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OVERVIEW LECTURE 5

> Linear algebra recap

» Multivariate normal distribution
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LINEAR ALGEBRA RECAP

» Eigen-decomposition of an n X n symmetric matrix A
CAC=D

where D = Diag(Aq, ....,Ap) and C is an orthogonal matrix.
» Orthogonal matrix:

» C'C=1
» Cl=(
» detC = +1

» The columns of C = (cy, ..., c,,) are the eigenvectors, and A; is the ith
largest eigenvalue.

> detA:/\l-/\Q-“)\n.
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QUADRATIC FORMS AND POSITIVE-DEFINITENESS

v

Quadratic form
Q(x) = x'Ax
Q(x) is positive-definite if Q(x) > 0 for all x # 0.
Q(x) is positive-semidefinite if Q(x) > 0 for all x # 0.
(x)

Q(x) is positive-definite iff all eigenvalues of A are positive.

vV V. v Vv

Q(x) is positive-semidefinite iff all eigenvalues of A are
non-negative.
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MATRIX SQUARE ROOT

» If D = diag(A1, ..., Ap) is diagonal, then D= diag(\/A1, ..., VAp) is

the square root of D:
Db =D
and we can write D¥/2 = D.
» The square root of a positive definite matrix A

A= CDC’
can be defined as
A2 = cDc’
where D == diag(\/A1, ..., /An).

» Check:

AV2AY2 — cHc'cDC’ = CDDC' = cDC' = A

» We also have
(A1) 2 = (ar2)

which is denoted by A=1/2
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COVARIANCE MATRIX

» Mean vector
EXi

EX,
» Covariance matrix

A = Cov(X) = E(X — u)(X — )’

TH Every covariance matrix is positive semidefinite.
» det A > 0.
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LINEAR TRANSFORMATIONS
» Recall that if Y = aX + b, where E(X) = u and Var(X) = 02 then

E(Y)=au+b
Var(Y) = a°c?

TH Multivariate linear transformation

Let Y = BX + b, where Xis nx 1 and B is m X n.
Assume EX = p and Cov(X) = A. Then,

E(Y)=Bu+b
Cov(Y) = BAB’

TH Let X = (X1, ..., Xp)' where X1, ..., Xp = N(0,1). Then

Y = pu+ AY2X ~ N(p, A)
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MULTIVARIATE NORMAL DISTRIBUTION

» Multivariate normal X ~ N(p, A), where X is a n x 1 random vector.
» Three equivalent definitions:

» X is (multivariate) normal iff a’X is (univariate) normal for all a.
» X is multivariate normal iff its characteristic function is

; 1
px(t) = Ee™X = exp (it’y - 2t’At)

» X is multivariate normal iff its density function is of the form

w00 = () T on ] oA )

» Bivariate normal (n = 2)

A 0?2 po1oa
po10y 03

where —1 < p < 1 is the correlation coefficient.
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PROPERTIES OF THE NORMAL DISTRIBUTION

» Let X ~ N(u, A).
TH Linear combinations: Y = BX + b, where X is n x 1 and B is

m % n. Then
Y ~ N(Byu +b, BAB')

COR The components of X are all normal (B = (0,...1,0,..., 0))

Yi ~ N(pi, Aii)

COR Let X = ( ;1 ) where X is n; X 1 and Xz is ny X 1 (ny + np = n).
2
Then
X1~ N(p1, A1)

where 11 are the np first elements of p and A is the n; x ny
submatrix of A.
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MARGINAL NORMAL MAY NOT BE JOINTLY NORMAL

» We know that X ~ N(u, A) implies that all marginals are normal.

» The converse does not hold. Normal marginals does not imply that
the joint distribution is normal.

Marginals are normal, joint is normal Marginals are normal, joint is not normal
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CONDITIONAL DISTRIBUTIONS FROM N(u, A)
> Let ( ); ) ~ No(p, A\), where

2
,4:<Vx) and A:( £ PUxfy)
Hy pox0y 0Oy,

0,
Y’X =x~N |:}ly+P0_y(X_,ux)r 0'}%(1 _P2>:|

» Then

» The regression function E(Y|X) is linear and Var(Y|X) =residual
variance.

TH Let X = ( ;1 ) and partition y and A accordingly as
2

_( m dA = < VASERVANT ) Th
i < " > an Aoy Mgy ) Then
Xi|Xo =x2 ~ N [p1 + A1AS3 (xa — p2), A1 — A12A2_21A21}
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INDEPENDENCE AND NORMALITY

> Correlation measures linear association (dependence).

» In general: Uncorrelated - Independence.

» In the normal distribution: Uncorrelated <+ Independence.

» Remember that: X and Y are jointly normal — the regression
function is linear —the linear predictor is optimal.

> X1, Xn % N(pt,02), then X, = 17| X; and

2 — ﬁ Y7 1 (X; — X,)? are independent.
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PRINCIPAL COMPONENTS

> Let CAC' = D = diag(Aq, ..., An).
TH Let X ~ N(u, A) and set Y = C'X, then

Y ~ N(C'y, D)
so that the components of Y are independent and Var(Y;) = A;.
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