
4/9/2018

1

Data Management for Big Data
Part 1

Valentina Ivanova

IDA, Linköping University

Outline – Today – Part 1

• RDBMS NoSQL NewSQL

• DBMS – OLAP vs OLTP (ACID)

• NoSQL Concepts and Techniques

– Horizontal scalability

– Consistency models

• CAP theorem: BASE vs ACID

– Consistent hashing

– Vector clocks

• NoSQL Systems - Types and Applications

• Hadoop Distributed File System - HDFS

2018-04-09 2Databases for Big Data / Valentina Ivanova

Outline – Next Lecture – Part 2

• Amazon DynamoDB

• HBase

• Hive

• Shark

2018-04-09 3Databases for Big Data / Valentina Ivanova DB rankings – September 2016

http://db-engines.com/en/ranking

RDBMS NoSQL NewSQL

2018-04-09 5Databases for Big Data / Valentina Ivanova

DBMS history (Why NoSQL?)

• 1960 – Navigational databases

• 1970 – Relational databases (RDBMS)

• 1990 – Object-oriented databases and Data
Warehouses

• 2000 – XML databases

• Mid 2000 – first NoSQL

• 2011 – NewSQL

2018-04-09 6Databases for Big Data / Valentina Ivanova

4/9/2018

2

RDBMS

• Established technology

• Rare schema changes

• Transactions support & ACID properties

• Powerful query language – SQL

• Experiences administrators

• Many vendors

2018-04-09 7Databases for Big Data / Valentina Ivanova

item id name color size

45 skirt white L

65 dress red M

Table: Item

But … – One Size Does Not Fit All[1]

• Requirements have changed:

– Frequent schema changes,
management of unstructured
and semi-structured data

– Huge datasets

– RDBMSs are not designed to be

• distributed

• continuously available

– High read and write scalability

– Different applications have different requirements[1]

2018-04-09 8Databases for Big Data / Valentina Ivanova

[1] “One Size Fits All”: An Idea Whose Time Has Come and Gone https://cs.brown.edu/~ugur/fits_all.pdf
Figure from: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

NoSQL (not-only-SQL)

• A broad category of disparate solutions

• Simple and flexible non-relational data models

– schema-on-read vs schema-on-write

• High availability & relax data consistency requirement (CAP
theorem)

– BASE vs ACID

• Fault tolerant

– easy to distribute – horizontal scalability

– data are replicated to multiple nodes

• Cheap & easy (or not) to implement (open source)

2018-04-09 9Databases for Big Data / Valentina Ivanova

But …

• No support for SQL Low level programming
data analysists need to write custom programs

• No ACID

• Huge investments already made in SQL systems and
experienced developers

• NoSQL systems do not provide interfaces to existing
tools

2018-04-09 10Databases for Big Data / Valentina Ivanova

NewSQL[DataMan]

• First mentioned in 2011

• Supports the relational model

– with horizontal scalability & fault tolerance

• Query language - SQL

• ACID

• Different data representation internally

• VoltDB, NuoDB, Clustrix, Google Spanner

2018-04-09 11Databases for Big Data / Valentina Ivanova

NewSQL Applications[DataMan]

• RBDMS applicable scenarios

– transaction and manipulation of more than one object, e.g.,
financial applications

– strong consistency requirements, e.g., financial applications

– schema is known in advance and unlikely to change a lot

• But also Web-based applications[1]

– with different collection of OLTP requirements

• multi-player games, social networking sites

– real-time analytics (vs traditional business intelligence
requests)

[1] http://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext

2018-04-09 12Databases for Big Data / Valentina Ivanova

https://cs.brown.edu/~ugur/fits_all.pdf

4/9/2018

3

DBMS – OLAP and OLTP

2018-04-09 13Databases for Big Data / Valentina Ivanova

DBMS applications – OLAP and OLTP

• OLTP – Online transaction processing - RDBMS

– university database; bank database; a database with
cars and their owners; online stores

• OLAP – Online analytical processing - Data
warehouses

– Summaries of multidimensional data

Example: sale (item, color, size, quantity)

What color/type of clothes is popular this season?

