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Spark Framework
> Recall from the previous lecture that MapReduce can emulate any
distributed computation, since this can be divided into a sequence of

MapReduce calls.

Figure 10. Emulating an arbitrary distributed computation with MapReduce.
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> This is a problem for iterative machine learning algorithms. Even worse:
Each iteration (i.e., MapReduce call) loads the data anew from disk.
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Each iteration (i.e., MapReduce call) loads the data anew from disk.

> Apache Spark is a framework to process large amounts of data by
parallelizing computations across a cluster of nodes.

> It builds on MapReduce's ability to emulate any distributed computation
but it makes it more efficiently by emulating in-memory data sharing
across MapReduce calls.
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> However, the emulation may be inefficient since the message exchange
relies on external storage, e.g. disk.

> This is a problem for iterative machine learning algorithms. Even worse:
Each iteration (i.e., MapReduce call) loads the data anew from disk.

> Apache Spark is a framework to process large amounts of data by
parallelizing computations across a cluster of nodes.

> It builds on MapReduce's ability to emulate any distributed computation
but it makes it more efficiently by emulating in-memory data sharing
across MapReduce calls.

> It includes MLlIib, a library for machine learning that uses linear algebra
libraries on each node.
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> Data sharing is achieved via resilient distributed datasets (RDDs).

> RDD is a read-only, partitioned collection of records that can only be
defined through transformations applied to external storage or to other
RDDs.

map(f:T=1U) : RDD[T]= RDD[U]

filter(f :T =>Bool) : RDD|T] = RDD[T]

flatMap(f - T= Seq[U]) : RDD|T] = RDD[U]
sample(fraction : Float) : RDD[T] = RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K. V)] = RDD[(K, Seq[V])]
reduceByKey(f: (V.V)=V) : RDDI(K.Vi]= RDD[(K. V)]
Transformations union() : (RDD[T],RDD[T]) = RDDIT]
join{) : {RDD[(K.V)].RDD[(K, W)]} = RDD[(K. (V. W))]
cogroup() : (RDD[(K. V)]. RDD[(K, W)]) = RDD[(K. (Seq[ V1. Seq[W])}]
crossProduct()  :  (RDD[T],RDD[U]) = RDD[(T, U}]

mapValues(f:V = W) : RDD|(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(e: Comparator[K]) @ RDD[(K. V)] = RDD[(K. V)]
partitionBy(p : Pantitioner[K]) : RDDI(K. V)] = RDD[(K, V)]
couni() : RDD[T] = Long

collect() RDDI[T] = Seq[T]
Actions reduce(f : (T,T) = T) RDD[T] =T
Tookup(k :K) : RDD(K, V)] = Seq[V] {On hashirange partitioned RDDs)
save(path - String) Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T
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map{f:T=U)
Sfilter(f : T == Boal)
AatMap(f : T = Seq[U])
sample(fraction : Float)

RDD[T] = RDD[U]
RDD{T] = RDD[T]
RDD[T] = RDD[U]
RDD[T] = RDD[T] (Deterministic sampling)

loerkup(k 2 K)
xal'efpulh - String)

groupByKey() RDD{(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f : (V.V) = V) RDD{(K, V)] = RDD[(K. V]
Transformations union() (RDD[T].RDD[T]) = RDD(T]
Jjoin() (RDD[(K. V)], RDD[(K. W)]) = RDD[(K. (V. W)}]
cogroup() (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (Seq[V], SeqIWI)]
crossProduct() (RDD[T],RDD[U]) = RDD[(T, U)]
mapValues(f : V = W) RDDI[(K, V)] = RDDI(K. W)] (Preserves partitioning)
sort(e : Comparator[K]) RDD[(K. V)] = RDD[(K. V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
couni) RDD[T] = Long
c'oHecl(] RDD[T] = Seq[T]
Actions reduce(f : (T.T)=T) RDD[T] =T

RDD[(KE, V)] = Seqg[V] {On hashirange partitioned RDDs)
Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denoies a sequence of elements of type T.

> Note that some transformations and actions do not require RDDs of (key,
value) pairs, i.e. so-called pair RDDs.

