
1/21

732A54/TDDE31 Big Data Analytics
Lecture 9: Machine Learning with Spark

Mohammad Seidpisheh
IDA, Linköping University, Sweden

2/21

Contents

▸ Spark Framework

▸ Machine Learning with Spark
▸ Logistic Regression
▸ K -Means
▸ MLlib

▸ Lab with Spark

▸ Summary

3/21

Spark Framework

▸ Recall from the previous lecture that MapReduce can emulate any
distributed computation, since this can be divided into a sequence of
MapReduce calls.

▸ However, the emulation may be inefficient since the message exchange
relies on external storage, e.g. disk.

▸ This is a problem for iterative machine learning algorithms. Even worse:
Each iteration (i.e., MapReduce call) loads the data anew from disk.

▸ Apache Spark is a framework to process large amounts of data by
parallelizing computations across a cluster of nodes.

4/21

Spark Framework

▸ Spark builds on MapReduce’s ability to emulate any distributed
computation but it makes it more efficient by emulating in-memory data
sharing across MapReduce calls.

▸ The main difference between Spark and MapReduce is that Spark
processes data in memory, whereas MapReduce processes data on disk.

▸ Apache Spark has a similar programming model to MapReduce but
extends it with a data-sharing abstraction called ”resilient distributed
datasets”, or RDDs.

▸ Data sharing is achieved via RDDs, a distributed memory abstraction that
allows programmers to perform in-memory computations, and keeping
data in memory improves the performance of algorithms

▸ Splitting the MapeReduce construct into simpler operations
▸ Transformations
▸ Actions

5/21

Spark Framework

▸ Table 2 lists the main RDD transformations and actions available in Spark.

▸ Transformations are lazy operations that define a new RDD, while actions
launch a computation to return a value to the program or write data to
external storage.

6/21

Spark Framework

▸ Resilient Distributed Datasets (RDDs) are the primary data structure in
Spark.

▸ RDD is a read-only, partitioned collection of data points that can only be
defined through transformations applied to external storage or to other
RDDs.

▸ The sequence of transformations that defines a RDD is called its lineage.
It is used to rebuild it in case of failure, i.e. there is no data replication
unlike in MapReduce.

▸ Actually, RDDs are created each time an action is executed, unless the
user persist them in memory and/or disk.

▸ RDDs are reliable and memory-efficient when it comes to parallel
processing.

▸ By storing and processing data in RDDs, Spark speeds up MapReduce
processes.

7/21

Spark Framework

▸ A large website is experiencing errors and an operator wants to search
terabytes of logs containing word ”HDFS” to find time of errors and the
cause.

▸ Using Spark, the operator can load just the error messages from the logs
into RAM across a set of nodes and query them interactively.

▸ Operator would first write the following Scala code:
1.lines=spark.textFile("hdfs://...")
2.errors=lines.filter(.startsWith("ERROR"))
3.errors.persist() //Store in memory
4.errors.count() //Materialize
5.errors.filter(.contains("HDFS")).map(.split(’/t’)(3)).collect()

▸ Note that:
▸ Line 1 defines an RDD backed by an HDFS file (as a collection of lines of

text)
▸ Line 2 derives a filtered RDD from it, keeping the lines started with an error
▸ Line 3 asks to store the error lines in memory. Note persist() =

persist(MEMORY ONLY) = cache() ≠ persist(MEMORY AND DISK) ≠ . . .
▸ However, this does not happen until line 4, when the RDDs are computed.
▸ The rest of the RDDs (e.g., lines) are discarded after being used. In fact,

First RDD, entire lines, is never cached.
▸ Line 5 does not access disk because the data are in memory and collect the

time of errors containing ”HDFS”.

8/21

Machine Learning with Spark: Logistic Regression

▸ Many machine learning algorithms are iterative in nature because they run
iterative optimization procedures, such as gradient descent, to optimize an
objective function, e.g. logistic regression.

▸ These algorithms can be sped up substantially if their working set fits into
RAM across a cluster.