2018-04-09 14Databases for Big Data / Valentina Ivanova

DBMS applications – OLTP

2018-04-09 15Databases for Big Data / Valentina Ivanova

order id customer

1 22

2 33

order id Item id quantity

1 45 1

1 55 1

1 65 2

2 65 1

item id name color size

45 skirt white L

65 dress red M

Table: Order

Table: Cart

Table: Item

DBMS applications – OLAP

2018-04-09 16Databases for Big Data / Valentina Ivanova

c
o

lo
r

item namedress

red

white

all

size M
S

all

skirt

all

Table:
Aggregated Sales

DBMS applications – OLAP and OLTP
• Relational DBMS vs Data Warehouse

http://datawarehouse4u.info/OLTP-vs-OLAP.html

RDBMS (OLTP) Data Warehouse (OLAP)

Source of data
Operational data; OLTPs are the original source of
the data.

Consolidation data; OLAP data comes from the various
OLTP DBs

Purpose of data To control and run fundamental business tasks
To help with planning, problem solving, and decision
support

What the data Reveals a snapshot of ongoing business processes
Multi-dimensional views of various kinds of business
activities

Inserts & Updates
Short and fast inserts and updates initiated by end
users

Periodic long-running batch jobs refresh the data

Queries
Relatively standardized and simple queries returning
relatively few records

Often complex queries involving aggregations

Processing Speed Typically very fast Depends on the amount of data involved

Space Requirements
Can be relatively small if historical data is archived Larger due to the existence of aggregation structures and

history data;

Database Design Highly normalized, many tables Typically de-normalized, fewer tables

Backup & Recovery Highly important Reloading from OLTPs

DBMS applications – OLTP

• OLTP – Online transaction processing

– large number of data reads, writes and updates
transactions!

Read-item(my-account)

my-account := my-account – 2000

Write-item(my-account)

Read-item(other-account)

other-account := other-account + 2000

Write-item(other-account)

2018-04-09 18Databases for Big Data / Valentina Ivanova

http://datawarehouse4u.info/OLTP-vs-OLAP.html

4/9/2018

4

DBMS applications – Transactions

• A transaction is a logical unit of database processing
and consists of one or several operations.

– Begin transaction

– (Several) Read and write operations

– Commit or rollback

– End transaction

• It leaves the database in a consistent state

2018-04-09 19Databases for Big Data / Valentina Ivanova

DBMS applications – Transactions

Transaction 1 Time Transaction 2

Read-item(my-account)
my-account := my-account – 2000

Read-item(my-account)
my-account := my-account +1000

Write-item(my-account)
Read-item(other-account)

Write-item(my-account)

Other-account := other-account + 2000
Write-item(other-account)

2018-04-09 20Databases for Big Data / Valentina Ivanova

DBMS applications – Transactions

Transaction 1 Time Transaction 2

Read-item(5000)
my-account := 5000 – 2000

Read-item(5000)
my-account := 5000 +1000

Write-item(3000)
Read-item(other-account)

Write-item(6000)

Other-account := other-account + 2000
Write-item(other-account)

2018-04-09 21Databases for Big Data / Valentina Ivanova

DBMS applications – Transactions

Transaction 1 Time Transaction 2

Read-item(my-account)
my-account := my-account – 2000
Write-item(my-account)
Read-item(other-account)
Other-account := other-account + 2000
Write-item(other-account)

Read-item(my-account)
my-account := my-account +1000

Write-item(my-account)

2018-04-09 22Databases for Big Data / Valentina Ivanova

DBMS applications – Transactions

Transaction 1 Time Transaction 2

Read-item(5000)
my-account := 5000 – 2000
Write-item(3000)
Read-item(other-account)
Other-account := other-account + 2000
Write-item(other-account)

