732A54 / TDDE31 Big Data Analytics

Topic: Database Technologies for Data Analytics

Olaf Hartig olaf.hartig@liu.se

Online Transactional Processing (OLTP)

- Most common use of relational DBs is for operational data
 - that is, data produced by the day to day operations of a business or an organization
 - e.g., students enrolling in courses, customers purchasing products, passengers purchasing airline tickets
- Workload characteristics:
 - simple queries (reads and writes)
 - many short transactions that make small changes
- Database systems that support the basic operations of a business are generally classified as *OLTP systems*
 - tuned to maximize throughput of concurrent transactions

Online Analytical Processing (OLAP)

- Enables analysts, managers, executives to gain insight into data as a basis for making decisions
- Primarily read-only workloads with complex queries
 - aggregations and grouping
 - touch large amounts of data
 - usually ad hoc

Data Warehouse

- Data warehouse: separate copy of the operational data, organized in a way that it can be used for executing decision support queries and/or data mining queries
 - usually a combination of data from multiple sources
 - data warehouses keeps years' worth of data (in contrast, operational data in OLTP systems is short-lived and changes frequently)

Figure from https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/

Why a separate system?

- Usually a combination of data from multiple sources
- Data organized differently, to better support OLAP queries
- Complexity of OLAP queries
 - take too much time to be executed in a transaction processing system with high throughput requirements
 - may lock the database for long periods of time and, thus, negatively affect all other OLTP transactions

Figure from https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/

Categories of OLAP Systems

- Relational OLAP systems ("ROLAP")
 - Store data in relations
 - Queries written in SQL
- Special-purpose OLAP systems
 - Represent and store data in a multi-dimensional array
 - OLAP-specific query language or spreadsheet-like UI

Multidimensional Data Model

Multidimensional Data Model

- Numeric measures that are the focus of the analysis
 - e.g., sales amount, budget, revenue, inventory counts
- Each such measure depends on a set of dimensions
 - e.g., dimensions of a sales amount may be product name, city, and date
- Each dimension described by a set of attributes
 - e.g., product dimension may consist of product category, industry of the product, year of introduction, and average profit margin
- Some attributes may form a hierarchy of relationships

Example from Chaudhuri and Dayal: An Overview of Data Warehousing and OLAP Technology. SIGMOD

732A54 / TDDE31 Big Data Analytics Topic: Database Technologies for Data Analytics

Multidimensional Model in an RDBMS

- Dimension tables with the attributes of the dimensions
- Fact table with a column for each dimension (foreign keys to the dimension tables) and for the numeric measures
 - i.e., one tuple/row per cell of the multidimensional array
- Star schema: single dimension table for each dimension

Multidimensional Model in an RDBMS

- Snowflake schema: dimension tables normalized
 - hence, hierarchies represented explicitly
 - e.g., LOCATIONS(locid, city, state) and STATES(state, country)

https://www.javatpoint.com/data-warehouse-star-schema-vs-snowfla

Operations over Multidimensional Data

Slicing and Dicing

- Slicing: reduce the dimensions by selecting a single value Campingausrüstung for one of the dimensions
 - like Outdoor-Schutzausrüstung ... WHERE *dimattr* = *xyz*
- Dicing: produce a sub-cube by selecting a range of values for one or more of the dimensions
 - like
 - ... WHERE *dimattr* > *xyz*
 - ... WHERE dimattr BETWEEN x AND y
 - ... WHERE dimattr IN (x,y,z)

Figures from Wikimedia Commons (https://en.wikipedia.org/wiki/File:OLAP slicing.png and https://en.wikipedia.org/wiki/File:OLAP dicing.png)

200

200

2004

Nordeuropa

Nordeuropa

Südeurop

Südeurop

Mitteleuropa

Mitteleuropa

Accessoires

Golfausrüstung

Bergsteigerausrüstung

Campingausrüstung

Outdoor-Schutzausrüstung

Bergsteigerausrüstung

Accessoires

Golfausrüstung

2004

Nordeuropa

2006 -

Nordeuropa

2005

2004

Accessoires

Golfausrüstung

Outdoor-Schutzausrüstung

Südeuro

Mitteleuropa

Südeurop

Mitteleuropa

Campingausrüstung

Outdoor-Schutzausrüstung

Bergsteigerausrüstung

Accessoires

Golfausrüstung

Roll-Up and Drill-Down

- Roll-up: aggregate the data along one or more dimensions (usually by moving up the hierarchy in these dimensions)
 - e.g., sum up by months instead of days, or by countries instead of cities
- Drill-down: opposite of roll-up
 - i.e., produce a more fine-grained view

Figure from Bolt and Van der Aalst: Multidimensional Process Mining Using Process Cubes. In BPMDS 2015.

