
1/24

732A54/TDDE31 Big Data Analytics
Lecture 10: Machine Learning with MapReduce

Jose M. Peña
IDA, Linköping University, Sweden



2/24

Contents

▸ MapReduce Framework

▸ Machine Learning with MapReduce
▸ Neural Networks
▸ Linear Support Vector Machines
▸ K -Means Algorithm
▸ EM Algorithm

▸ Summary



3/24

Literature

▸ Main sources
▸ Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on

Large Clusters. Communications of the ACM, 51(1):107-113, 2008.
▸ Chu, C.-T. et al. Map-Reduce for Machine Learning on Multicore. In

Proceedings of the 19th International Conference on Neural Information
Processing Systems, 281-288, 2006.

▸ Additional sources
▸ Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on

Large Clusters. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation, 2004.

▸ Gillick, D., Faria, A. and DeNero, J. MapReduce: Distributed Computing
for Machine Learning. Technical Report, Berkley, 2006.

▸ Yahoo tutorial at
https://developer.yahoo.com/hadoop/tutorial/module4.html

▸ Slides for 732A99/TDDE01 Machine Learning.



4/24

MapReduce Framework
▸ Programming framework developed at Google to process large amounts of

data by parallelizing computations across a cluster of computers.

▸ Easy to use, since the parallelization happens automatically.

▸ Easy to speed up by using/adding more computers to the cluster.

▸ Typical uses at Google:
▸ Large-scale machine learning problems, e.g. clustering documents from

Google News.
▸ Extracting properties of web pages, e.g. web access log data.
▸ Large-scale graph computations, e.g. web link graph.
▸ Statistical machine translation.
▸ Processing satellite images.
▸ Production of the indexing system used for Google’s web search engine.

▸ Google replaced it with Cloud Dataflow/Dataproc/Platform, since it could
not process the amount of data they produce.

▸ However, it is still the processing core of Apache Hadoop, another
framework for distributed storage and distributed processing of large
datasets on computer clusters.

▸ Moreover, it is a straightforward way to adapt some machine learning
algorithms to cope with big data.

▸ Apache Mahout is a project to produce distributed implementations of
machine learning algorithms. Many available implementations build on
Hadoop’s MapReduce. However, these implementations are deprecated.



5/24

MapReduce Framework

▸ The user only has to implement the following two functions:
▸ Map function:

▸ Input: A pair (in key , in value).
▸ Output: A list list(out key , intermediate value).

▸ Reduce function:
▸ Input: A pair (out key , list(intermediate value)).
▸ Output: A list list(out value).

▸ All intermediate values associated with the same intermediate key are
grouped together before passing them to the reduce function.

▸ Example for counting word occurrences in a collection of documents:



6/24

MapReduce Framework



7/24

MapReduce Framework

1. Split the input file in M pieces and store them on the local disks of the
nodes of the cluster. Start up many copies of the user’s program on the
nodes.

2. One copy (the master) assigns tasks to the rest of the copies (the
workers). To reduce communication, it tries to assign map workers to
nodes with input data.



8/24

MapReduce Framework

3. Each map worker processes a piece of input data by running the user’s map
function on each pair (key, value). The results are buffered in memory.

4. The buffered results are written to local disk. The disk is partitioned in R
pieces, e.g. hash(out key)mod R. The location of the partitions on disk
are passed back to the master so that they can be forwarded to the reduce
workers.



9/24

MapReduce Framework

5. The reduce worker reads its partition remotely (a.k.a shuffle) and sorts it
by key.

6. The reduce worker processes each key using the user’s reduce function.
The result is written to the global file system.

7. The output of a MapReduce call may be the input to another. Note that
we have performed M map tasks and R reduce tasks.



10/24

MapReduce Framework

▸ MapReduce can emulate any distributed computation, since this consists
of nodes that perform local computations and occasionally exchange
messages.

▸ Therefore, any distributed computation can be divided into a sequence of
MapReduce calls:
▸ First, nodes perform local computations (map), and
▸ then, they exchange messages (reduce).

▸ However, the emulation may be inefficient since the message exchange
relies on external storage, e.g. disk.



11/24

MapReduce Framework

▸ Fault tolerance:
▸ Necessary since thousands of nodes may be used.
▸ The master pings the workers periodically. No answer means failure.
▸ If a worker fails then its completed and in-progress map tasks are

re-executed, since its local disk is inaccessible.
▸ Note the importance of storing several copies (typically 3) of the input data

on different nodes.
▸ If a worker fails then its in-progress reduce task is re-executed. The results

of its completed reduce tasks are stored on the global file system and, thus,
they are accessible.

▸ To be able to recover from the unlikely event of a master failure, the master
periodically saves the state of the different tasks (idle, in-progress,
completed) and the identity of the worker for the non-idle tasks.

▸ Task granularity:
▸ M and R are larger than the number of nodes available.
▸ Large M and R values benefit dynamic load balance and fast failure

recovery.
▸ Too large values may imply too many scheduling decisions, and too many

output files.
▸ For instance, M = 200000 and R = 5000 for 2000 available nodes.