> Note also that the transformations and actions for non-pair RDDs work on
pair RDDs too.
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> Data sharing is achieved via resilient distributed datasets (RDDs).
> RDD is a read-only, partitioned collection of records that can only be

defined through transformations applied to external storage or to other
RDDs.

map(f:T=1U) : RDD[T] = RDD[U]

Jfilter(f :T=Bool) : RDD|T] = RDD[T]

flatMap(f : T = Seq[U]) : RDD|T] = RDD[U]
sample|fraction : Float) : RDD[T] = RDD[T] (Deterministic sampling)

groupByKey() : RDDI(K, V)] = RDD[(K, Seq[V]}]
reduceByKey(f : (V.V)=V) : RDD|(K.V)] = RDD[(K. V)]
Transformations union{) : (RDD[T].RDD[T]) = RDD[T]
join{) : {RDD[(K. V). RDD[(K, W}]} = RDD[(K. (V. W})]
cogroup{) : (RDD[(K. V)]. RDD[(K, W)]) = RDD[(K. (Seq[V]. Seq[W]))]
crossProduct()  :  (RDD[T],RDD[U]) = RDD[(T, U}]

mapValues(f 1V = W) : RDDI(K. V)] = RDD[(K. W)] (Preserves partitioning)

sort(c: Comparator[K]) : RDD[(K, V)] = RDD[(K, V)]
partitionBy(p : Paniitioner[K]) : RDDJ(K, V)] = RDD[(K, V)]

count) : RDDIT] = Long
collect() RDDIT] = Seq[T]
Actions reduce(f - (T,T) = T) RDD[T] =T
fookup(k :K) : RDD[(K. V)] = Seg[V] (On hash/range partitioned RDDs)

save(path : String) Outputs RDD 10 a storage system. ¢.g.. HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.
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> Data sharing is achieved via resilient distributed datasets (RDDs).
> RDD is a read-only, partitioned collection of records that can only be
defined through transformations applied to external storage or to other

RDDs.
map(f:T=1U) : RDD[T] = RDD[U]
Jfilter(f :T=Bool) : RDD|T] = RDD[T]
flatMap(f : T = Seq[U]) : RDD|T] = RDD[U]
sample|fraction : Float) : RDD[T] = RDD[T] (Deterministic sampling)
groupByKey() @ RDDI(K. V)] = RDDI(K. Seq[V])]
reduceByKey(f : (V,V)=V) : RDDI(K. V)] = RDD[(K. V)]
Transformations union{) : (RDD[T].RDD[T]) = RDD[T]
join{) : (RDD[(K, V). RDD[(K, W)]} = RDD[(K. (V, W})]
cogroup() :  (RDD[(K, V). RDD[(K, W)]} = RDD[(K. (Seq[V]. Seq[W))]
crossProduct() © (RDD[T],RDDIU]) = RDD[(T. )]

mapValues(f:V = W) : RDDI(K, V)] = RDD|(K, W)] (Preserves partitioning)
sort(c: Comparator[K]) :  RDD|(K. V)] = RDD[(K. V)]
partitionBy{p : Partitioner[K]) :  RDDJ(K. V)] = RDD[(K. V)]

count) : RDDIT] = Long
collect() RDDIT] = Seq[T]
Actions reduce(f - (T,T) = T) RDD[T] =T
fookup(k :K) : RDD[(K. V)] = Seg[V] (On hash/range partitioned RDDs)
save(path : String)  : Outputs RDD 1o a storage sysiem, e.g.. HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

> The sequence of transformations that defines a RDD is called its lineage.
It is used to rebuild it in case of failure, i.e. there is no data replication
unlike in MapReduce.
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» Data sharing is achieved via resilient distributed datasets (RDDs).

> RDD is a read-only, partitioned collection of records that can only be
defined through transformations applied to external storage or to other

RDDs.

