PROBABILITY THEORY LECTURE 5

Per Sidén

Division of Statistics Dept. of Computer and Information Science Linköping University

PER SIDÉN (STATISTICS, LIU)

PROBABILITY THEORY - L5

1 / 13

OVERVIEW LECTURE 5

- Linear algebra recap
- Multivariate normal distribution

LINEAR ALGEBRA RECAP

• Eigen-decomposition of an $n \times n$ symmetric matrix A

C'AC = D

where $\mathbf{D} = Diag(\lambda_1, ..., \lambda_n)$ and \mathbf{C} is an orthogonal matrix.

Orthogonal matrix:

- ► C′C = I
- $C^{-1} = C'$
- det $\mathbf{C} = \pm 1$
- ► The columns of C = (c₁, ..., c_n) are the eigenvectors, and λ_i is the *i*th largest eigenvalue.
- det $\mathbf{A} = \lambda_1 \cdot \lambda_2 \cdots \lambda_n$.

QUADRATIC FORMS AND POSITIVE-DEFINITENESS

Quadratic form

$$Q(\mathbf{x}) = \mathbf{x}' \mathbf{A} \mathbf{x}$$

- $Q(\mathbf{x})$ is positive-definite if $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- $Q(\mathbf{x})$ is positive-semidefinite if $Q(\mathbf{x}) \ge 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- $Q(\mathbf{x})$ is **positive-definite** iff all eigenvalues of **A** are positive.
- Q(x) is positive-semidefinite iff all eigenvalues of A are non-negative.

MATRIX SQUARE ROOT

If D = diag(λ₁, ..., λ_n) is diagonal, then D̃ = diag(√λ₁, ..., √λ_n) is the square root of D:

$$\tilde{D}\tilde{D}=D$$

and we can write $D^{1/2} = \tilde{D}$.

The square root of a positive definite matrix A

$$A = CDC'$$

can be defined as

$$A^{1/2} = C \tilde{D} C'$$

where $\tilde{D} == diag(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$.

Check:

$$A^{1/2}A^{1/2} = C\tilde{D}C'C\tilde{D}C' = C\tilde{D}\tilde{D}C' = CDC' = A$$

We also have

$$(A^{-1})^{1/2} = (A^{1/2})^{-1}$$

which is denoted by $A^{-1/2}$ Per Sidén (Statistics, Liu) Properties of the statistics of the statis

COVARIANCE MATRIX

► Mean vector

$$\mu = \mathbf{E}\mathbf{X} = \begin{pmatrix} \mathbf{E}X_1 \\ \vdots \\ \mathbf{E}X_n \end{pmatrix}$$

Covariance matrix

$$\Lambda = \operatorname{Cov}(\mathbf{X}) = E(\mathbf{X} - \mu)(\mathbf{X} - \mu)'$$

 $TH\$ Every covariance matrix is positive semidefinite.

• det
$$\Lambda \geq 0$$
.

PER SIDÉN (STATISTICS, LIU)

LINEAR TRANSFORMATIONS

▶ Recall that if Y = aX + b, where $E(X) = \mu$ and $Var(X) = \sigma^2$ then

$$E(Y) = a\mu + b$$

 $Var(Y) = a^2 \sigma^2$

TH Multivariate linear transformation

Let $\mathbf{Y} = \mathbf{B}\mathbf{X} + \mathbf{b}$, where \mathbf{X} is $n \times 1$ and \mathbf{B} is $m \times n$. Assume $E\mathbf{X} = \mu$ and $Cov(\mathbf{X}) = \Lambda$. Then,

$$E(\mathbf{Y}) = \mathbf{B} \mu + \mathbf{b}$$

 $\mathcal{Cov}(\mathbf{Y}) = \mathbf{B} \Lambda \mathbf{B}'$

TH Let
$$\mathbf{X} = (X_1, ..., X_n)'$$
 where $X_1, ..., X_n \stackrel{iid}{\sim} N(0, 1)$. Then
 $\mathbf{Y} = \mu + \Lambda^{1/2} \mathbf{X} \sim N(\mu, \Lambda)$

PER SIDÉN (STATISTICS, LIU)