12/24

Machine Learning with MapReduce: Neural Networks

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

▸ Activations: aj = ∑i w
(1)
ji xi +w (1)j0

▸ Hidden units and activation function: zj = h(aj)
▸ Output activations: ak = ∑j w

(2)
kj zj +w (2)k0

▸ Output activation function for regression: yk(x) = ak
▸ Output activation function for classification: yk(x) = σ(ak)
▸ Sigmoid function: σ(a) = 1

1+exp(−a)
▸ Two-layer NN:

yk(x) = σ(∑
j

w (2)kj h(∑
i

w (1)ji xi +w (1)j0 ) +w (2)k0 )

▸ Evaluating the previous expression is known as forward propagation. The
NN is said to have a feed-forward architecture.

▸ All the previous is, of course, generalizable to more layers.



13/24

Machine Learning with MapReduce: Neural Networks
▸ Consider regressing an K -dimensional continuous random variable on a

D-dimensional continuous random variable.

▸ Consider a training set {(xxxn, tttn)} of size N. Consider minimizing the error
function

E(www) =∑
n

En(www) =∑
n

1

2
(yyy(xxxn) − tttn)2 =∑

n

∑
k

1

2
(yk(xxxn) − tnk)2

▸ The weight space is highly multimodal and, thus, we have to resort to
approximate iterative methods to minimize the previous expression.

▸ Batch gradient descent

www t+1 = www t − η∇E(www t) = www t − η∑
n

∇En(www t)

where η > 0 is the learning rate, and ∇En(www t) can be computed efficiently
thanks to the backpropagation algorithm.

▸ Each iteration of batch gradient descent can easily be casted into
MapReduce terms:
▸ Map function: Compute the gradient for a training point. Note that this

implies forward and backward propagation.
▸ Reduce function: Sum the partial gradients and update www accordingly.

▸ Note that 1 ≤M ≤ N, whereas R = 1.

▸ What is the key and what is the value ? What needs to be broadcasted ?



14/24

Machine Learning with MapReduce: Linear Support Vector Machines

▸ Consider binary classification with input space RD . Consider a training set
{(xxxn, tn)} where tn ∈ {−1,+1}. Consider using the linear model

y(xxx) = wwwTxxx + b

so that a new point xxx is classified according to the sign of y(xxx).
▸ If the training data is linearly separable, the separating hyperplane with

the largest margin (i.e. the largest smallest perpendicular distance from
any point to the hyperplane) is given by

arg min
www,b

1

2
∣∣www ∣∣2

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

▸ The motivation is that the larger the margin, the smaller the
generalization error.



15/24

Machine Learning with MapReduce: Linear Support Vector Machines
▸ Without the assumption of linearly separability and with a quadratic

penalty for (almost-)misclassified points, the optimal separating
hyperplane is given by

arg minwww
1
2
∣∣www ∣∣2 + C ∑n∈E(wwwTxxxn − tn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ξn

)2
y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

where C is a user-defined parameter, and n ∈ E if and only if tny(xxxn) < 1.
▸ Note that the previous expression is a quadratic function and, thus, it is

concave (up) and, thus, ”easy” to minimize. For instance, we can use
again batch gradient descent.

▸ The gradient is given by

www + 2C ∑
n∈E

(wwwTxxxn − tn)xxxn

▸ Each iteration of batch gradient descent can easily be casted into
MapReduce terms:
▸ Map function: Compute the gradient for a training point.
▸ Reduce function: Sum the partial gradients and update www accordingly.

▸ Note that 1 ≤M ≤ N, whereas R = 1. What is the key and what is the
value ? What needs to be broadcasted ?



16/24

Machine Learning with MapReduce: K -Means Algorithm

▸ Consider data clustering (a.k.a. unsupervised learning) via the K -means
algorithm.

1 Assign each point to a cluster (a.k.a. subpopulation) at random
2 Compute the cluster centroids as the averages of the points assigned to each cluster
3 Repeat until the centroids do not change
4 Assign each point to the cluster with the closest centroid
5 Update the cluster centroids as the averages of the points assigned to each cluster



17/24

Machine Learning with MapReduce: K -Means Algorithm

1 Assign each point to a cluster (a.k.a. subpopulation) at random
2 Compute the cluster centroids as the averages of the points assigned to each cluster
3 Repeat until the centroids do not change
4 Assign each point to the cluster with the closest centroid
5 Update the cluster centroids as the averages of the points assigned to each cluster

▸ Each iteration of the K -means algorithm can easily be casted into
MapReduce terms:
▸ Map function: Assign a training point to the population with the closest

mean.
▸ Reduce function: Recalculate the population means from the assignments

of the map tasks.

▸ Note that 1 ≤M ≤ N, whereas R = 1 or R = KR = KR = K depending on whether we
decide to use the population assignment as intermediate key or not.

▸ What is the key and what is the value ? What needs to be broadcasted ?