> The sequence of transformations that defines a RDD is called its lineage.
It is used to rebuild it in case of failure, i.e. there is no data replication

map(f:T=1U) :
Jilter(f :T = Bool) :

fleMap(f : T = Seq[U])

sample(fraction : Float)

RDD[T] = RDD[U]
RDD[T] = RDD[T]
RDD[T] = RDD[U]
RDD[T] = RDD[T] (Deterministic sampling)

groupByKey() : RDDI(K. V)] = RDD[(K. Seq[V])]
reduceByKey(f : (V.V)= V) : RDD|(K. V)] = RDD[(K, V)]
Transformations union{) : (RDD[T].RDD[T]) = RDDIT]
join{) {RDD[(K, V)], RDD[{K, W)]) = RDD[(K, (V, W))]
cogroup{) :  (RDD[(K, V)] RDD[(K, W)]) = RDD[(K, (Seq[ V1. Seq[W]))]
crossProduet{) :  (RDD[T],RDD[U]) = RDD(T. U}]
mapValues(f: V=>W) : RDD|(K. V)] = RDD[(K. W)] (Preserves partitioning)
sort(c: Comparator[K]) : RDD[(K, V)] = RDD[(K, V)]
partitionBy(p : Pantitioner[K]) RDDJ(K, V)] = RDD[(K, V)]
count) : RDDIT] = Long
collect() : RDDIT] = Seq(T]
Actions reduce(f: (T, T)=T) : RDD[T]=T
fookup(k :K) : RDD[(K. V)] = Seg[V] (On hash/range partitioned RDDs)
save(path : String)  :© Outputs RDD 1o a storage system, e.g.. HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

unlike in MapReduce.

» RDDs are created only when an action is executed. Why ? E.g., [read +

filter] more memory efficient than [read, filter].
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» Data sharing is achieved via resilient distributed datasets (RDDs).

> RDD is a read-only, partitioned collection of records that can only be
defined through transformations applied to external storage or to other

RDDs.

Transformations

map(f:T=U) :
: RDD[T] = RDD[T]

filter(f : T = Bool)
fleMap(f : T = Seq[U])

sample|fraction : Float)
: RDD[(K, V)] = RDD[(K. Seq[V])]
reduceByKey(f : (V.V) = V) :
: (RDD[T],RDD[T]) = RDD[T]

groupByKey()

union()
join)
cogroup)
crossProduct()

partitionBy(p : Pantitioner[K])

RDD[T] = RDD[U]

RDD[T] = RDD[U]
RDD[T] = RDD[T] (Deterministic sampling)

RDD(K. Vi] = RDD[(K. V)]

(RDD[(K, V}]. RDD[(K. W)]} = RDD[(K, (V. W))]

: (RDD[(K. V)].RDD[(K. W)]) = RDD[(K, (Seq[V]. Seq[W])}]
: (RDD[T].RDD[U]) = RDD[(T. U}]

mapValues(f:V = W) :
sort(c: Comparator[K])

RDD[(K. V)] = RDD[(K, W)] (Preserves partitioning)
RDD[(K. V)] = RDD[(K. V)]
RDD[(K. V)] = RDD[(K. V)]

Actions

count()
collect()

reduce(f - (T,T) = T)
Tookup(k - K)
save(path : String)

 RDD[T] = Long

: RDDIT] = Seq[T]

: RDD[T]=T

: RDDI[(K, V)] => Seq[V] (On hash/range partitioned RDDs)
. Qutputs RDD 1o a storage system, e.g.. HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

> The sequence of transformations that defines a RDD is called its lineage.
It is used to rebuild it in case of failure, i.e. there is no data replication

unlike in MapReduce.

» RDDs are created only when an action is executed. Why ? E.g., [read +

filter] more memory efficient than [read, filter].

> Actually, RDDs are created each time an action is executed, unless the

user persist them in memory and/or disk.