▸ Furthermore, these algorithms often employ bulk operations like maps and
sums, making them easy to express with RDDs.

▸ Logistic regression is a common classification algorithm that searches for a
hyperplane that best separates two sets of data points e.g., spam and
non-spam emails.

9/21

Machine Learning with Spark: Logistic Regression

▸ Consider a binary classification problem, i.e. t ∈ {−1,+1}. Then,

p(t = +1∣xxx) =
p(xxx ∣t = +1)p(t = +1)

p(xxx ∣t = +1)p(t = +1) + p(xxx ∣t = −1)p(t = −1)
= σ(s(xxx))

▸ where s(xxx) = log p(xxx ∣t=+1)p(t=+1)
p(xxx ∣t=−1)p(t=−1)

,

▸ and σ(a) = 1
1+exp(−a)

is called logistic sigmoid function.

▸ We assume that p(xxx ∣t) is a member of the exponential family with equal
scale parameter (e.g. Gaussian with equal covariance matrix, multinomial),

▸ This assumption implies that s(xxx) = wwwTxxx .

▸ The model y(xxx) = p(t = +1∣xxx) = σ(wwwTxxx) is called logistic regression.

10/21

Machine Learning with Spark: Logistic Regression

▸ Note that

p(t = +1∣xxx) = σ(s(xxx)) =
1

1 + exp(−wwwTxxx)

p(t = −1∣xxx) = 1−p(t = +1∣xxx) = 1−σ(s(xxx)) = 1−
1

1 + exp(−wwwTxxx)
=

1

1 + exp(wwwTxxx)

therefore

p(t = −1∣xxx) =
1

1 + exp(wwwTxxx)

and thus

p(t = tn∣xxxn) =
1

1 + exp(−tnwwwTxxxn)
.

▸ We determine the parameters www by minimizing the negative log-likelihood:

L(www) = −∑
n

log p(tn∣xxxn) = ∑
n

log(1 + exp(−tnwww
Txxxn))

whose gradient is ∑n tn((1/(1 + exp(−tnwww
Txxxn))) − 1)xxxn.

11/21

Machine Learning with Spark: Logistic Regression

▸ Logistic regression in Scala (note the use of persist, map and reduce):

▸ Defining a cached RDD called points as the result of a map transformation
on a text file that parses each line of text into a data Point.

▸ Then repeatedly run map and reduce on data points to compute the
gradient at each step by summing a function of the current w.

▸ It may be reused the RDD in an iterative algorithm, so cache it in memory
with persist() to avoid re-evaluating it every time.

12/21

Machine Learning with Spark: Logistic Regression

▸ Spark runs faster than traditional MapReduce, since it make it easy to
load data into RAM once and run multiple sums.

▸ Unlike Spark, the running time of MapReduce increased significantly, as
the number of iterations increased.

▸ MapReduce takes more than 2000 seconds for 20 iterations because each
iteration loads the data from disk, while Spark takes only 20 seconds for
100GB data.

13/21

Machine Learning with Spark: Logistic Regression

▸ Logistic regression in Python

▸ It uses batch gradient descent, a simple iterative algorithm that computes
a gradient function over the data repeatedly as a parallel sum.

▸ A lambda expression is a special syntax for creating a function and passing
it to another function all on one line of code. (All functions in Python can
be passed as an argument to another function)

14/21

Machine Learning with Spark: K -Means
▸ Consider data clustering (a.k.a. unsupervised learning) via the K -means

algorithm.

1 Set K points as centroids at random
2 Assign each point to a cluster with the closest centroid
3 recalculate the cluster centroids as the averages of the points assigned to each cluster

Repeat steps 2 and 3 until the centroids do not change

15/21

Machine Learning with Spark: K -Means
▸ K -Means in Python

▸ The takeSample: generate the initial centroids with a random sampling
from the RDD (step 1 in K -Means)

▸ The map transformation using closestPoint function: Assign the closest
centroid to that data point. (step 2 in K -Means)

▸ The reduceByKey: sum over data points with associated same cluster.
(step 2 in K -Means)

▸ The collect: recalculate cluster centroids. (step 3 in K -Means)

16/21

Machine Learning with Spark: MLlib

▸ Apache Spark includes MLlib, a library for machine learning that uses
linear algebra libraries on each node

▸ Many machine learning methods are already implemented in MLlib, i.e.
the user does not need to specify the transformations and actions.