Read-item(3000)
my-account := 3000 +1000

Write-item(4000)

2018-04-09 23Databases for Big Data / Valentina Ivanova

Transactions - ACID properties

• Atomicity A transaction is an atomic unit: It is
either executed completely or not at all

• Consistency A database that is in a consistent
state before the execution of a transaction, is also in a
consistent state after the execution of the transaction

• Isolation A transaction should act as if it is
executed in isolation from the other transactions

• Durability Changes in the database made by a
committed transaction are permanent

2018-04-09 24Databases for Big Data / Valentina Ivanova

4/9/2018

5

NoSQL Concepts and Techniques

2018-04-09 25Databases for Big Data / Valentina Ivanova

NoSQL Databases (not only SQL)
nosql-database.org

NoSQL Definition:

Next Generation Databases mostly addressing some of
the points: being non-relational, distributed,
open source and horizontally scalable.

The original intention has been modern web-scale
databases. ... Often more characteristics apply as:
schema-free, easy replication support, simple
API, eventually consistent/BASE (not ACID), a
huge data amount, and more.

2018-04-09Databases for Big Data / Valentina Ivanova 26

NoSQL: Concepts

Scalability: system can handle growing amounts of data
without losing performance.

• Vertical Scalability (scale up)

– add resources (more CPUs, more memory) to a single node

– using more threads to handle a local problem

• Horizontal Scalability (scale out)

– add nodes (more computers, servers) to a distributed system

– gets more and more popular due to low costs for commodity
hardware

– often surpasses scalability of vertical approach

2018-04-09Databases for Big Data / Valentina Ivanova 27

Distributed (Data Management) Systems

• Number of processing nodes interconnected by a
computer network

• Data is stored, replicated, updated and processed
across the nodes

• Networks failures are given, not an exception

– Network is partitioned

– Communication between nodes is an issue

 Data consistency vs Availability

2018-04-09 28Databases for Big Data / Valentina Ivanova

Consistency models[Vogels]

• A distributed system through the developers’ eyes

– Storage system as a black box

– Independent processes that write and read to the storage

• Strong consistency – after the update completes, any
subsequent access will return the updated value.

• Weak consistency – the system does not guarantee
that subsequent accesses will return the updated
value.

– inconsistency window

292018-04-09Databases for Big Data / Valentina Ivanova

Consistency models[Vogels]

• Weak consistency

– Eventual consistency – if no new updates are made to the
object, eventually all accesses will return the last updated
value

• Popular example: DNS

2018-04-09 30Databases for Big Data / Valentina Ivanova

4/9/2018

6

Consistency models[Vogels]

• Server side view of a distributed system – Quorum

– N – number of nodes that store replicas

– R – number of nodes for a successful read

– W – number of nodes for a successful write

2018-04-09 31Databases for Big Data / Valentina Ivanova

Consistency models[Vogels]

• Server side view of a distributed system – Quorum

– High read loads – hundreds of N, R=1

– Fault tolerance/availability (& relaxed consistency) W=1

– R + W > N strong consistency

• Consistency (& reduced availability) W=N

– R + W ≤ N eventual consistency

• Inconsistency window – the period until all replicas have been
updated in a lazy manner

2018-04-09 32Databases for Big Data / Valentina Ivanova

NoSQL: Concepts

CAP Theorem: Consistency, Availability,
Partition Tolerance [Brewer]

Theorem
(Gilbert, Lynch SIGACT'2002):
only 2 of the 3 guarantees
can be given in a shared-data
system.