Spark Framework

>

4

Data sharing is achieved via resilient distributed datasets (RDDs).
RDD is a read-only, partitioned collection of records that can only be
defined through transformations applied to external storage or to other
RDDs.

map(f:T=1U) : RDD[T] = RDD[U]

Jfilter(f :T=Bool) : RDD|T] = RDD[T]

flatMap(f : T = Seq[U]) : RDD|T] = RDD[U]
sample|fraction : Float) : RDD[T] = RDD[T] (Deterministic sampling)

groupByKey() @ RDDI(K. V)] = RDDI(K. Seq[V])]
reduceByKey(f : (V,V)=V) : RDDI(K. V)] = RDD[(K. V)]
Transformations union{) : (RDD[T].RDD[T]) = RDD[T]
join{) (RDD[(K, V)], RDD[(K, W)]) = RDD[(K. (V, W))]
cogroup() :  (RDD[(K, V). RDD[(K, W)]} = RDD[(K. (Seq[V]. Seq[W))]
crossProduct() © (RDD[T],RDDIU]) = RDD[(T. )]

mapValues(f:V = W) : RDDI(K. V)] = RDD[(K. W)] (Preserves partitioning)
sort(c: Comparator[K]) :  RDD|(K. V)] = RDD[(K. V)]
partitionBy{p : Partitioner[K]) :  RDDJ(K. V)] = RDD[(K. V)]

count) : RDDIT] = Long
collect() : RDDIT] = Seq(T]
Actions reduce(f: (T, T)=T) : RDD[T]=T
fookup(k :K) : RDD[(K. V)] = Seg[V] (On hash/range partitioned RDDs)
save(path : String)  :© Outputs RDD 1o a storage system, e.g.. HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

The sequence of transformations that defines a RDD is called its lineage.
It is used to rebuild it in case of failure, i.e. there is no data replication
unlike in MapReduce.

RDDs are created only when an action is executed. Why ? E.g., [read +
filter] more memory efficient than [read, filter].

Actually, RDDs are created each time an action is executed, unless the
user persist them in memory and/or disk.

Actions write to disk or return values to the master/driver.
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» Example in Scala to find error lines in a log file:
1.lines=spark.textFile("hdfs://...")
2.errors=lines.filter(_.startsWith("ERROR"))
3.errors.persist() //Store in memory
4.errors.count() //Materialize
5.errors.filter(_.contains ("HDFS")) .map(_.split(’\t’)(3)).collect()
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> Note that:

> Line 3 indicates to store the error lines in memory. Note persist() =
persist (MEMORY_ONLY) = cache() # persist(MEMORY_AND DISK) #...
> However, this does not happen until line 4, when the RDDs are computed.
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» Example in Scala to find error lines in a log file:
1.lines=spark.textFile("hdfs://...")
2.errors=lines.filter(_.startsWith("ERROR"))
3.errors.persist() //Store in memory
4.errors.count() //Materialize
5.errors.filter(_.contains ("HDFS")) .map(_.split(’\t’)(3)).collect()

> Note that:

> Line 3 indicates to store the error lines in memory. Note persist() =
persist (MEMORY_ONLY) = cache() # persist(MEMORY_AND DISK) #...

> However, this does not happen until line 4, when the RDDs are computed.

> The rest of the RDDs (e.g., 1lines) are discarded after being used.

> Line 5 does not access disk because the data are in memory.
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» Example in Scala to find error lines in a log file:

1.lines=spark.textFile("hdfs://...")
2.errors=lines.filter(_.startsWith("ERROR"))

3.errors.persist() //Store in memory

4.errors.count() //Materialize

5.errors.filter(_.contains ("HDFS")) .map(_.split(’\t’)(3)).collect()

> Note that:

> Line 3 indicates to store the error lines in memory. Note persist() =

persist (MEMORY_ONLY) = cache() # persist(MEMORY_AND DISK) #...
However, this does not happen until line 4, when the RDDs are computed.
The rest of the RDDs (e.g., 1lines) are discarded after being used.

Line 5 does not access disk because the data are in memory.

If any partition of the in-memory data has gone lost, it can be rebuilt with
the help of the lineage graph.

vVVvYyVvey

filter{_startsWith("ERROR’))

errars

filter{_contains(*HDFS")))

map(_.split(\t)(3))

time fields




Machine Learning with Spark: K-Means
> Consider data clustering (a.k.a. unsupervised learning) via the K-means

algorithm.

