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Data Management for Big Data 
Part 1

Valentina Ivanova

IDA, Linköping University

Outline – Today – Part 1

• RDBMS NoSQL NewSQL

• DBMS – OLAP vs OLTP (ACID)

• NoSQL Concepts and Techniques

– Horizontal scalability

– Consistency models

• CAP theorem: BASE vs ACID

– Consistent hashing

– Vector clocks

• NoSQL Systems - Types and Applications

• Hadoop Distributed File System - HDFS
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Outline – Next Lecture – Part 2

• Amazon DynamoDB

• HBase

• Hive

• Shark
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http://db-engines.com/en/ranking

RDBMS  NoSQL  NewSQL
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DBMS history (Why NoSQL?)

• 1960 – Navigational databases

• 1970 – Relational databases (RDBMS)

• 1990 – Object-oriented databases and Data 
Warehouses

• 2000 – XML databases

• Mid 2000 – first NoSQL

• 2011 – NewSQL
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RDBMS

• Established technology

• Rare schema changes

• Transactions support & ACID properties

• Powerful query language – SQL

• Experiences administrators

• Many vendors
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item id name color size

45 skirt white L

65 dress red M

Table: Item

But … – One Size Does Not Fit All[1]

• Requirements have changed:

– Frequent schema changes, 
management of unstructured 
and semi-structured data

– Huge datasets 

– RDBMSs are not designed to be

• distributed

• continuously available

– High read and write scalability

– Different applications have different requirements[1]
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[1] “One Size Fits All”: An Idea Whose Time Has Come and Gone https://cs.brown.edu/~ugur/fits_all.pdf
Figure from: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

NoSQL (not-only-SQL)

• A broad category of disparate solutions

• Simple and flexible non-relational data models

– schema-on-read vs schema-on-write

• High availability & relax data consistency requirement (CAP 
theorem)

– BASE vs ACID

• Fault tolerant

– easy to distribute – horizontal scalability

– data are replicated to multiple nodes 

• Cheap & easy (or not) to implement (open source)
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But …

• No support for SQL  Low level programming 
data analysists need to write custom programs

• No ACID

• Huge investments already made in SQL systems and 
experienced developers

• NoSQL systems do not provide interfaces to existing 
tools 
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NewSQL[DataMan]

• First mentioned in 2011

• Supports the relational model 

– with horizontal scalability & fault tolerance

• Query language - SQL

• ACID

• Different data representation internally

• VoltDB, NuoDB, Clustrix, Google Spanner
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NewSQL Applications[DataMan]

• RBDMS applicable scenarios

– transaction and manipulation of more than one object, e.g., 
financial applications

– strong consistency requirements, e.g., financial applications

– schema is known in advance and unlikely to change a lot

• But also Web-based applications[1] 

– with different collection of OLTP requirements 

• multi-player games, social networking sites

– real-time analytics (vs traditional business intelligence 
requests)

[1] http://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
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DBMS – OLAP and OLTP
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DBMS applications – OLAP and OLTP

• OLTP – Online transaction processing - RDBMS

– university database; bank database; a database with 
cars and their owners; online stores

• OLAP – Online analytical processing - Data 
warehouses 

– Summaries of multidimensional data

Example: sale (item, color, size, quantity)

What color/type of clothes is popular this season?

2018-04-09 14Databases for Big Data / Valentina Ivanova

DBMS applications – OLTP
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order id customer 

1 22

2 33

order id Item id quantity

1 45 1

1 55 1

1 65 2

2 65 1

item id name color size

45 skirt white L

65 dress red M

Table: Order

Table: Cart

Table: Item

DBMS applications – OLAP
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Table: 
Aggregated Sales

DBMS applications – OLAP and OLTP
• Relational DBMS vs Data Warehouse 

http://datawarehouse4u.info/OLTP-vs-OLAP.html

RDBMS (OLTP) Data Warehouse (OLAP)

Source of data
Operational data; OLTPs are the original source of 
the data.

