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OVERVIEW LECTURE 5

I Linear algebra recap
I Multivariate normal distribution
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LINEAR ALGEBRA RECAP

I Eigen-decomposition of an n× n symmetric matrix A

C’AC = D

where D = Diag(λ1, ....,λn) and C is an orthogonal matrix.
I Orthogonal matrix:

I C′C = I
I C−1 = C′
I detC = ±1

I The columns of C = (c1, ..., cn) are the eigenvectors, and λi is the ith
largest eigenvalue.

I detA = λ1 · λ2 · · · λn.
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QUADRATIC FORMS AND POSITIVE-DEFINITENESS

I Quadratic form
Q(x) = x′Ax

I Q(x) is positive-definite if Q(x) > 0 for all x 6= 0.
I Q(x) is positive-semidefinite if Q(x) ≥ 0 for all x 6= 0.
I Q(x) is positive-definite iff all eigenvalues of A are positive.
I Q(x) is positive-semidefinite iff all eigenvalues of A are

non-negative.
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MATRIX SQUARE ROOT
I If D = diag(λ1, ...,λn) is diagonal, then D̃ = diag(

√
λ1, ...,

√
λn) is

the square root of D:
D̃D̃ = D

and we can write D1/2 = D̃.
I The square root of a positive definite matrix A

A = CDC ′

can be defined as
A1/2 = CD̃C ′

where D̃ == diag(
√

λ1, ...,
√

λn).
I Check:

A1/2A1/2 = CD̃C ′CD̃C ′ = CD̃D̃C ′ = CDC ′ = A

I We also have (
A−1)1/2

=
(
A1/2

)−1

which is denoted by A−1/2.
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COVARIANCE MATRIX

I Mean vector

µ = EX =

 EX1
...

EXn


I Covariance matrix

Λ = Cov(X) = E (X− µ)(X− µ)′

TH Every covariance matrix is positive semidefinite.
I detΛ ≥ 0.
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LINEAR TRANSFORMATIONS
I Recall that if Y = aX + b, where E (X ) = µ and Var(X ) = σ2 then

E (Y ) = aµ + b

Var(Y ) = a2σ2

TH Multivariate linear transformation
Let Y = BX+ b, where X is n× 1 and B is m× n.
Assume EX = µ and Cov(X) = Λ. Then,

E (Y) = Bµ + b
Cov(Y) = BΛB′

TH Let X = (X1, ...,Xn)′ where X1, ...,Xn
iid∼ N(0, 1). Then

Y = µ + Λ1/2X ∼ N(µ,Λ)
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MULTIVARIATE NORMAL DISTRIBUTION
I Multivariate normal X ∼ N(µ,Λ), where X is a n× 1 random vector.
I Three equivalent definitions:

I X is (multivariate) normal iff a′X is (univariate) normal for all a.
I X is multivariate normal iff its characteristic function is

ϕX(t) = Ee it
′X = exp

(
it′µ− 1

2
t′Λt

)
I X is multivariate normal iff its density function is of the form

fX(x) =
(

1
2π

)n/2 1√
detΛ

exp
{
−1
2
(x− µ)′Λ−1(x− µ)

}

I Bivariate normal (n = 2)

Λ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
where −1 ≤ ρ ≤ 1 is the correlation coefficient.
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PROPERTIES OF THE NORMAL DISTRIBUTION

I Let X ∼ N(µ,Λ).
TH Linear combinations: Y = BX+ b, where X is n× 1 and B is

m× n. Then
Y ∼ N(Bµ + b,BΛB′)

COR The components of X are all normal (B = (0, . . . 1, 0, . . . , 0))

Yi ∼ N(µi ,Λii )

COR Let X =

(
X1
X2

)
where X1 is n1 × 1 and X2 is n2 × 1 (n1 + n2 = n).

Then
X1 ∼ N(µ1,Λ1)

where µ1 are the n1 first elements of µ and Λ1 is the n1 × n1
submatrix of Λ.
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MARGINAL NORMAL MAY NOT BE JOINTLY NORMAL

I We know that X ∼ N(µ,Λ) implies that all marginals are normal.
I The converse does not hold. Normal marginals does not imply that

the joint distribution is normal.
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CONDITIONAL DISTRIBUTIONS FROM N(µ,Λ)

I Let
(

X
Y

)
∼ N2(µ,Λ), where

µ =

(
µx

µy

)
and Λ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
I Then

Y |X = x ∼ N

[
µy + ρ

σy
σx

(x − µx ), σ2
y (1− ρ2)

]
I The regression function E (Y |X ) is linear and Var(Y |X ) =residual

variance.

TH Let X =

(
X1
X2

)
and partition µ and Λ accordingly as

µ =

(
µ1
µ2

)
and Λ =

(
Λ11 Λ12
Λ21 Λ22

)
. Then

X1|X2 = x2 ∼ N
[
µ1 + Λ12Λ−1

22 (x2 − µ2), Λ11 −Λ12Λ−1
22 Λ21

]
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INDEPENDENCE AND NORMALITY

I Correlation measures linear association (dependence).
I In general: Uncorrelated 9 Independence.
I In the normal distribution: Uncorrelated↔ Independence.
I Remember that: X and Y are jointly normal → the regression

function is linear →the linear predictor is optimal.

I X1, ...,Xn
iid∼ N(µ, σ2), then X̄n = 1

n ∑n
i=1 Xi and

s2 = 1
n−1 ∑n

i=1(Xi − X̄n)2 are independent.
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PRINCIPAL COMPONENTS
I Let CΛC′ = D = diag(λ1, ...,λn).

TH Let X ∼ N(µ,Λ) and set Y = C′X, then

Y ∼ N(C′µ,D)

so that the components of Y are independent and Var(Yi ) = λi .

PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L5 13 / 13