Assign each point to a cluster (a.k.a. subpopulation) at random
Compute the cluster centroids as the averages of the points assigned to each cluster

Assign each point to the cluster with the closest centroid

1

2

3 Repeat until the centroids do not change

4

5 Update the cluster centroids as the averages of the points assigned to each cluster

2l (@) .
. 8

W

X




Machine Learning with Spark: K-Means

» K-Means in Python (data has been persisted when read from file):

def closestPFoint(p, centers):
bestIndex = 0
clogest = float("+inf™)
for 1 in range(len{centers)):
tempDist = np.sum({(p - centers[i]) ** 2)
if tempDist < closest:
closest = tempDist
bestIndex = i
return bestIndex

kPoints = data.takeSample (False,
tempDist = 1.0

while tempDist > convergeDist:
closest = data.map(
lambda p: (closestPoint(p, kPoints), (p, 1)))
pointStats = closest.reduceByEey(
lambda pl_cl, p2_c2: (pl_cl[0] + p2_c2[0], pl_cl[l] + p2_c2[1]))
newPoints = pointStats.map(
lambda =t: (=t[0], =st[1]1[C] / =c[l]1[1])).collect()

tempDist = sum({np.sum{(kPoints[iK] - p) ** 2) for (iE, p) in newPoints)

for (iK, p) in newPoints:
kPFoints[iE] = p

print (" " + str(kPoints))



Machine Learning with Spark: Logistic Regression
» Consider a binary classification problem, i.e. t e {-1,+1}. Then,
p(x|t = +1)p(t = +1)
=o(s(x
p(xlt = +D)p(t = +1) + p(xft = ~Dyp(e = -1) ~ )

p(x|t=+1)p(t=+1)
p(x|t=—1)p(t=-1)"

p(t=+1|x) =

where s(x) = log and o(a) = is called logistic

1
X i X 1+exp(-a)
sigmoid function.
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» Consider a binary classification problem, i.e. t e {-1,+1}. Then,
p(x|t = +1)p( = +1)
=o(s(x
p(xlt = +D)p(t = +1) + p(x]t = -1y = 1) _ 7))

p(x|t=+1)p(t=+1)
p(x|t=—1)p(t=-1)"

p(t=+1|x) =

and o(a) = W}(—a) is called logistic

where s(x) = log
sigmoid function.

» We assume that p(x|t) is a member of the exponential family with equal
scale parameter (e.g. Gaussian with equal covariance matrix,
multinomial), which implies that s(x) = w'x. The model

y(x) = p(t = +1|x) = o(wx) is called logistic regression.



Machine Learning with Spark: Logistic Regression
» Consider a binary classification problem, i.e. t e {-1,+1}. Then,

_ _ p(x|t = +1)p(t = +1) ~
PUE =410 = e =+ Dyp(t = +1) + p(xlt = ~Dyp(e = —1) ~ 7))
where s(x) = log 2XE=H =) g 5(5) =

vhere 198 b(xjt=—D)p(t=—1)’
sigmoid function.

» We assume that p(x|t) is a member of the exponential family with equal
scale parameter (e.g. Gaussian with equal covariance matrix,
multinomial), which implies that s(x) = w'x. The model
y(x) = p(t = +1|x) = o(wx) is called logistic regression.

> Note that

1 . . .
Trow(=a) 'S called logistic

1
1+exp(-wTx)

p(t = -1[x) = 1 - p(t = +1]x) = 1~ o(s(x)) = o(=s(x)) =
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Machine Learning with Spark: Logistic Regression

> Logistic regression in Scala (note the use of persist, map and reduce):

val points = spark.textFile(...)
.map(parsePoint) .persist()

var w = // random initial vector
for (i <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(1+exp(=p.y*(w dot p.x)))=1)*p.y
}.reduce((a,b) == a+b)
W == gradient

}
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> Logistic regression in Scala (note the use of persist, map and reduce):

val points = spark.textFile(...)
.map(parsePoint) .persist()
var w = // random initial vector
for (i <- 1 to ITERATIONS) {
val gradient = points.map{ p =>
p.x * (1/(1+exp(=p.y*(w dot p.x)))=1)*p.y
}.reduce((a,b) == a+b)
W == gradient