MULTIVARIATE NORMAL DISTRIBUTION

- Multivariate normal $\mathbf{X} \sim N(\mu, \Lambda)$, where \mathbf{X} is a $n \times 1$ random vector.
- Three equivalent definitions:
 - ▶ X is (multivariate) normal iff a'X is (univariate) normal for all a.
 - ▶ X is multivariate normal iff its characteristic function is

$$\varphi_{\mathbf{X}}(\mathbf{t}) = E e^{i\mathbf{t}'\mathbf{X}} = \exp\left(i\mathbf{t}'\mu - \frac{1}{2}\mathbf{t}'\Lambda\mathbf{t}\right)$$

X is multivariate normal iff its density function is of the form

$$f_{\mathbf{X}}(\mathbf{x}) = \left(\frac{1}{2\pi}\right)^{n/2} \frac{1}{\sqrt{\det \Lambda}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)'\Lambda^{-1}(\mathbf{x}-\mu)\right\}$$

• Bivariate normal (n = 2)

$$\Lambda = \left(\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array}\right)$$

where $-1 \le \rho \le 1$ is the correlation coefficient.

PER SIDÉN (STATISTICS, LIU)

PROPERTIES OF THE NORMAL DISTRIBUTION

• Let $\mathbf{X} \sim N(\mu, \Lambda)$.

TH Linear combinations: $\mathbf{Y} = \mathbf{B}\mathbf{X} + \mathbf{b}$, where \mathbf{X} is $n \times 1$ and \mathbf{B} is $m \times n$. Then

$$\mathbf{Y} \sim N(\mathbf{B}\mu + \mathbf{b}, \mathbf{B}\Lambda\mathbf{B}')$$

COR The components of **X** are all normal $(\mathbf{B} = (0, \dots, 1, 0, \dots, 0))$

 $Y_i \sim N(\mu_i, \Lambda_{ii})$

COR Let
$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
 where X_1 is $n_1 \times 1$ and X_2 is $n_2 \times 1$ $(n_1 + n_2 = n)$.
Then

$$\mathbf{X}_1 \sim \mathcal{N}(\mu_1, \Lambda_1)$$

where μ_1 are the n_1 first elements of μ and Λ_1 is the $n_1 \times n_1$ submatrix of Λ .

PER SIDÉN (STATISTICS, LIU)

MARGINAL NORMAL MAY NOT BE JOINTLY NORMAL

- We know that $\mathbf{X} \sim N(\mu, \Lambda)$ implies that all marginals are normal.
- The converse does not hold. Normal marginals does not imply that the joint distribution is normal.

PER SIDÉN (STATISTICS, LIU)

CONDITIONAL DISTRIBUTIONS FROM $N(\mu, \Lambda)$ • Let $\begin{pmatrix} X \\ Y \end{pmatrix} \sim N_2(\mu, \Lambda)$, where $\mu = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}$ and $\Lambda = \begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix}$ • Then $Y|X = x \sim N \left[\mu_y + \rho \frac{\sigma_y}{\sigma_x} (x - \mu_x), \sigma_y^2 (1 - \rho^2) \right]$

► The regression function E(Y|X) is linear and Var(Y|X) = residual variance.

TH Let $\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix}$ and partition μ and Λ accordingly as $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ and $\Lambda = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix}$. Then $\mathbf{X}_1 | \mathbf{X}_2 = \mathbf{x}_2 \sim N \left[\mu_1 + \Lambda_{12} \Lambda_{22}^{-1} (x_2 - \mu_2), \Lambda_{11} - \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} \right]$

PER SIDÉN (STATISTICS, LIU)

INDEPENDENCE AND NORMALITY

- Correlation measures linear association (dependence).
- ► In general: Uncorrelated → Independence.
- In the normal distribution: Uncorrelated \leftrightarrow Independence.
- ▶ Remember that: X and Y are jointly normal → the regression function is linear →the linear predictor is optimal.

►
$$X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$
, then $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ are independent.

PRINCIPAL COMPONENTS

• Let $C\Lambda C' = D = diag(\lambda_1, ..., \lambda_n)$. TH Let $X \sim N(\mu, \Lambda)$ and set Y = C'X, then

 $\mathbf{Y} \sim \textit{N}(\mathbf{C}'\boldsymbol{\mu},\mathbf{D})$

so that the components of **Y** are independent and $Var(Y_i) = \lambda_i$.

PER SIDÉN (STATISTICS, LIU)