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DB rankings – September 2016

http://db-engines.com/en/ranking



RDBMS

• Established technology 

• Transactions support & ACID properties

• Powerful query language - SQL

• Experiences administrators

• Many vendors
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item id name color size

45 skirt white L

65 dress red M

Table: Item



But … – One Size Does Not Fit All[1]

• Requirements have changed:

– Frequent schema changes, 
management of unstructured 
and semi-structured data

– Huge datasets 

– RDBMSs are not designed to be

• distributed

• continuously available

– High read and write scalability

– Different applications have different requirements[1]
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[1] “One Size Fits All”: An Idea Whose Time Has Come and Gone https://cs.brown.edu/~ugur/fits_all.pdf
Figure from: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

https://cs.brown.edu/~ugur/fits_all.pdf


NoSQL (not-only-SQL)

• A broad category of disparate solutions

• Simple and flexible non-relational data models

– schema-on-read vs schema-on-write

• High availability & relax data consistency requirement (CAP 
theorem)

– BASE vs ACID

• Easy to distribute – horizontal scalability

– data are replicated to multiple nodes 

• Cheap & easy (or not) to implement (open source)
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Distributed (Data Management) Systems

• Number of processing nodes interconnected by a 
computer network

• Data is stored, replicated, updated and processed 
across the nodes

• Networks failures are given, not an exception

– Network is partitioned

– Communication between nodes is an issue

 Data consistency vs Availability
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figure from http://blog.nahurst.com/visual-guide-to-nosql-systems



Big Data Analytics Stack
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figure from: https://www.sics.se/~amir/dic.htm



Dynamo[Dynamo]
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Dynamo

• Highly-available key-value store

• CAP: Availability and Partition Tolerance

• Use case: customer should be able to view and add to 
the shopping cart during various failure scenarios

– always serve writes and reads

• Many Amazon services only need primary-key access

– Best seller lists

– Customer preferences

– Product catalog
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Amazon’s Service Oriented Architecture

• Example: a single page 
is rendered employing
the responses from over 
150 services
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Dynamo - Techniques

• Consistent hashing

• Object versioning & vector clocks

• Quorum-like techniques

• Gossip-based protocols 
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Why not RDBMS?

• Amazon’s services often store and retrieve data only 
by key 

– thus do not need complex querying and managing 
functionalities 

• Replication technologies usually favor consistency, 
not availability 

• Cannot scale out easily
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Dynamo[Dynamo]

• Storage system requirements: 

– Query model

• put and get operations to items identified by key

• binary objects, usually < 1MB

– ACID-compliant systems have poor availability 
but Dynamo applications

• does not require isolation guarantees 

• permits only single key updates
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Dynamo[Dynamo]

• System requirements: 

– Efficiency

• Runs on commodity hardware with Amazon’s 
services having stringent latency requirements

– No security related requirements
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Dynamo[Dynamo]

• Design considerations

– When to resolve conflicting updates

• Reads or writes – never reject writes

– Who to resolve conflicting updates

• Data store or application

– Incremental scalability 

– Symmetry

– Decentralization

– Heterogeneity

2016-11-22 104Databases for Big Data / Valentina Ivanova



Dynamo - Techniques

• Consistent hashing

• Quorum-like techniques

• Object versioning & vector clocks
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NoSQL: Techniques – Consistent Hashing [Karger] 

Basic idea:

• arrange the nodes in a ring 

• include hash values of all nodes in hash structure

• calculate hash value of the key to be added/retrieved

• choose node which occurs next clockwise in the ring

• if node is dropped or gets lost, missing data is 
redistributed to adjacent nodes

• if a new node is added, its hash value is added to the hash table

• the hash realm is repartitioned, and hash data will 
be transferred to new neighbor

→ no need to update remaining nodes!
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Dynamo[Dynamo]

• 128-bit identifier is generated by hashing the key to 
identify storage node 

• Challenges in the basic algorithm

– Non-uniform data and load distribution

– Heterogeneity is not accounted for

• Virtual nodes 

– Looks like a single node in the system, but each node 
can be responsible for more than one virtual node. 
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Dynamo[Dynamo]

• Each data item is replicated on N hosts

• Each key is assigned to a coordinator node

– Handles read or write operations

• Preference list contains > N nodes 

– List of nodes responsible for storing the value for a 
particular key, known by every node 

– Constructed by skipping positions in the ring

– Nodes in different data centers
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Dynamo[Dynamo]

• System architecture

– get(key) and put(key, context, object)

• Context stores the object version

– Quorum protocol – N, W, R

• N – number of nodes that store replicas 

• R – number of nodes for a successful read

• W – number of nodes for a successful write

• R + W > N strong consistency 

– Latency of get (or put) depends on the slowest node

• R + W ≤ N eventual consistency – better latency
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Dynamo[Dynamo]

• get(key) and put(key, context, object)

– Context stores the object version

• Coordinator node handles reads and writes

– put() - generates a vector clock and sends to N nodes

– get() - requests all existing version and returns all 
causality unrelated to the client

• The divergent versions are then reconciled and the 
reconciled version superseding the current versions 
is written back. 