}
> Logistic regression in Python (points was persisted when read from file):
# Initialize w to a random value

w = 2 % np.random.ranf(size=D) - 1
i 7t "+ str(w))

# Compute logistic regression gradient for a matrix of data points
def gradient(matrix, w):

¥ = matrix[:, 0] # point labels (first column of input file)

X = matrix[:, 1:] # point coordinates

4 For each point (x, V), compute gradient function, then sum these up
return ((1.0 / (1.0 + np.exp(-¥ % X.dot(w))) - 1.0) * ¥ % X.T).sum(l)

def add(x, ¥):
® 4= ¥
return x

for i in range(iterations):
print("Cn iteration %" & (i + 1))
w -= points.map(lambda m: gradient(m, w)).reduce (add)

print("Final w: " + str{w))



Machine Learning with Spark: MLIib

» Many machine learning methods are already implemented in MLlIib, i.e.
the user does not need to specify the transformations and actions.
> Logistic regression in Python:
1lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)
1lrModel = lr.fit(training)
» SVMs in Python:
model = SVMWithSGD.train(parsedData, iterations=100)
> NNs in Python:
layers = [4, 5, 4, 3]
trainer = MultilayerPerceptronClassifier(maxIter=100, layers=layers,
blockSize=128, seed=1234)
model = trainer.fit(train)
> MMs in Python:
gmm = GaussianMixture().setK(2)
model = gmm.fit(dataset)
» K-Means in Python:
kmeans = KMeans() .setK(2).setSeed(1)

model = kmeans.fit(dataset)



Machine Learning with Spark: Experiments
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Figure 7: Duration of the first and later iterations in Hadoop,
HadoopBinMem and Spark for logistic regression and k-means
using 100 GB of data on a 100-node cluster.
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Figure 8: Running times for iterations after the first in Hadoop,
HadoopBinMem, and Spark. The jobs all processed 100 GB.



Lab with Spark

> Implement a kernel model to predict the hourly temperatures for a date
and place in Sweden. To do so, you are provided with the files
stations.csv and temps.csv. These files contain information about
weather stations and temperature measurements for the stations at
different days and times. The data have been kindly provided by the
Swedish Meteorological and Hydrological Institute (SMHI) and processed
by Zlatan Dragisic.

> You are asked to provide a temperature forecast for a date and place in
Sweden. The forecast should consist of the predicted temperatures from 4
am to 24 pm in an interval of 2 hours. Use a kernel that is the sum of
three Gaussian kernels:

> The first to account for the distance from a station to the point of interest.

> The second to account for the distance between the day a temperature
measurement was made and the day of interest.

> The third to account for the distance between the hour of the day a
temperature measurement was made and the hour of interest.

> Repeat the exercise about multiplying instead of summing the three
kernels above.
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> Consider regressing an unidimensional continuous random variable Y on a
D-dimensional continuous random variable X.
> The best regression function under the squared error loss function is
y*(x) =Eylylx].
> Since x may not appear in the finite training set {(xn, y»)} available, then
we output a weighted average over all the training points. That is

Xn k(x_:n)}/n
2 k(%)

where k : R > R is a kernel function, which is usually non-negative and
monotone decreasing along rays starting from the origin. The parameter h
is called smoothing factor or width.

y(x) =
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FIGURE 10.3. Various kernels on R.

» Gaussian kernel: k(u) = exp(—||u||*) where ||-|| is the Euclidean norm.
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> Bear in mind that a join operation may trigger a shuffle operation, which

is time and memory consuming.
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> Instead, broadcast one of the RDDs to join, if small. This sends a copy of
the RDD to each node, and the join can be performed locally (or even
skipped).

rdd = rdd.collectAsMap()
bc = sc.broadcast (rdd)
bc.value[il



Summary

> Spark is a framework to process large datasets by parallelizing
computations.

> |t is particularly suitable for iterative distributed computations, since data
can be store in memory.

*> It includes MLIib, a machine learning library.