18/24

Machine Learning with MapReduce: EM Algorithm

▸ The K -means algorithm partitions the data, i.e. it hard-assigns instances
to subpopulations. Model-based clustering on the other hand aims to
soft-assign instances to the subpopulations by applying Bayes theorem as
follows:

p(k ∣xxx ,θθθ,πππ) = πkp(xxx ∣θθθk)
∑k πkp(xxx ∣θθθk)

where p(xxx ∣θθθk) are called mixture components, and πk = p(k) are called
mixing coefficients. A component models the data distribution for a
chosen subpopulation, and a coefficient represents the probability of a
subpopulation being chosen.

▸ More specifically, for components modeled as multivariate Gaussian
distributions, we have that:

p(xxx ∣θθθk) = N (xxx ∣µµµk ,ΣΣΣk) =
1

2πD/2

1

∣ΣΣΣk ∣1/2
e−

1
2
(xxx−µµµk)

TΣΣΣ−1
k (xxx−µµµk).

▸ To solve model-based clustering, we have to estimate the model
parameters (θθθ,πππ) from data. To this end, we use the EM algorithm.



19/24

Machine Learning with MapReduce: EM Algorithm
▸ Given a sample {xxxn} of size N from a mixture of multivariate Gaussian

distributions, the expected log likelihood function is maximized when

πML
k = ∑n p(znk ∣xxxn,πππ,µµµ,ΣΣΣ)

N

µµµML
k = ∑n xxxnp(znk ∣xxxn,πππ,µµµ,ΣΣΣ)

∑n p(znk ∣xxxn,πππ,µµµ,ΣΣΣ)

ΣΣΣML
k = ∑n(xxxn −µµµML

k )(xxxn −µµµML
k )Tp(znk ∣xxxn,πππ,µµµ,ΣΣΣ)

∑n p(znk ∣xxxn,πππ,µµµ,ΣΣΣ)
where zzzn is a K -dimensional binary vector indicating component
memberships (one-hot encoding):

p(znk ∣xxxn,πππ,µµµ,ΣΣΣ) =
p(xxxn∣znk ,πππ,µµµ,ΣΣΣ)p(znk ∣πππ,µµµ,ΣΣΣ)
∑k p(xxxn∣znk ,πππ,µµµ,ΣΣΣ)p(znk ∣πππ,µµµ,ΣΣΣ)

= πkp(xxxn∣µµµk ,ΣΣΣk)
∑k πkp(xxxn∣µµµk ,ΣΣΣk)

▸ This is not a closed form solution, but it suggests the following algorithm.

EM algorithm

Set πππ, µµµ and ΣΣΣ to some initial values
Repeat until πππ, µµµ and ΣΣΣ do not change

Compute p(znk ∣xxxn,πππ,µµµ,ΣΣΣ) for all n /* E step */

Set πk to πML
k , µµµk to µµµML

k , and ΣΣΣk to ΣΣΣML
k for all k /* M step */



20/24

Machine Learning with MapReduce: EM Algorithm

K -means algorithm EM algorithm



21/24

Machine Learning with MapReduce: EM Algorithm

▸ Each iteration of the EM algorithm can easily be casted into two chained
MapReduce jobs:
▸ Map function I: For the n-th training point, compute

p(znk ∣xxxn,πππ,µµµ,ΣΣΣ) (1)

and
xxxnp(znk ∣xxxn,πππ,µµµ,ΣΣΣ). (2)

▸ Reduce function I: Sum up the results (1) of the map tasks and divide it by
N. Sum up the results (2) of the map tasks and divide it by the sum of the

results (1). This gives πππML
k and µµµML

k .
▸ Map function II: For the n-th training point, compute

p(znk ∣xxxn,πππ,µµµ,ΣΣΣ) (3)

and
(xxxn −µµµML

k )(xxxn −µµµML
k )Tp(znk ∣xxxn,πππ,µµµ,ΣΣΣ). (4)

▸ Reduce function II: Sum up the results (4) of the map tasks and divide it by

the sum of the results (3). This gives ΣΣΣML
k .

▸ Note that 1 ≤M ≤ N, whereas R = 1 or R = KR = KR = K in both jobs, depending on
whether we decide to use the component index as intermediate key or not.
What is the key and what is the value ? What needs to be broadcasted ?



22/24

Machine Learning with MapReduce



23/24

Machine Learning with MapReduce



24/24

Summary

▸ MapReduce is a framework to process large datasets by parallelizing
computations.

▸ The user only has to specify the map and reduce functions, and
parallelization happens automatically.

▸ Many machine learning algorithms (e.g. SVMs, NNs, MMs, K -means and
EM algorithms) can easily be reformulated in terms of such functions.

▸ This does not apply for algorithms based on stochastic gradient descent.

▸ Moreover, MapReduce is inefficient for iterative tasks on the same
dataset: Each iteration is a MapReduce call that loads the data anew from
disk.

▸ Such iterative tasks are common in many machine learning algorithms,
e.g. gradient descent, K -means and EM algorithms.

▸ Solution: Spark framework, in the next lecture.