2018-04-09Databases for Big Data / Valentina Ivanova 33

NoSQL: Concepts

CAP Theorem: Consistency, Availability,
Partition Tolerance[Brewer]

• Consistency

– after an update, all readers in a distributed system see the
same data

– all nodes are supposed to contain the same data at all times

• Example

– single database instance will always be consistent

– if multiple instances exist, all writes must be duplicated
before write operation is completed

2018-04-09Databases for Big Data / Valentina Ivanova 34

NoSQL: Concepts

CAP Theorem: Consistency, Availability,
Partition Tolerance[Brewer]

• Availability

– all requests will be answered, regardless of crashes or
downtimes

• Example

– a single instance has an availability of 100% or 0%, two
servers may be available 100%, 50%, or 0%

2018-04-09Databases for Big Data / Valentina Ivanova 35

NoSQL: Concepts

CAP Theorem: Consistency, Availability,
Partition Tolerance[Brewer]

• Partition Tolerance

– system continues to operate, even if two sets of servers get
isolated

• Example

– system gets partitioned if connection between server clusters
fails

– failed connection will not cause troubles if system is tolerant

2018-04-09Databases for Big Data / Valentina Ivanova 36

4/9/2018

7

NoSQL: Concepts

CAP Theorem: Consistency, Availability,
Partition Tolerance[Brewer]

• (Positive) consequence: we can
concentrate on two challenges

• ACID properties needed to
guarantee consistency and
availability

• BASE properties come into play if
availability and partition tolerance
is favored

2018-04-09Databases for Big Data / Valentina Ivanova 37

NoSQL: Concepts

ACID: Atomicity, Consistency, Isolation,
Durability

• Atomicity all operations in a transaction will
complete, or none will

• Consistency before and after the transaction, the
database will be in a consistent state

• Isolation operations cannot access data that is
currently modified

• Durability data will not be lost upon completion
of a transaction

2018-04-09Databases for Big Data / Valentina Ivanova 38

NoSQL: Concepts

BASE: Basically Available, Soft State, Eventual
Consistency [Fox]

• Basically Available an application works
basically all the time (despite partial failures)

• Soft State is in flux and non-deterministic
(changes all the time even without input)

• Eventual Consistency will be in some
consistent state (at some time in future)

2018-04-09Databases for Big Data / Valentina Ivanova 39

NoSQL: Concepts

CAP Theorem: Consistency, Availability,
Partition Tolerance[Brewer]

• (Positive) consequence: we can
concentrate on two challenges

• ACID properties needed to

guarantee consistency and
availability

• BASE properties come into play if
availability and partition tolerance
is favored

2018-04-09Databases for Big Data / Valentina Ivanova 40

NoSQL: Techniques

Basic techniques (widely applied in NoSQL systems)

• distributed data storage, replication (how to
distribute the data) Consistent hashing

• distributed query strategy (horizontal scalability)
MapReduce (in the MapReduce lecture)

• recognize order of distributed events and potential
conflicts Vector clock (later in this lecture)

2018-04-09Databases for Big Data / Valentina Ivanova 41

NoSQL: Techniques – Consistent Hashing [Karger]

Task

• find machine that stores data for a specified key k

• trivial hash function to distribute data on n nodes:
h(k; n) = k mod n

• if number of nodes changes, all data will have to be
redistributed!

Challenge

• minimize number of nodes to be copied after a
configuration change

• incorporate hardware characteristics into hashing model

2018-04-09Databases for Big Data / Valentina Ivanova 42

4/9/2018

8

NoSQL: Techniques – Consistent Hashing [Karger]

Basic idea

• arrange the nodes in a ring and
each node is in charge of the hash
values in the range between its
neighbor node

• include hash values of all nodes in
hash structure

• calculate hash value of the key to
be added/retrieved

• choose node which occurs next
clockwise in the ring

2018-04-09Databases for Big Data / Valentina Ivanova 43

NoSQL: Techniques – Consistent Hashing [Karger]

• include hash values of all nodes in
hash structure

• calculate hash value of the key to
be added/retrieved

• choose node which occurs next
clockwise in the ring

• if node is dropped or gets lost,
missing data is redistributed to
adjacent nodes (replication issue)

2018-04-09Databases for Big Data / Valentina Ivanova 44

NoSQL: Techniques – Consistent Hashing [Karger]

• if a new node is added, its hash
value is added to the hash table

• the hash realm is repartitioned, and
hash data will be transferred to new
neighbor

→ no need to update remaining
nodes!

