SEMINAR EXERCISES IN PROBABILITY THEORY 732A63

JOLANTA PIELASZKIEWICZ (EXERCISES BY PER SIDÉN) 28 SEPTEMBER 2020

4. Order Statistics

Exercise 4.1 (4.1 in Gut's book)

Suppose that X, Y and Z have a joint density function given by

$$f(x, y, z) = \begin{cases} e^{-(x+y+z)} &, x, y, z > 0\\ 0 &, \text{ otherwise.} \end{cases}$$

Compute P(X < Y < Z) and P(X = Y < Z).

Exercise 4.2 (4.5 in Gut's book)

Let X_1, X_2, \ldots, X_n be independent, continuous random variables with common distribution function F(x), and consider the order statistic $(X_{(1)}, X_{(2)}, \ldots, X_{(n)})$. Compute $E(F(X_{(n)}) - F(X_{(1)}))$.

Exercise 4.3 (4.6 in Gut's book)

Let X_1, X_2, X_3 and X_4 be independent, U(0, 1)-distributed random variables. Compute

(a)
$$P(X_{(3)} + X_{(4)} \le 1),$$

(b) $P(X_3 + X_4 \le 1).$

Exercise 4.4 (4.24 in Gut's book)

Let X_1, X_2, \ldots, X_n be independent, Exp(a)-distributed random variables. Determine the distribution of $\sum_{k=1}^n X_{(k)}$.

Exercise 4.5* (4.16 in Gut's book)

Let X_1 and X_2 be independent, Exp(a)-distributed random variables.

- (a) Show that $X_{(1)}$ and $X_{(2)} X_{(1)}$ are independent, and determine their distributions.
- (b) Compute $E(X_{(2)}|X_{(1)} = y)$ and $E(X_{(1)}|X_{(2)} = x)$.

Exercise 4.6* (4.18 in Gut's book)

Suppose that $X \sim U(0,1)$. Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order variables corresponding to a sample of *n* independent observations of *X*, and set

$$V_i = \frac{X_{(i)}}{X_{(i+1)}}, i = 1, 2, \cdots, n-1, \text{ and } V_n = X_{(n)}.$$

Show that

(a)
$$V_1, V_2, \ldots, V_n$$
 are independent,

(b) $V_i^i \sim U(0,1) \text{ for } i = 1, 2, \dots, n.$