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Online Transactional Processing (OLTP)

● Most common use of relational DBs is for operational data
– that is, data produced by the day to day operations

of a business or an organization 
– e.g., students enrolling in courses, customers purchasing 

products, passengers purchasing airline tickets

● Workload characteristics:
– simple queries (reads and writes)
– many short transactions that make small changes

● Database systems that support the basic operations of 
a business are generally classified as OLTP systems
– tuned to maximize throughput of concurrent transactions
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Online Analytical Processing (OLAP)

● Enables analysts, managers, executives to gain
insight into data as a basis for making decisions

● Primarily read-only workloads with complex queries
– aggregations and grouping
– touch large amounts of data
– usually ad hoc
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Data Warehouse

● Data warehouse: separate copy of the operational data, 
organized in a way that it can be used for executing 
decision support queries and/or data mining queries
– usually a combination of data from multiple sources
– data warehouses keeps years’ worth of data

(in contrast, operational data in
 OLTP systems is short-lived
 and changes frequently)

Figure from https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/ 

https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/
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Why a separate system?

● Usually a combination of data from multiple sources
● Data organized differently, to better support OLAP queries
● Complexity of OLAP queries

– take too much time to be executed in a transaction 
processing system with high throughput requirements

– may lock the database for long periods of time and,
thus, negatively affect all
other OLTP transactions

Figure from https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/ 

https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/
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Categories of OLAP Systems

● Relational OLAP systems (“ROLAP”)
– Store data in relations
– Queries written in SQL

● Special-purpose OLAP systems
– Represent and store data in a multi-dimensional array
– OLAP-specific query language or spreadsheet-like UI



Multidimensional Data Model
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Multidimensional Data Model

● Numeric measures that are the focus of the analysis
– e.g., sales amount, budget, revenue, inventory counts

● Each such measure depends on a set of dimensions
– e.g., dimensions of a sales amount may

        be product name, city, and date
● Each dimension described

by a set of attributes
– e.g., product dimension may consist

        of product category, industry of
        the product, year of introduction,
        and average profit margin

● Some attributes may form
a hierarchy of relationships

Example from Chaudhuri and Dayal: An Overview of Data Warehousing and OLAP Technology. SIGMOD Record 26(1) 1997
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Multidimensional Model in an RDBMS

● Dimension tables with the attributes of the dimensions
● Fact table with a column for each dimension (foreign keys 

to the dimension tables) and for the numeric measures
– i.e., one tuple/row per cell of the multidimensional array

● Star schema: single dimension table for each dimension

Example from Ramakrishnan and Gehrke: Database
Management Systems, 2nd Edition, 1999

dimension tables fact table
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Multidimensional Model in an RDBMS

● Snowflake schema: dimension tables normalized
– hence, hierarchies represented explicitly
– e.g., LOCATIONS(locid, city, state) and STATES(state,country)

https://www.javatpoint.com/data-warehouse-star-schema-vs-snowflake-schema



Operations over
Multidimensional Data
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Slicing and Dicing

● Slicing: reduce the dimensions
by selecting a single value
for one of the dimensions
– like

… WHERE dimattr = xyz

● Dicing: produce a sub-cube
by selecting a range of
values for one or more
of the dimensions
– like

… WHERE dimattr > xyz
… WHERE dimattr BETWEEN x AND y
… WHERE dimattr IN (x,y,z)

Figures from Wikimedia Commons (https://en.wikipedia.org/wiki/File:OLAP_slicing.png  and  https://en.wikipedia.org/wiki/File:OLAP_dicing.png)

https://en.wikipedia.org/wiki/File:OLAP_slicing.png
https://en.wikipedia.org/wiki/File:OLAP_dicing.png
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Roll-Up and Drill-Down

● Roll-up: aggregate the data along one or more dimensions 
  (usually by moving up the hierarchy in these dimensions)
– e.g., sum up by months instead of days,

        or by countries instead of cities

● Drill-down: opposite of roll-up
– i.e., produce a more fine-grained view

Figure from Bolt and Van der Aalst: Multidimensional Process Mining Using Process Cubes. In BPMDS 2015.
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Pivoting

● Pivoting: rotate the cube to show a different
               orientation of the axes

Figure from https://visibledata.wordpress.com/data/datacloud/datacube/ 
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https://visibledata.wordpress.com/data/datacloud/datacube/


Building a Data Warehouse
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Building a Data Warehouse

● Identify desired data sources
● Scope the analytics needs that

the project is meant to solve
● Define the data model/schema that the

analysts and other end users need
● Build an extract-transform-load pipeline
● Conduct analytics work, extract insights

Figures from https://fivetran.com/blog/etl-vs-elt and https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/ 

https://fivetran.com/blog/etl-vs-elt
https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/
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ETL

Extract: query the operational databases to retrieve relevant
   data, and run scripts to extract from other types of sources
Transform: clean the data (i.e., delete or
           repair tuples with missing or invalid
           information) and reorganize it to fit
           the schema of the warehouse           
Load: populate the warehouse with
          the data, build indexes

Figures from https://fivetran.com/blog/etl-vs-elt and https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/ 

https://fivetran.com/blog/etl-vs-elt
https://www.monitis.com/blog/top-5-data-warehouses-on-the-market-today/
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Data Warehouse Systems

● On premise (now also with cloud offerings)
– Teradata
– Oracle
– Vertica
– Netezza
– Actian Vector (formerly Vectorwise)
– SAP IQ (formerly Sybase)
– etc.