2018-04-09Databases for Big Data / Valentina Ivanova 45

NoSQL: Techniques – Consistent Hashing [Karger]

• A replication factor r is introduced: not only the next node
but the next r nodes in clockwise direction become
responsible for a key

• Number of added keys can be made dependent on node
characteristics (bandwidth, CPU, ...)

2018-04-09Databases for Big Data / Valentina Ivanova 46

NoSQL: Techniques – Logical Time

Challenge

• recognize order of distributed events and potential
conflicts

• most obvious approach: attach timestamp (ts) of
system clock to each

event e → ts(e)

→ error-prone, as clocks will never be fully synchronized

→ insufficient, as we cannot catch causalities (needed to detect
conflicts)

2018-04-09Databases for Big Data / Valentina Ivanova 47

NoSQL: Techniques – Vector Clock[Coulouris]

• A vector clock for a system of N nodes is an array of N integers.

• Each process keeps its own vector clock, Vi , which it uses to
timestamp local events.

• Processes piggyback vector timestamps on the messages they
send to one another, and there are simple rules for updating the
clocks:

– VC1: Initially, Vi [j] = 0, for i , j = 1, 2, … N

– VC2: Just before pi timestamps an event, it sets Vi [i] := Vi [i] + 1

– VC3: pi includes the value t = Vi in every message it sends

– VC4: When pi receives a timestamp t in a message, it sets
Vi [j] := max(Vi [j]; t [j]), for j = 1, 2, … N

2018-04-09Databases for Big Data / Valentina Ivanova 48

4/9/2018

9

NoSQL: Techniques – Vector Clock[Coulouris]

• VC1: Initially, Vi [j] = 0, for i , j = 1, 2, … N

• VC2: Just before pi timestamps an event,
it sets Vi [i] := Vi [i] + 1

2018-04-09Databases for Big Data / Valentina Ivanova 49

VC1:(0,0,0)

VC1:(0,0,0)

VC1:(0,0,0)

NoSQL: Techniques – Vector Clock[Coulouris]

• VC3: pi includes the value t = Vi in every message it
sends

• VC4: When pi receives a timestamp t in a message,
it sets Vi [j] := max(Vi [j]; t [j]), for j = 1, 2, … N

2018-04-09Databases for Big Data / Valentina Ivanova 50

VC2:(0,1,0)

NoSQL: Techniques – Vector Clock[Coulouris]

Properties:

• V = V' iff V[j] = V'[j] for j = 1, 2, … N

• V ≤ V‘ iff V[j] ≤ V'[j] for j = 1, 2, … N

• V < V' iff V ≤ V' and V ≠ V'

two events e and e': that e → e' ↔ V(e) < V(e')

→ Conflict detection! (c ‖ e since neither V(c) ≤ V(e) nor V(e) ≤ V(c))

c & e are concurrent

2018-04-09Databases for Big Data / Valentina Ivanova 51

NoSQL Systems – Types and
Applications

2018-04-09 52Databases for Big Data / Valentina Ivanova

NoSQL Classification Dimensions[HBase]

• Data model – how the data is stored

• Storage model – in-memory vs persistent

• Consistency model – strict, eventual consistent, etc.

– Affects reads and writes requests

• Physical model – distributed vs single machine

• Read/Write performance – what is the proportion
between reads and writes

• Secondary indexes - sort and access tables based on
different fields and sorting orders

532018-04-09Databases for Big Data / Valentina Ivanova

NoSQL Classification Dimensions[HBase]

