▶ Proof: Use Markov's inequality with $X = (Y - m)^2$ and $a = \varepsilon^2$, and that $E(X) = E(Y - m)^2 = \sigma^2$. We then have

$$\Pr\left(\left(Y-m\right)^2 \ge \epsilon^2\right) \le \frac{\sigma^2}{\epsilon^2}$$

and therefore

$$\Pr\left(|Y-m| \geq \varepsilon\right)_{\text{Probability Theory - L6}} \leq \frac{\sigma^2}{\varepsilon^2}.$$

PER SIDÉN (STATISTICS, LIU)

Almost sure convergence

 \triangleright X₁,...X_n and X are random variables on the same probability space.

DEF X_n converges **almost surely** (a.s.) to X as $n \to \infty$ iff

$$P\left(\{\omega: X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}\right) = 1.$$

• Denoted by
$$X_n \stackrel{a.s.}{\to} X$$
.

- For a given ω ∈ Ω, X_n(ω) (n = 1, 2, ...) and X(ω) are real numbers (not random variables).
- Almost sure convergence: check if the sequence of real numbers X_n(ω) converges to the real number X(ω) for all ω, except those ω that have probability zero.

CONVERGENCE IN PROBABILITY

DEF X_n converges in probability to X as $n \to \infty$ iff

$$P(|X_n - X| > \varepsilon) \to 0 \text{ as } n \to \infty.$$

• Denoted by $X_n \xrightarrow{p} X$.

Et
$$X_n \sim Beta(n, n)$$
 show that $X_n \xrightarrow{p} \frac{1}{2}$ as $n \to \infty$.
Solution: $E(X_n) = \frac{n}{n+n} = \frac{1}{2}$ and
 $n \cdot n = \frac{1}{2}$

$$Var(X_n) = \frac{n}{(n+n)^2(n+n+1)} = \frac{1}{4(2n+1)}$$

By Chebyshev's inequality, for all $\varepsilon > 0$

$$Pr(|X_n-1/2| \ge \varepsilon) \le \frac{1}{4(2n+1)\varepsilon^2} \to 0 \text{ as } n \to \infty.$$

PER SIDÉN (STATISTICS, LIU)

CONVERGENCE IN R-MEAN

DEF X_n converges in *r*-mean to X as $n \to \infty$ iff

$$E|X_n-X|^r \to 0 \text{ as } n \to \infty.$$

• Denoted by $X_n \xrightarrow{r} X$.

Let X_n be a random variable with

$$P(X_n = 0) = 1 - \frac{1}{n}$$
, $P(X_n = 1) = \frac{1}{2n}$ and $P(X_n = -1) = \frac{1}{2n}$.

Show that $X_n \xrightarrow{r} 0$ as $n \to \infty$.

Solution: we have

$$E |X_n - X|^r = |0 - 0|^r \cdot \left(1 - \frac{1}{n}\right) + |1 - 0| \cdot \frac{1}{2n} + |-1 - 0|^r \cdot \frac{1}{2n}$$
$$= \frac{1}{n} \to 0.$$

as $n \to \infty$ for all r > 0.

PER SIDÉN (STATISTICS, LIU)

CONVERGENCE IN DISTRIBUTION

DEF X_n converges in distribution to X as $n \to \infty$ iff

$$F_{X_n}(x) o F(x)$$
 as $n o \infty$

at all continuity points of X.

• Denoted by $X_n \xrightarrow{d} X$.

Suppose $X_n \sim Bin(n, \lambda/n)$. Show that $X_n \to Po(\lambda)$ as $n \to \infty$.

Solution: For fixed k we have

$$\binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \to e^{-\lambda} \frac{\lambda^k}{k!}$$

as $n
ightarrow \infty$

MORE ON CONVERGENCE

- ► Uniqueness: Theorem 6.2.1 tells us that if X_n → X and X_n → Y, then X = Y almost surely (X ^d = Y for convergence in distribution).
- The different notions of convergence are related as follows:

$$\begin{array}{cccc} X_n \stackrel{a.s.}{\to} X & \Rightarrow & X_n \stackrel{p}{\to} X & \Rightarrow & X_n \stackrel{d}{\to} X \\ & & & \uparrow \\ & & & & X_n \stackrel{r}{\to} X \end{array}$$

• So $\stackrel{a.s.}{\rightarrow}$ is stronger than $\stackrel{p}{\rightarrow}$ which is stronger than $\stackrel{d}{\rightarrow}$.

PER SIDÉN (STATISTICS, LIU)

CONVERGENCE VIA TRANSFORMS

- Let X, X₁, X₂, ... be random variables. What if the moment generating function of X_n converges to the moment generation function of X? Does that mean that X_n converges to X?
- TH Let $X, X_1, X_2, ...$ be random variables, and suppose that

$$arphi_{X_n}(t) o arphi_X(t)$$
 as $n o \infty$

then

$$X_n \stackrel{d}{\rightarrow} X$$
 as $n \rightarrow \infty$.