Consolidation data; OLAP data comes from the various 
OLTP DBs

Purpose of data To control and run fundamental business tasks
To help with planning, problem solving, and decision 
support

What the data Reveals a snapshot of ongoing business processes
Multi-dimensional views of various kinds of business 
activities

Inserts & Updates
Short and fast inserts and updates initiated by end 
users

Periodic long-running batch jobs refresh the data

Queries
Relatively standardized and simple queries returning 
relatively few records

Often complex queries involving aggregations

Processing Speed Typically very fast Depends on the amount of data involved

Space Requirements
Can be relatively small if historical data is archived Larger due to the existence of aggregation structures and 

history data; 

Database Design Highly normalized, many tables Typically de-normalized, fewer tables

Backup & Recovery Highly important Reloading from OLTPs

DBMS applications – OLTP

• OLTP – Online transaction processing

– large number of data reads, writes and updates 
transactions!

Read-item(my-account)

my-account := my-account – 2000

Write-item(my-account)

Read-item(other-account)

other-account := other-account + 2000

Write-item(other-account)
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http://datawarehouse4u.info/OLTP-vs-OLAP.html
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DBMS applications – Transactions

• A transaction is a logical unit of database processing 
and consists of one or several operations.

– Begin transaction

– (Several) Read and write operations

– Commit or rollback

– End transaction

• It leaves the database in a consistent state
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DBMS applications – Transactions

Transaction 1                                       Time                               Transaction 2

Read-item(my-account)
my-account := my-account – 2000

Read-item(my-account)
my-account := my-account +1000

Write-item(my-account)
Read-item(other-account)

Write-item(my-account)

Other-account := other-account + 2000
Write-item(other-account)
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DBMS applications – Transactions

Transaction 1                                       Time                               Transaction 2

Read-item(5000)
my-account := 5000 – 2000

Read-item(5000)
my-account := 5000 +1000

Write-item(3000)
Read-item(other-account)

Write-item(6000)

Other-account := other-account + 2000
Write-item(other-account)
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DBMS applications – Transactions

Transaction 1                                       Time                               Transaction 2

Read-item(my-account)
my-account := my-account – 2000
Write-item(my-account)
Read-item(other-account)
Other-account := other-account + 2000
Write-item(other-account)

Read-item(my-account)
my-account := my-account +1000

Write-item(my-account)
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DBMS applications – Transactions

Transaction 1                                       Time                               Transaction 2

Read-item(5000)
my-account := 5000 – 2000
Write-item(3000)
Read-item(other-account)
Other-account := other-account + 2000
Write-item(other-account)

Read-item(3000)
my-account := 3000 +1000

Write-item(4000)
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Transactions - ACID properties

• Atomicity  A transaction is an atomic unit: It is 
either executed completely or not at all

• Consistency A database that is in a consistent 
state before the execution of a transaction, is also in a 
consistent state after the execution of the transaction

• Isolation A transaction should act as if it is 
executed in isolation from the other transactions

• Durability Changes in the database made by a 
committed transaction are permanent
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NoSQL Concepts and Techniques 
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NoSQL Databases (not only SQL)
nosql-database.org

NoSQL Definition:

Next Generation Databases mostly addressing some of
the points: being non-relational, distributed,
open source and horizontally scalable.

The original intention has been modern web-scale
databases. ... Often more characteristics apply as:
schema-free, easy replication support, simple
API, eventually consistent/BASE (not ACID), a
huge data amount, and more.
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NoSQL: Concepts

Scalability: system can handle growing amounts of data 
without losing performance.

• Vertical Scalability (scale up)

– add resources (more CPUs, more memory) to a single node

– using more threads to handle a local problem

• Horizontal Scalability (scale out)

– add nodes (more computers, servers) to a distributed system

– gets more and more popular due to low costs for commodity 
hardware

– often surpasses scalability of vertical approach
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Distributed (Data Management) Systems

• Number of processing nodes interconnected by a 
computer network

• Data is stored, replicated, updated and processed 
across the nodes

• Networks failures are given, not an exception

– Network is partitioned

– Communication between nodes is an issue

 Data consistency vs Availability
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Consistency models[Vogels]

• A distributed system through the developers’ eyes

– Storage system as a black box

– Independent processes that write and read to the storage

• Strong consistency – after the update completes, any 
subsequent access will return the updated value.

• Weak consistency – the system does not guarantee 
that subsequent accesses will return the updated 
value. 