• Failure handling – how to address machine failures

• Compression – result in substantial savings in raw
storage

• Load balancing – how to address high read or write
rates

• Atomic read-modify-write – difficult to achieve in a
distributed system

• Locking, waits and deadlocks – locking models and
version control

542018-04-09Databases for Big Data / Valentina Ivanova

4/9/2018

10

NoSQL Data Models

• Key-Value Stores

• Document Stores

• Column-Family Stores

• Graph Databases

• Impacts application,
querying, scalability

2018-04-09 55Databases for Big Data / Valentina Ivanova

figure from [DataMan]

DBs not referred as NoSQL

• Object DBs

• XML DBs

• Special purpose DBs

– Stream processing

2018-04-09 56Databases for Big Data / Valentina Ivanova

Key-Value Stores[DataMan]

• Schema-free

– Keys are unique

– Values of arbitrary types

• Efficient in storing distributed data

• (very) Limited query facilities and indexing

– get(key), put(key, value)

– Value opaque to the data store no data level querying
and indexing

2018-04-09 57Databases for Big Data / Valentina Ivanova

Key-Value Stores[DataMan]

• Types

– In-memory stores – Memcached, Redis

– Persistent stores – BerkeleyDB, Voldemort,
RiakDB

• Not suitable for

– structures and relations

– accessing multiple items (since the access is by key and often
no transactional capabilities)

2018-04-09 58Databases for Big Data / Valentina Ivanova

Key-Value Stores[DataMan]

• Applications:

– Storing web session information

– User profiles and configuration

– Shopping cart data

– Using them as a caching layer to store results of expensive
operations (create a user-tailored web page)

2018-04-09 59Databases for Big Data / Valentina Ivanova

Column-Family Stores[DataMan]

• Schema-free

– Rows have unique keys

– Values are varying column
families and act as keys for
the columns they hold

– Columns consist of key-value pairs

• Better than key-value stores for querying and
indexing

2018-04-09 60Databases for Big Data / Valentina Ivanova

4/9/2018

11

Column-Family Stores[DataMan]

• Types

– Googles BigTable, Hadoop HBase

– No column families –
Amazon SimpleDB, DynamoDB

– Supercolumns - Cassandra

• Not suitable for

– structures and relations

– highly dynamic queries (HBase and Cassandra)

2018-04-09 61Databases for Big Data / Valentina Ivanova

Column-Family Stores[DataMan]

• Applications:

– Document stores applications

– Analytics scenarios – HBase and
Cassandra

• Web analytics

• Personalized search

• Inbox search

2018-04-09 62Databases for Big Data / Valentina Ivanova

Document Stores[DataMan]

• Schema-free

– Keys are unique

– Values are documents – complex
(nested) data structures in JSON,
XML, binary (BSON), etc.

• Indexing and querying based
on primary key and content

• The content needs to be representable as a document

• MongoDB, CouchDB, Couchbase

2018-04-09 63Databases for Big Data / Valentina Ivanova

Document Stores[DataMan]

• Applications:

– Items with similar nature but
different structure

– Blogging platforms

– Content management systems

– Event logging

– Fast application development

2018-04-09 64Databases for Big Data / Valentina Ivanova

Graph Databases[DataMan]

• Graph model

– Nodes/vertices and links/edges

– Properties consisting of key-value pairs

• Suitable for very interconnected
data since they are efficient in
traversing relationships

• Not as efficient

– as other NoSQL solutions for non-graph applications

– horizontal scaling

• Neo4J, HyperGraphDB

2018-04-09 65Databases for Big Data / Valentina Ivanova

Graph Databases[DataMan]

• Applications:

– location-based services

– recommendation engines

– complex network-based applications

• social, information, technological,
and biological network

– memory leak detection

2018-04-09 66Databases for Big Data / Valentina Ivanova

4/9/2018

12

Multi-model Databases

• … but one application can actually require different
data models for the different data it stores

• Provide support for multiple data models against a
single backend:

– OrientDB supports key-value, document, graph &
object models; geospatial data;

– ArangoDB supports key-value, document & graph
models stored in JSON; common query language;

• How to query the different models in a uniform way

2018-04-09 67NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Big Data Analytics Stack