732A54 / TDDE31 Big Data Analytics Topic: Database Technologies for Data Analytics

Pivoting

• Pivoting: rotate the cube to show a different orientation of the axes

Figure from https://visibledata.wordpress.com/data/datacloud/datacube/

732A54 / TDDE31 Big Data Analytics Topic: Database Technologies for Data Analytics

Building a Data Warehouse

Building a Data Warehouse

- Identify desired data sources
- Scope the analytics needs that the project is meant to solve
- Define the data model/schema that the analysts and other end users need
- Build an extract-transform-load pipeline
- Conduct analytics work, extract insights

Figures from https://fivetran.com/blog/etl-vs-elt and https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/

ETL

Extract: query the operational databases to retrieve relevant data, and run scripts to extract from other types of sources

Transform: clean the data (i.e., delete or repair tuples with missing or invalid information) and reorganize it to fit the schema of the warehouse

Load: populate the warehouse with the data, build indexes

Figures from https://fivetran.com/blog/etl-vs-elt and https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/

Data Warehouse Systems

- On premise (now also with cloud offerings)
 - Teradata
 - Oracle
 - Vertica
 - Netezza
 - Actian Vector (formerly Vectorwise)
 - SAP IQ (formerly Sybase)
 - etc.
- Cloud native
 - Snowflake
 - Amazon Redshift
 - Google BigQuery
 - Azure Synapse Analytics
 - etc.

Challenges of Data Warehouses and ETL

- Data in the warehouse needs to be refreshed periodically
- Building and maintaining a data warehouse is a huge effort, may easily go into millions of \$

Figure from https://fivetran.com/blog/etl-vs-elt

Challenges of ETL

- transformation code needs to be extended or rewritten

Figure from https://fivetran.com/blog/etl-vs-elt

Data Integration for Analytics in the Age of Cloud Services

Data Integration

- Data integration is the problem of combining data [from] different sources [into a single] unified view of these data^{*}
 - schema mapping
 - record linkage (entity resolution)
 - inconsistent formats or units
- Modern technologies for data integration
 - Integration Platform as a Service (iPaaS)
 - ELT (Extract, Load, and Transform)
 - Reverse ETL

*Quote from Lenzerini: Data Integration: A Theoretical Perspective. PODS 2002

Integration Platform as a Service (iPaaS)

- Enable users to integrate applications with one another
 - in practice: an event in an application / system is transmitted to the iPaaS (via an API call or a Webhook) which then performs some predefined actions
- Data moves between applications directly through the iPaaS
- Little to no transformation takes place in the iPaaS

Figure from https://www.celigo.com/what-is-ipaas-integration-platform-as-a-service/

732A54 / TDDE31 Big Data Analytics Topic: Database Technologies for Data Analytics

Olaf Hartig

Integration Platform as a Service (iPaaS)

- Enable users to integrate applications with one another
 - in practice: an event in an application / system is transmitted to the iPaaS (via an API call or a Webhook) which then performs some predefined actions
- Data moves between applications directly through the iPaaS
- Little to no transformation takes place in the iPaaS

- Popular iPaaS
 - tray.io
 - workato
 - integromat
 - zapier
 - automate.io

ELT: Extract, Load, and Transform

- Cloud data warehouses have become extremely fast and reliable, which enables transformations to take place inside the warehouse itself
- ELT: Data moves directly from (cloud) applications to the data warehouse; afterwards, transformation in the data warehouse *via SQL* Data Sources Fully Managed Data Warehouse
 - No coding required!

Figure from https://fivetran.com/blog/etl-vs-elt

ELT Tools

- Modern ELT tools don't even offer in-built transformation capabilities
 - which was one of the major parts of traditional ETL tools
- Instead, to handle transformations in the data warehouse they integrate purpose-built solutions

🚺 dbt

- e.g., dbt
- Leading companies:
 - Fivetran
 - Stitch
 - Matillion
 - Airbyte

Fivetran Estitch

IRBYTE

Workflows ETL versus ELT

- Identify desired data sources
- Automatically extract & load (can be outsourced, scaled up and down)
- Scope the analytics needs
- Define and create the data model needed for the analytics work

Figures from https://fivetran.com/blog/etl-vs-elt

Workflows ETL versus ELT

Reverse ETL

- Main use case: sync customer data from the data warehouse to sales, marketing and analytics tools
 - consistent view of the customer across all systems
 - enable operational analytics
- Main functionality of reverse ETL tools:
 - extract data from a data warehouse on a regular basis and load it into sales, marketing, and analytics tools
 - trigger a webhook or make an API call when data changes
 - move extracted data to a production database

Figure from https://medium.com/memory-leak/reverse-etl-a-primer-4e6694dcc7fb

Reverse ETL

- Main use case: sync customer data from the data warehouse to sales, marketing and analytics tools
 - consistent view of the customer across all systems
 - enable operational analytics
- Main functionality of reverse ETL tools:
 - extract data from a data warehouse on a regular basis and load it into sales, marketing, and analytics tools
 - trigger a webhook or make an API call when data changes
 - move extracted data to a production database
- Reverse ETL tools offer connectors for many cloud apps
- Startups that are building reverse ETL products: Hightouch,Census, Grouparoo, Headsup, Polytomic, SeekWell

hightouch Census 🚽 Grouparoo HEADSUP 👗 🔾 SEEKWELL

www.liu.se