TH The converse also holds. If $X_n \xrightarrow{d} X$, then $\varphi_{X_n}(t) \to \varphi_X(t)$.

Similar theorems hold for the generating function and moment generating function (Th 6.4.1-6.4.3).

PER SIDÉN (STATISTICS, LIU)

LAW OF LARGE NUMBERS - SOME PRELIMINARIES

- Let $X_1, ..., X_n$ be independent variables with mean μ and variance σ^2 .
- Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean of *n* observations.
- We then have

$$E(\bar{X}_n) = \frac{1}{n} \sum_{i=1}^n E(X_i) = \frac{1}{n} n\mu = \mu$$

and

$$Var(\bar{X}_n) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{\sigma^2}{n}.$$

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L6

11 / 15

LAW OF LARGE NUMBERS

• (Weak) law of large numbers. Let $X_1, ..., X_n$ be independent variables with mean μ and finite variance σ^2 . Then

$$\bar{X}_n \stackrel{p}{\to} \mu$$

Proof: By Chebychev's inequality

$$\Pr\left(|\bar{X}_n - \mu| > \varepsilon\right) \le \frac{\sigma^2 / n}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \to 0 \text{ as } n \to \infty.$$

- This version of the law of large numbers requires a population variance which is finite. Theorem 6.5.1 gives a version where only the mean needs to be finite.
- ► The strong law of large numbers proves that $\bar{X}_n \xrightarrow{a.s.} \mu$ if the mean is finite.
- ▶ The assumption of a finite mean is important. Example: if $X_1, X_2, ...$ are independent C(0, 1), then $\bar{X}_n \stackrel{d}{=} X_1$ for all n. The law of large numbers does not hold.

PER SIDÉN (STATISTICS, LIU)

CENTRAL LIMIT THEOREM

TH Let $X_1, X_2, ...$ be iid random variables with finite expectation μ and variance σ^2 . Then

$$\left(rac{ar{X}_n-\mu}{\sigma/\sqrt{n}}
ight) \stackrel{d}{
ightarrow} \mathsf{N}(0,1) ext{ as } n
ightarrow\infty.$$

Proof by showing that

$$\varphi_{\frac{\tilde{X}_n-\mu}{\sigma/\sqrt{n}}}(t) \to \varphi_{N(0,1)}(t) = e^{-t^2/2}.$$

Application: empirical distribution function

$$F_n(x) = \frac{\# \text{observations} \le x}{n}$$

then as $n \to \infty$

$$F_n(x) \xrightarrow{p} F(x)$$

$$\sqrt{n} \left(F_n(x) - F(x) \right) \xrightarrow{d} N\left(0, \sigma^2(x) \right), \ \sigma^2(x) = F(x) \left[1 - F(x) \right].$$

PER SIDÉN (STATISTICS, LIU)

CONVERGENCE OF SUMS OF SEQUENCES OF RVS

TH If $X_n \to X$ and $Y_n \to Y$, then $X_n + Y_n \to X + Y$.

- ▶ Holds for *a.s.*, *p* and *r*-convergence without assuming independence.
- ▶ The theorem also holds for *d*-convergence if we assume independence.

TH If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} a$, where *a* is a constant, then as $n \to \infty$

$$X_{n} + Y_{n} \xrightarrow{d} X + a$$
$$X_{n} - Y_{n} \xrightarrow{d} X - a$$
$$X_{n} \cdot Y_{n} \xrightarrow{d} X \cdot a$$
$$\frac{X_{n}}{Y_{n}} \xrightarrow{d} \frac{X}{a} \text{ for } a \neq$$

0

Let X₁, X₂, ... be independent U(0, 1). Show that

$$\frac{X_1 + X_2 + \ldots + X_n}{X_1^2 + X_2^2 + \ldots + X_n^2} \xrightarrow{p} \frac{3}{2} \text{ as } n \to \infty.$$

PER SIDÉN (STATISTICS, LIU)

CONVERGENCE OF FUNCTIONS OF CONVERGENT RVS

TH Let $X_1, X_2, ...$ be random variables such that $X_n \xrightarrow{p} a$ for some constant a. Let g() be a function which is continuous at a. Then

$$g(X_n) \xrightarrow{p} g(a).$$

Et $X_1, X_2, ...$ be iid random variables with finite mean $\mu \ge 0$. Show that $\sqrt{X_n} \xrightarrow{p} \sqrt{\mu}$ as $n \to \infty$.

Solution: from the law of large numbers we have $\bar{X}_n \xrightarrow{p} \mu$. Since $g(x) = \sqrt{x}$ is continuous at $x = \mu$ the above theorem proves that $\sqrt{\bar{X}_n} \xrightarrow{p} \sqrt{\mu}$ as $n \to \infty$.

 \blacksquare Let $Z_n \sim N(0,1)$ and $V_n \sim \chi^2(n)$ be independent RVs. Show that

$$T_n = rac{Z_n}{\sqrt{rac{V_n}{n}}} \stackrel{d}{\sim} N(0,1) \ \, ext{as $n o \infty$}.$$

PER SIDÉN (STATISTICS, LIU)