2018-04-09 68Databases for Big Data / Valentina Ivanova

figure from: https://www.sics.se/~amir/dic.htm

HDFS[Hadoop][HDFS][HDFSpaper]

Hadoop Distributed File System

2018-04-09 69Databases for Big Data / Valentina Ivanova

Compute Nodes[Massive]

• Compute node – processor, main memory, cache and
local disk

• Organized into racks

• Intra-rack connection typically gigabit speed

• Inter-rack connection slower by a small factor

702018-04-09Databases for Big Data / Valentina Ivanova

HDFS (Hadoop Distributed File System)

• Runs on top of the native file system

– Files are very large divided into 128 MB chunks/blocks

• To minimize the cost of seeks

– Caching blocks is possible

– Single writer, multiple readers

– Exposes the locations of file blocks via API

– Fault tolerance and availability to address disk/node failures

• Usually replicated three times on different compute
nodes

• Based on GFS (Google File System - proprietary)

2018-04-09 71Databases for Big Data / Valentina Ivanova

HDFS is Good for …

• Store very large files – GBs and TBs

• Streaming access

– Write-once, read many times

– Time to read the entire dataset is more important than the
latency in reading the first record.

• Commodity hardware

– Clusters are built from commonly available hardware

– Designed to continue working without a noticeable
interruption in case of failure

2018-04-09 72Databases for Big Data / Valentina Ivanova

4/9/2018

13

HDFS is currently Not Good for …

• Low-latency data access

– HDFS is optimized for delivering high throughput of data

• Lots of small files

– the amount of files is limited by the memory of the
namenode; blocks location is stored in memory

• Multiple writers and arbitrary file modifications

– HDFS files are append only – write always at the end of the
file

2018-04-09 73Databases for Big Data / Valentina Ivanova

HDFS Organization

• Namenode (master)

– Manages the filesystem namespace and metadata

– Stores in memory the location of all blocks for a given file

• Datanodes (workers)

– Store and retrieve blocks

– Send heartbeat to the namenode

• Secondary namenode

– Periodically merges the namespace image with the edit log

– Not a backup for a namenode, only a checkpoint

2018-04-09 74Databases for Big Data / Valentina Ivanova

HDFS Organization

2018-04-09 75Databases for Big Data / Valentina Ivanova

secondary

figure based on a figure from [Hadoop]

Block Placement and Replication

• Aim – improve data reliability, availability and
network bandwidth utilization

• Default replica placement policy

– No Datanode contains more than one replica

– No rack contains more than two replicas of the same block

• Namenode ensures the number of replicas is reached

• Balancer tool – balances the disk space usage

• Block scanner – periodically verifies checksums

2018-04-09 76Databases for Big Data / Valentina Ivanova

77

Racks of Compute Nodes

File

Chunks Source: J. D. Ullman invited talk EDBT 2011

2018-04-09Databases for Big Data / Valentina Ivanova Default HDFS Block Placement Policy

• 1st replica located on the writer node

• 2nd and 3rd replicas on two different nodes in a
different rack

• The other replicas are located on random nodes

4/9/2018

14

HDFS – File Reads

2018-04-09 79Databases for Big Data / Valentina Ivanova

figure from [Hadoop]

HDFS – File Writes

2018-04-09 80Databases for Big Data / Valentina Ivanova

figure from [Hadoop]

HDFS – High Availability

• The namenode is single point of failure:

– If a namenode crashes the cluster is down

• Secondary node

– periodically merges the namespace image with the edit log
to prevent the edit log from becoming too large.