– inconsistency window

292018-04-09Databases for Big Data / Valentina Ivanova

Consistency models[Vogels]

• Weak consistency

– Eventual consistency – if no new updates are made to the 
object, eventually all accesses will return the last updated 
value

• Popular example: DNS
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Consistency models[Vogels]

• Server side view of a distributed system – Quorum

– N – number of nodes that store replicas 

– R – number of nodes for a successful read

– W – number of nodes for a successful write
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Consistency models[Vogels]

• Server side view of a distributed system – Quorum

– High read loads – hundreds of N, R=1

– Fault tolerance/availability (& relaxed consistency) W=1

– R + W > N strong consistency 

• Consistency (& reduced availability) W=N

– R + W ≤ N eventual consistency

• Inconsistency window – the period until all replicas have been 
updated in a lazy manner
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NoSQL: Concepts

CAP Theorem: Consistency, Availability, 
Partition Tolerance [Brewer] 

Theorem 
(Gilbert, Lynch SIGACT'2002):
only 2 of the 3 guarantees 
can be given in a shared-data 
system.
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NoSQL: Concepts

CAP Theorem: Consistency, Availability, 
Partition Tolerance[Brewer] 

• Consistency

– after an update, all readers in a distributed system see the 
same data

– all nodes are supposed to contain the same data at all times

• Example

– single database instance will always be consistent

– if multiple instances exist, all writes must be duplicated 
before write operation is completed
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NoSQL: Concepts

CAP Theorem: Consistency, Availability, 
Partition Tolerance[Brewer] 

• Availability

– all requests will be answered, regardless of crashes or 
downtimes

• Example

– a single instance has an availability of 100% or 0%, two 
servers may be available 100%, 50%, or 0%
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NoSQL: Concepts

CAP Theorem: Consistency, Availability, 
Partition Tolerance[Brewer] 

• Partition Tolerance

– system continues to operate, even if two sets of servers get 
isolated

• Example

– system gets partitioned if connection between server clusters 
fails

– failed connection will not cause troubles if system is tolerant

2018-04-09Databases for Big Data / Valentina Ivanova 36
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NoSQL: Concepts

CAP Theorem: Consistency, Availability, 
Partition Tolerance[Brewer] 

• (Positive) consequence: we can 
concentrate on two challenges

• ACID properties needed to 
guarantee consistency and 
availability

• BASE properties come into play if 
availability and partition tolerance 
is favored
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NoSQL: Concepts

ACID: Atomicity, Consistency, Isolation, 
Durability

• Atomicity all operations in a transaction will 
complete, or none will

• Consistency before and after the transaction, the 
database will be in a consistent state

• Isolation operations cannot access data that is 
currently modified

• Durability data will not be lost upon completion 
of a transaction
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NoSQL: Concepts

BASE: Basically Available, Soft State, Eventual 
Consistency [Fox] 

• Basically Available  an application works 
basically all the time (despite partial failures)

• Soft State  is in flux and non-deterministic 
(changes all the time even without input)

• Eventual Consistency  will be in some 
consistent state (at some time in future)
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NoSQL: Concepts

CAP Theorem: Consistency, Availability, 
Partition Tolerance[Brewer] 

• (Positive) consequence: we can 
concentrate on two challenges

• ACID properties needed to 

guarantee consistency and 
availability

• BASE properties come into play if 
availability and partition tolerance 
is favored
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NoSQL: Techniques

Basic techniques (widely applied in NoSQL systems)

• distributed data storage, replication (how to 
distribute the data)  Consistent hashing

• distributed query strategy (horizontal scalability) 
MapReduce (in the MapReduce lecture)

• recognize order of distributed events and potential 
conflicts  Vector clock (later in this lecture)
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NoSQL: Techniques – Consistent Hashing [Karger] 

Task

• find machine that stores data for a specified key k

• trivial hash function to distribute data on n nodes: 
h(k; n) = k mod n

• if number of nodes changes, all data will have to be 
redistributed!