▸ Logistic regression in Python:
lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

lrModel = lr.fit(training)

▸ SVMs in Python:
model = SVMWithSGD.train(parsedData, iterations=100)

▸ NNs in Python:
layers = [4, 5, 4, 3]

trainer = MultilayerPerceptronClassifier(maxIter=100, layers=layers,

blockSize=128, seed=1234)

model = trainer.fit(train)

▸ MMs in Python:
gmm = GaussianMixture().setK(2)

model = gmm.fit(dataset)

▸ K -Means in Python:
kmeans = KMeans().setK(2).setSeed(1)

model = kmeans.fit(dataset)

17/21

Lab with Spark

▸ Implement a kernel model to predict the hourly temperatures for a date
and place in Sweden. To do so, you are provided with the files
stations.csv and temperature-readings.csv

(available at https://www.ida.liu.se/ 732A54/lab/data.zip or
/software/sse/manual/spark/BDA demo/input data folder on Sigma).
These files contain information about weather stations and temperature
measurements for the stations at different days and times. The data have
been kindly provided by the Swedish Meteorological and Hydrological
Institute (SMHI) and processed by Zlatan Dragisic.

▸ You are asked to provide a temperature forecast for a date and place in
Sweden. The forecast should consist of the predicted temperatures from 4
am to 24 pm in an interval of 2 hours. Use a kernel that is the sum of
three Gaussian kernels:
▸ The first to account for the distance from a station to the point of interest.
▸ The second to account for the distance between the day a temperature

measurement was made and the day of interest.
▸ The third to account for the distance between the hour of the day a

temperature measurement was made and the hour of interest.

▸ Repeat the exercise about multiplying instead of summing the three
kernels above.

18/21

Lab with Spark

▸ The best regression function under the squared error loss function is
y∗(xxx) = EY [y ∣xxx].

▸ Since xxx may not appear in the finite training set {(xxxn, yn)} available, then
we output a weighted average over all the training points. That is

y(xxx) =
∑n k(

xxx−xxxn
h

) yn

∑n k(
xxx−xxxn
h

)

where k ∶ RD
→ R is a kernel function, which is usually non-negative and

monotone decreasing along rays starting from the origin. The parameter h
is called smoothing factor or width.

▸ Gaussian kernel: k(u) = exp(−∣∣u∣∣2) where ∣∣ ⋅ ∣∣ is the Euclidean norm.

19/21

Lab with Spark

▸ Repeat the exercise and implement at least two MLlib Library models to
forecast temperature instead of the three kernels.

▸ Instead, broadcast one of the RDDs to join, if small. This sends a copy of
the RDD to each node, and the join can be performed locally (or even
skipped).

rdd = rdd.collectAsMap()

bc = sc.broadcast(rdd)

bc.value[i]

20/21

Summary

▸ Spark is a framework to process large datasets by parallelizing
computations.

▸ It is particularly suitable for iterative distributed computations, since data
can be store in memory.

▸ It includes MLlib, a machine learning library.

21/21

Literature

▸ Main sources
▸ Zaharia, M. et al. Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation,
15-28, 2012.

▸ Meng, X. et al. MLlib: Machine Learning in Apache Spark. Journal of
Machine Learning Research, 17(34):1-7, 2016.

▸ Additional sources
▸ Zaharia, M. et al. Apache Spark: A Unified Engine for Big Data Processing.

Communications of the ACM, 59(11):56-65, 2016.
▸ Spark programming guide available at

https://spark.apache.org/docs/latest/rdd-programming-guide.html
▸ MLlib manual available at

http://spark.apache.org/docs/latest/ml-guide.html
▸ Slides for 732A99/TDDE01 Machine Learning.