– lags the state of the primary prevents data loss but does not
provide high availability

– time for cold start 30 minutes

• In practice, the case for planned downtime is more important

2018-04-09 81Databases for Big Data / Valentina Ivanova

HDFS – High Availability

• Pair of namenodes in an active stand-by
configuration:

– Highly available shared storage for the shared edit log

– Datanodes send block reports to all namenodes

– Clients must provide transparent to the user mechanism to
handle failover

– The standby node takes checkpoints of the active namenode
namespace instead of the secondary node

2018-04-09 82Databases for Big Data / Valentina Ivanova

HDFS commands

• List all options for the hdfs dfs

– hdfs dfs -help

– dfs – run a filesystem command

• Create a new folder

– hdfs dfs -mkdir /BigDataAnalytics

• Upload a file from the local file system to the HDFS

– hdfs dfs -put bigdata /BigDataAnalytics

2018-04-09 83Databases for Big Data / Valentina Ivanova

HDFS commands

• List the files in a folder

– hdfs dfs -ls /BigDataAnalytics

• Determine the size of a file

– hdfs dfs -du -h /BigDataAnalytics/bigdata

• Print the first 5 lines from a file

– hdfs dfs -cat /BigDataAnalytics/bigdata |

head -n 5

• Copy a file to another folder

– hdfs dfs –cp /BigDataAnalytics/bigdata

/BigDataAnalytics/AnotherFolder

2018-04-09 84Databases for Big Data / Valentina Ivanova

4/9/2018

15

HDFS commands

• Copy a file to a local filesystem and rename it

– hdfs dfs -get /BigDataAnalytics/bigdata

bigdata_localcopy

• Scan the entire HDFS for problems

– hdfs fsck /

• Delete a file from HDFS

– hdfs dfs -rm /BigDataAnalytics/bigdata

• Delete a folder from HDFS

– hdfs dfs -rm -r /BigDataAnalytics

2018-04-09 85Databases for Big Data / Valentina Ivanova

References

• A comparison between several NoSQL databases with comments and notes by
Bogdan George Tudorica, Cristian Bucur

• nosql-databases.org

• Scalable SQL and NoSQL data stores by Rick Cattel

• [Brewer] Towards Robust Distributed Systems @ACM PODC'2000

• [12 years later] CAP Twelve Years Later: How the "Rules" Have Changed, Eric A.
Brewer, @Computer Magazine 2012. https://www.infoq.com/articles/cap-
twelve-years-later-how-the-rules-have-changed

• [Fox et al.] Cluster-Based Scalable Network Services @SOSP'1997

• [Karger et al.] Consistent Hashing and Random Trees @ACM STOC'1997

• [Coulouris et al.] Distributed Systems: Concepts and Design, Chapter: Time &
Global States, 5th Edition

• [DataMan] Data Management in cloud environments: NoSQL and NewSQL
data stores.

2018-04-09 86Databases for Big Data / Valentina Ivanova

References

• NoSQL Databases - Christof Strauch – University of Stuttgart

• The Beckman Report on Database Research

• [Vogels] Eventually Consistent by Werner Vogels, doi:10.1145/1435417.1435432

• [Hadoop] Hadoop The Definitive Guide, Tom White, 2011

• [Hive] Hive - a petabyte scale data warehouse using Hadoop

• https://github.com/Prokopp/the-free-hive-book

• [Massive] Mining of Massive Datasets

• [HiveManual]
https://cwiki.apache.org/confluence/display/Hive/LanguageManual

• [Shark] Shark: SQL and Rich Analytics at Scale

• [SparkSQLHistory] https://databricks.com/blog/2014/07/01/shark-spark-sql-
hive-on-spark-and-the-future-of-sql-on-spark.html

2018-04-09 87Databases for Big Data / Valentina Ivanova

References

• [HDFS] The Hadoop Distributed File System

• [Dynamo] Dynamo: Amazon’s Highly Available Key-value Store, 2007

• [HBaseInFacebook] Apache hadoop goes realtime at Facebook

• [HBase] HBase The Definitive Guide, 2011

• [HDFSpaper] The Hadoop Distributed File System @MSST2010

2018-04-09 88Databases for Big Data / Valentina Ivanova

https://github.com/Prokopp/the-free-hive-book
https://cwiki.apache.org/confluence/display/Hive/LanguageManual