2016-11-22 110Databases for Big Data / Valentina Ivanova



NoSQL: Techniques – Vector Clock[Coulouris]

• A vector clock for a system of N nodes is an array of N integers. 

• Each process keeps its own vector clock, Vi , which it uses to 
timestamp local events.

• Processes piggyback vector timestamps on the messages they 
send to one another, and there are simple rules for updating the 
clocks

two events e and e': that e → e' ↔ V(e) < V(e')

c ‖ e since neither V(c) ≤ V(e) nor V(e) ≤ V(c)

c & e are concurrent
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Dynamo - Versioning

• Asynchronous update 
propagation

• Use case: shopping cart

• Each update is a new,
immutable version -->
many versions of an
object may exist

• Replicas eventually 
become consistent
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Dynamo - Versioning

• Reconciliation

– Syntactic 

– Semantic

• Vector clocks

– Client specifies
which version is 
updating 

– All leave objects are 
returned if syntactic
reconciliation fails
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Dynamo - Versioning

• Sx, Sy, Sz – nodes

• D1, D2, D3, D4, D5 –
versions of data items

• [Sx, 1] vector clock 
at Sx

• Divergent versions are rare

– One version: 99.94%

– Four versions: 0.00009%
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Dynamo[Dynamo]

• Handling failure – hinted handoff

• Sloppy quorum - all read and write operations are 
performed on the first N healthy nodes from the 
preference list

– If a node is temporary down the replica is sent to 
another 

– The replica will have a hint in its metadata for its 
intended location

– After the node recovers it will receive the replica
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Dynamo - Summary

• Highly-available key-value store

• CAP: Sacrifices consistency for availability in the 
pretense of network partitions

• Every node has the same responsibilities

• Consistent hashing

• Vector clocks for replicas reconciliation

• Quorum-like and decentralized replica 
synchronization protocol 
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HBase[HBase][Hadoop]
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Column-oriented Databases

• Saved data grouped by columns

• Not all values are needed for some 
queries/applications

– Analytical databases

• Leads to

– Reduced I/O

– Better compression due to similar values
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Column-oriented Model[HBase]

Row-oriented 
storage

SQL Schema

Column-oriented 
storage (HBase)



HBase – a Column-family Database

• Hosts very large sparse tables

• Based on Google BigTable and built on top of HDFS

• Provide low-latency real-time read/write random 
access on a (sequence of) cell level 

• Scales linearly on commodity hardware

• Atomic access to row data 

• CAP: provides strong consistency and partition 
tolerance --> sacrifices availability

• Started at the end of 2006, in May 2010 became 
Apache Top Level Project
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HBase[HBase] Canonical Example – webtable
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HBase in Facebook[HBaseInFacebook]

• Facebook applications that use HBase with HBase
enhancements performed internally in Facebook

– Facebook Messaging - High write throughput 

– Facebook Insights – Real-time analytics 

– Facebook Metric System - Fast reads of Rrecent
data and table scans 

• Others: Adobe, StumbleUpon, Twitter, and groups at 
Yahoo! 
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HBase[HBase]

• Terminology overlaps, 
but misleading:

– Most basic unit
Column

• versions

– Row

– Table

– Cell
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HBase[HBase]

• A table consists of 
multiple rows

– primary key access 

• A row has a key and 
column families:

– Atomic access to row 
data

– Sorted lexically:
r1
r10
r11
r2
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HBase[HBase]

• Columns Families:
content  

• Columns: 
family:qualifier
content:pdf

content:html

• All columns in a 
column family 
stored together in 
HFile
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HBase – Cell [HBase]

• Cell contains value and timestamp
– (Table, RowKey, Family, Column, Timestamp) → Value
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HBase[HBase]

• Canonical example – webtable
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HBase - Summary

• Column-oriented data store

– Hosts very large sparse tables on commodity hardware

– Column values are timestamped

• Low-latency real-time random access on HDFS!

– blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

• Row are sorted & stored lexicographically

– Atomic access to row data

• But no transactional features across multiple rows

– No real indexes & high write throughput

• Canonical application - webtable
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Big Data Analytics Stack
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figure from: https://www.sics.se/~amir/dic.htm



Hive[Hive]
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Motivation

• MapReduce programming model is low level

• Hadoop/Spark lacks expressiveness

– end users need to write code even for simplest aggregations, 
hard to maintain and reuse

• Many experienced SQL developers

• Business intelligence tools already provide SQL 
interfaces
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Hive[Hive]

• Scalable data warehouse

• Built on top of Hadoop 

– translates a query into
MapReduce tasks

– Intermediate results 
materialized on HDFS

• HiveQL - SQL-like 
declarative language + UDFs

• Data analytics at Facebook

• Open source since August 2008
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DBMS applications – OLTP vs OLAP
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order customer 

1 22

2 33

order Item quantity

1 45 1

1 55 1

1 65 2

2 65 1

item name color size

45 skirt white L

65 dress red M

Table: Order

Table: Cart

Table: Item c
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a
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red

white

all

size
M

S

all
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all

Table: 
Aggregated Sales



Hive[Hive + Hadoop]

• Tables, columns, rows, partitions

– SerDe to read/write table
rows in custom format

• Types

– Primitive & complex – maps, 
arrays, arbitrarily nested

– User-defined types

• Schema-on-read not 
schema-on-write

• Updates, Locks, Indexes
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Hive – Tables[Hive + Hadoop]

• The data typically is stored in HDFS

– Tables stored in directories in HDFS

CREATE TABLE managed_table (dummy STRING);

LOAD DATA INPATH '/user/tom/data.txt' INTO table 

table_name;

DROP TABLE managed_table;

• CREATE TABLE + LOAD DATA move the data 

• DROP TABLE the data and metadata are deleted, the 

data no longer exists
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Hive – External Tables[Hive + Hadoop]

• The data typically is stored in HDFS

– External tables – when using other tools on the same dataset 

CREATE EXTERNAL TABLE external_table (dummy STRING)

LOCATION '/user/tom/external_table';

• CREATE EXTERNAL TABLE does not move the 

data 

• DROP TABLE the metadata only are deleted, the 

data continue to exist
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Hive – Partitions and Buckets[Hive + Hadoop]

• The data typically is stored in HDFS

– Tables stored in directories in HDFS

• External tables

– Partitions by a partition column

• CREATE TABLE test_part(ds string, hr int)

PARTITIONED BY (ds string, hr int)

• SELECT * FROM test_part

WHERE ds='2009-02-02' AND hr=11;

– Buckets gives extra structure; more efficient 
queries
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Hive – Tables, Partitions and Buckets[Hive + 

Hadoop]

• Tables stored in directories in HDFS

hdfs://user/hive/warehouse/table_name

• Partitions are subdirectories 

hdfs://user/hive/warehouse/table_name/partition_name

• Buckets are stored in files

hdfs://user/hive/warehouse/table_name/bucket_name

hdfs://user/hive/warehouse/table_name/partition_name/b
ucket_name
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HiveQL vs SQL[Hadoop]

Feature HiveQL SQL

Updates UPDATE, INSERT, DELETE UPDATE, INSERT, DELETE

Transactions Limited support Supported

Indexes Supported Supported

Data types SQL supported + boolean, array, map, struct Integral, floating point, fixed point, text and 
binary strings, temporal

Functions Hundreds of built-in functions Hundreds of built-in functions

Multiple inserts Supported Not supported

CREATE TABLE AS SELECT Supported Not valid SQL-92, but found
in some databases

SELECT SQL-92. SORT BY for
partial ordering. LIMIT to
limit number of rows returned.

SQL-92

Joins SQL-92 or variants (join tables in the FROM 
clause, join condition in the WHERE clause)

Inner joins, outer joins, semi
joins, map joins, cross joins

Subqueries In the FROM, WHERE, or HAVING clause 
(uncorrelated queries not supported)

In any clause. Correlated or noncorrelated.

Views Read-only. Materialized views not supported. Updatable. Materialized or nonmaterialized.

Extension points User-defined functions. Map-Reduce scripts. User-defined functions. Stored procedures.



• Change the order of the FROM and 
SELECT/MAP/REDUCE

• Multi inserts

FROM t1

INSERT OVERWRITE TABLE t2 

SELECT t3.c2, count(1) FROM t3 WHERE t3.c1 <= 20

GROUP BY t3.c2

INSERT OVERWRITE DIRECTORY '/output_dir’

SELECT t3.c2, avg(t3.c1) FROM t3 

WHERE t3.c1 > 20 AND t3.c1 <= 30

GROUP BY t3.c2
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HiveQL vs SQL[Hive]



• Word Count in Hive using custom user program

FROM (

MAP doctext USING 'python wc_mapper.py' AS (word, 

cnt)

FROM docs

CLUSTER BY word

) a

REDUCE word, cnt USING 'python wc_reduce.py';
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HiveQL vs SQL[Hive]



