SEMINAR EXERCISES IN PROBABILITY THEORY 732A63

JOLANTA PIELASZKIEWICZ (EXERCISES BY PER SIDÉN) 5 OCTOBER 2020

5. Multivariate Normal Distribution

Exercise 5.1 (5.4 in Gut's book)

The random vector (X, Y)' has a two-dimensional normal distribution with Var(X) = Var(Y). Show that X + Y and X - Y are independent random variables.

Exercise 5.2 (5.12 in Gut's book)

Let X_1 and X_2 be independent, N(0, 1)-distributed random variables. Set $Y_1 = X_1 - 3X_2 + 2$ and $Y_2 = 2X_1 - X_2 - 1$. Determine the distribution of

(a) \mathbf{Y} , and

(b) $Y_1|Y_2 = y.$

Exercise 5.3 (5.18 in Gut's book)

The random vector \mathbf{X} has a three-dimensional normal distribution with expectation $\mathbf{0}$ and covariance matrix $\mathbf{\Lambda}$ given by

$$\mathbf{\Lambda} = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 4 & 0 \\ -1 & 0 & 7 \end{array} \right).$$

Find the distribution of X_3 given that $X_1 = 1$.

Exercise 5.4 (5.20 in Gut's book)

The random vector \mathbf{X} has a three-dimensional normal distribution with mean vector $\boldsymbol{\mu} = \mathbf{0}$ and covariance matrix

$$\mathbf{\Lambda} = \left(\begin{array}{rrr} 3 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 0 & 1 \end{array} \right).$$

Find the distribution of $X_1 + X_3$ given that

(a) $X_2 = 0,$

(b) $X_2 = 2.$

Exercise 5.5* (5.33 in Gut's book)

Let X and Y be random variables, such that

$$Y|X = x \sim N(x, \tau^2)$$
 with $X \sim N(\mu, \sigma^2)$.

- (a) Compute E(Y), Var(Y) and Cov(X, Y).
- (b) Determine the distribution of the vector (X, Y)'.
- (c) Determine the (posterior) distribution of X|Y = y.

Exercise 5.6* (5.34 in Gut's book)

Let X and Y be jointly normal with means 0, variances 1, and correlation coefficient ρ . Compute the moment generating function of $X \cdot Y$ for

- (a) $\rho = 0$, and
- (b) general ρ .