● Cloud native
– Snowflake
– Amazon Redshift
– Google BigQuery
– Azure Synapse Analytics
– etc.
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Challenges of Data Warehouses and ETL

Figure from https://fivetran.com/blog/etl-vs-elt 

● Data in the warehouse needs to be refreshed periodically
● Building and maintaining a data warehouse is a huge 

effort, may easily go into millions of $

https://fivetran.com/blog/etl-vs-elt
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Challenges of ETL

Figure from https://fivetran.com/blog/etl-vs-elt 

● Source schemas
may change
– breaks code used

to transform data
into the desired
data models

● Analytics needs may
evolve and change
– transformation code needs to be extended or rewritten

https://fivetran.com/blog/etl-vs-elt


Data Integration for Analytics
in the Age of Cloud Services
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Data Integration

● Data integration is the problem of combining data [from] 
different sources [into a single] unified view of these data*

– schema mapping
– record linkage (entity resolution)
– inconsistent formats or units

● Modern technologies for data integration
– Integration Platform as a Service (iPaaS)
– ELT (Extract, Load, and Transform)
– Reverse ETL

*Quote from Lenzerini: Data Integration: A Theoretical Perspective. PODS 2002
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Integration Platform as a Service (iPaaS)

● Enable users to integrate applications with one another
– in practice: an event in

an application / system
is transmitted to the
iPaaS (via an API call
or a Webhook) which
then performs some
predefined actions

● Data moves between
applications directly
through the iPaaS

● Little to no transformation
takes place in the iPaaS

Figure from https://www.celigo.com/what-is-ipaas-integration-platform-as-a-service/ 

https://www.celigo.com/what-is-ipaas-integration-platform-as-a-service/
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Integration Platform as a Service (iPaaS)

● Enable users to integrate applications with one another
– in practice: an event in

an application / system
is transmitted to the
iPaaS (via an API call
or a Webhook) which
then performs some
predefined actions

● Data moves between
applications directly
through the iPaaS

● Little to no transformation
takes place in the iPaaS

● Popular iPaaS
– tray.io
– workato
– integromat
– zapier
– automate.io
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ELT: Extract, Load, and Transform

● Cloud data warehouses have become extremely fast
and reliable, which enables transformations to take
place inside the warehouse itself

● ELT: Data moves directly from (cloud) applications to the 
data warehouse; afterwards, transformation in the data 
warehouse via SQL
– No coding

required!

Figure from https://fivetran.com/blog/etl-vs-elt 

https://fivetran.com/blog/etl-vs-elt
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ELT Tools

● Modern ELT tools don’t even offer
in-built transformation capabilities
– which was one of the major

parts of traditional ETL tools
● Instead, to handle transformations in the data

warehouse they integrate purpose-built solutions
– e.g., dbt

● Leading companies:
– Fivetran
– Stitch
– Matillion
– Airbyte
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Workflows ETL versus ELT

Figures from https://fivetran.com/blog/etl-vs-elt 

ETL

ELT

● Identify desired data sources
● Automatically extract & load (can be outsourced, scaled up and down)
● Scope the analytics needs
● Define and create the data model needed for the analytics work

https://fivetran.com/blog/etl-vs-elt
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Workflows ETL versus ELT

Figures from https://fivetran.com/blog/etl-vs-elt 

ETL

ELT

● Still,
– source schemas may change, and
– analytics needs may evolve and change

● But, transformation failures do not
prevent data from being loaded

https://fivetran.com/blog/etl-vs-elt
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Reverse ETL

● Main use case: sync customer data from the data 
warehouse to sales, marketing and analytics tools
– consistent view of the customer across all systems
– enable operational analytics

● Main functionality of reverse ETL tools:
– extract data from a data warehouse on a regular basis

and load it into sales, marketing, and analytics tools
– trigger a webhook or make an API call when data changes
– move extracted data to a production database

Figure from https://medium.com/memory-leak/reverse-etl-a-primer-4e6694dcc7fb 

https://medium.com/memory-leak/reverse-etl-a-primer-4e6694dcc7fb


30
732A54 / TDDE31  Big Data Analytics
Topic: Database Technologies for Data Analytics                                                                                  Olaf Hartig

Reverse ETL

● Main use case: sync customer data from the data 
warehouse to sales, marketing and analytics tools
– consistent view of the customer across all systems
– enable operational analytics

● Main functionality of reverse ETL tools:
– extract data from a data warehouse on a regular basis

and load it into sales, marketing, and analytics tools
– trigger a webhook or make an API call when data changes
– move extracted data to a production database

● Reverse ETL tools offer connectors for many cloud apps
● Startups that are building reverse ETL products:

  Hightouch,Census, Grouparoo, Headsup, Polytomic, SeekWell
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