Challenge 

• minimize number of nodes to be copied after a 
configuration change

• incorporate hardware characteristics into hashing model

2018-04-09Databases for Big Data / Valentina Ivanova 42
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NoSQL: Techniques – Consistent Hashing [Karger] 

Basic idea

• arrange the nodes in a ring and 
each node is in charge of the hash 
values in the range between its 
neighbor node

• include hash values of all nodes in 
hash structure

• calculate hash value of the key to
be added/retrieved

• choose node which occurs next 
clockwise in the ring

2018-04-09Databases for Big Data / Valentina Ivanova 43

NoSQL: Techniques – Consistent Hashing [Karger] 

• include hash values of all nodes in
hash structure

• calculate hash value of the key to
be added/retrieved

• choose node which occurs next
clockwise in the ring

• if node is dropped or gets lost, 
missing data is redistributed to
adjacent nodes (replication issue)
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NoSQL: Techniques – Consistent Hashing [Karger] 

• if a new node is added, its hash 
value is added to the hash table

• the hash realm is repartitioned, and
hash data will be transferred to new 
neighbor

→ no need to update remaining
nodes!
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NoSQL: Techniques – Consistent Hashing [Karger] 

• A replication factor r is introduced: not only the next node 
but the next r nodes in clockwise direction become 
responsible for a key

• Number of added keys can be made dependent on node 
characteristics (bandwidth, CPU, ...)
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NoSQL: Techniques – Logical Time

Challenge

• recognize order of distributed events and potential 
conflicts

• most obvious approach: attach timestamp (ts) of 
system clock to each

event e → ts(e)

→ error-prone, as clocks will never be fully synchronized

→ insufficient, as we cannot catch causalities (needed to detect 
conflicts)
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NoSQL: Techniques – Vector Clock[Coulouris]

• A vector clock for a system of N nodes is an array of N integers. 

• Each process keeps its own vector clock, Vi , which it uses to 
timestamp local events.

• Processes piggyback vector timestamps on the messages they 
send to one another, and there are simple rules for updating the 
clocks:

– VC1: Initially, Vi [j] = 0, for i , j = 1, 2, … N

– VC2: Just before pi timestamps an event, it sets Vi [i] := Vi [i] + 1

– VC3: pi includes the value t = Vi in every message it sends

– VC4: When pi receives a timestamp t in a message, it sets 
Vi [j] := max(Vi [j]; t [j]), for j = 1, 2, … N

2018-04-09Databases for Big Data / Valentina Ivanova 48
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NoSQL: Techniques – Vector Clock[Coulouris]

• VC1: Initially, Vi [j] = 0, for i , j = 1, 2, … N

• VC2: Just before pi timestamps an event, 
it sets Vi [i] := Vi [i] + 1

2018-04-09Databases for Big Data / Valentina Ivanova 49

VC1:(0,0,0)

VC1:(0,0,0)

VC1:(0,0,0)

NoSQL: Techniques – Vector Clock[Coulouris]

• VC3: pi includes the value t = Vi in every message it 
sends

• VC4: When pi receives a timestamp t in a message, 
it sets Vi [j] := max(Vi [j]; t [j]), for j = 1, 2, … N

2018-04-09Databases for Big Data / Valentina Ivanova 50

VC2:(0,1,0)

NoSQL: Techniques – Vector Clock[Coulouris]

Properties:

• V = V'   iff V[j] = V'[j]    for j = 1, 2, … N

• V ≤ V‘   iff V[j] ≤ V'[j]    for j = 1, 2, … N

• V < V'   iff V ≤ V' and V ≠ V'

two events e and e': that e → e' ↔ V(e) < V(e')

→ Conflict detection! (c ‖ e since neither V(c) ≤ V(e) nor V(e) ≤ V(c))

c & e are concurrent

2018-04-09Databases for Big Data / Valentina Ivanova 51

NoSQL Systems – Types and 
Applications
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NoSQL Classification Dimensions[HBase]

• Data model – how the data is stored

• Storage model – in-memory vs persistent

• Consistency model – strict, eventual consistent, etc.

– Affects reads and writes requests

• Physical model – distributed vs single machine

• Read/Write performance – what is the proportion 
between reads and writes

• Secondary indexes - sort and access tables based on 
different fields and sorting orders

532018-04-09Databases for Big Data / Valentina Ivanova

NoSQL Classification Dimensions[HBase]

• Failure handling – how to address machine failures

• Compression – result in substantial savings in raw 
storage

• Load balancing – how to address high read or write 
rates

• Atomic read-modify-write – difficult to achieve in a 
distributed system

• Locking, waits and deadlocks – locking models and 
version control

542018-04-09Databases for Big Data / Valentina Ivanova
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NoSQL Data Models

• Key-Value Stores

• Document Stores

• Column-Family Stores

• Graph Databases

• Impacts application, 
querying, scalability

2018-04-09 55Databases for Big Data / Valentina Ivanova

figure from [DataMan]