• Metastore

– Served by RDBMS

– Metadata about 
the tables

– Specified at table 
creation time and
reused when the 
table is referenced
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Hive – Architecture[Hive]



• Driver manages the 
lifecycle of a HiveQL
statement:

– Query Compiler 
and Optimizer –
creates a logical 
plan from HiveQL
query

– Execution Engine 
- executes the plan 
preserving 
dependencies
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Hive – Architecture[Hive]



• Query Compiler

– Parsing

– Logical plan 
generation

– Physical plan 
generation
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Hive – Architecture[Hive]



• Query Optimizer

– Column pruning

– Predicate 
pushdown 

– Partition pruning

– Map side joins 
no reducer

– Join reordering
- larger tables 
are streamed
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Hive – Architecture[Hive]



• Hive server – enables 
access from clients 
written in different 
languages 

• Hive clients

– CLI

– JDBC/ODBC

– webUI
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Hive – Architecture[Hive]



Hive - Summary

• Data warehouse translates SQL queries to 
MapReduce jobs

• HiveQL is SQL-like language with additional features

• Schema-on-read  no preprocessing

• Table partitions and buckets for more efficient 
queries

• Column-oriented, row-oriented and text file storage 
formats
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SparkSQL[Shark]
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Hive, Shark and SparkSQL[SparkSQLHistory] 

• Hive

• Shark project started around 2011

– built on the Hive codebase

– swaps Hadoop with Spark

• SparkSQL

– Shark code base hard to optimize and maintain

– Shark and Hive compatible

• Hive’s SQL dialects, UDF (user-defined functions) & 
nested data types

2016-11-22 149Databases for Big Data / Valentina Ivanova



Spark vs MapReduce

• Supports a chain of multiple transformations, not 
just the two-stage MapReduce topology

• Optimized for low latency

• Provides Resilient Distributed Datasets (RDDs)

– Written in memory, much faster than the network

– One copy & the lineage graph

– RDDs can be rebuilt in parallel in case of failure and slow 
execution

• Since RDD are immutable

– Enables mid-query fault tolerance
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Shark[Shark] 

• Provides unified engine for running efficiently SQL 
queries and iterative machine learning algorithms 

• In-memory computations

• Benefits from In-memory Resilient Distributed 
Datasets (RDDs) due to 

– often complex analytic functions are iterative

– traditional SQL warehouse workloads exhibit 
strong temporal and spatial locality
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Shark – Fault Tolerance[Shark] 

• Main-memory databases

– track fine-grained updates to tables

– replicate writes across the network

– expensive on large commodity clusters 

• Shark 

– tracks coarse-grained operations, eg, map, join, etc.

– recovers by tracking the lineage of each dataset and 
recomputing lost data

– supports machine learning and graph computations
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Shark – Fault Tolerance Properties[Shark] 

• Shark can tolerate the loss of any set of worker nodes

– Also during a query

– Lost data will be recomputed using the lineage graph 

• Lost partitions are rebuilt in parallel

• If a task is slow, it could be run on another node

• Recovery is supported for both SQL and machine 
learning user defined functions

2016-11-22 153Databases for Big Data / Valentina Ivanova



Shark & Hive 

• Query parsing and 
logical plan 
generation by the
Hive compiler

• Physical plan 
generation –
consists of RDDs 
transformations
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figure from http://www.rosebt.com/blog/spark-shark-and-mesos-data-analytics-stack



Shark – Query Execution[Shark] 

• … but how to make it efficient given that:

– UDF and complex analytic functions

– Schema-on-read approach, i.e., extract-transform-
load (ETL) process has been skipped thus a priory 
statistics for query optimization are not available
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Shark Extensions

• In-memory columnar storage and columnar 
compression

– Reduces data size and processing time

• Partial DAG Execution 

– Re-optimize a running query

• Leverage control over data partitioning

– Allows co-partitioning of frequently joined tables
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Shark – Query Execution[Shark] 

• In-memory columnar storage – in-memory 
computation is essential to low-latency query 
answering

• Shark stores all columns of primitive types as JVM 
primitive arrays

– Caching Hive records as JVM objects is inefficient 
 examples in the paper
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Shark – Query Execution[Shark] 

• Partial DAG Execution (PDE)

– dynamic approach for query optimization

• The query plan is altered based on run-time collected 
statistics

– Workers collect global and per partition statistics 

– Workers send them to the master

– The master dynamically alters the query plan
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Shark – Summary

• Data warehouse based on Hive

– the latest version called SparkSQL

• Efficiently execute complex analytical queries and 
machine learning algorithms

• Extends Spark execution engine and uses RDDs

• Fault tolerance by tracking the lineage of the RDDs 
and recomputing in case of failure

– does not rely on replication

• Tutorials: http://spark.apache.org/docs/latest/sql-
programming-guide.html
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