DBs not referred as NoSQL

• Object DBs

• XML DBs

• Special purpose DBs

– Stream processing
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Key-Value Stores[DataMan]

• Schema-free

– Keys are unique

– Values of arbitrary types

• Efficient in storing distributed data

• (very) Limited query facilities and indexing

– get(key), put(key, value)

– Value  opaque to the data store  no data level querying 
and indexing
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Key-Value Stores[DataMan]

• Types

– In-memory stores – Memcached, Redis

– Persistent stores – BerkeleyDB, Voldemort,
RiakDB

• Not suitable for

– structures and relations

– accessing multiple items (since the access is by key and often 
no transactional capabilities)
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Key-Value Stores[DataMan]

• Applications:

– Storing web session information

– User profiles and configuration

– Shopping cart data

– Using them as a caching layer to store results of expensive 
operations (create a user-tailored web page)
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Column-Family Stores[DataMan]

• Schema-free

– Rows have unique keys 

– Values are varying column 
families and act as keys for 
the columns they hold

– Columns consist of key-value pairs

• Better than key-value stores for querying and 
indexing

2018-04-09 60Databases for Big Data / Valentina Ivanova
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Column-Family Stores[DataMan]

• Types

– Googles BigTable, Hadoop HBase

– No column families –
Amazon SimpleDB, DynamoDB

– Supercolumns - Cassandra

• Not suitable for 

– structures and relations

– highly dynamic queries (HBase and Cassandra)
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Column-Family Stores[DataMan]

• Applications:

– Document stores applications

– Analytics scenarios – HBase and 
Cassandra 

• Web analytics

• Personalized search

• Inbox search 
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Document Stores[DataMan]

• Schema-free

– Keys are unique

– Values are documents – complex 
(nested) data structures in JSON, 
XML, binary (BSON), etc.  

• Indexing and querying based 
on primary key and content

• The content needs to be representable as a document

• MongoDB, CouchDB, Couchbase
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Document Stores[DataMan]

• Applications:

– Items with similar nature but 
different structure

– Blogging platforms

– Content management systems

– Event logging

– Fast application development
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Graph Databases[DataMan]

• Graph model

– Nodes/vertices and links/edges

– Properties consisting of key-value pairs

• Suitable for very interconnected 
data since they are efficient in 
traversing relationships

• Not as efficient 

– as other NoSQL solutions for non-graph applications

– horizontal scaling

• Neo4J, HyperGraphDB

2018-04-09 65Databases for Big Data / Valentina Ivanova

Graph Databases[DataMan]

• Applications:

– location-based services

– recommendation engines

– complex network-based applications 

• social, information, technological, 
and biological network

– memory leak detection

2018-04-09 66Databases for Big Data / Valentina Ivanova
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Multi-model Databases

• … but one application can actually require different 
data models for the different data it stores

• Provide support for multiple data models against a 
single backend:

– OrientDB supports key-value, document, graph & 
object models; geospatial data;

– ArangoDB supports key-value, document & graph 
models stored in JSON; common query language;

• How to query the different models in a uniform way

2018-04-09 67NoSQL Concepts, Techniques & Systems / Valentina Ivanova

Big Data Analytics Stack
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figure from: https://www.sics.se/~amir/dic.htm

HDFS[Hadoop][HDFS][HDFSpaper]

Hadoop Distributed File System

2018-04-09 69Databases for Big Data / Valentina Ivanova

Compute Nodes[Massive] 

• Compute node – processor, main memory, cache and 
local disk

• Organized into racks

• Intra-rack connection typically gigabit speed

• Inter-rack connection slower by a small factor

702018-04-09Databases for Big Data / Valentina Ivanova

HDFS (Hadoop Distributed File System)

• Runs on top of the native file system 

– Files are very large divided into 128 MB chunks/blocks

• To minimize the cost of seeks

– Caching blocks is possible

– Single writer, multiple readers

– Exposes the locations of file blocks via API

– Fault tolerance and availability to address disk/node failures

• Usually replicated three times on different compute 
nodes

• Based on GFS (Google File System - proprietary)

2018-04-09 71Databases for Big Data / Valentina Ivanova

HDFS is Good for …

• Store very large files – GBs and TBs

• Streaming access

– Write-once, read many times

– Time to read the entire dataset is more important than the 
latency in reading the first record.

• Commodity hardware

– Clusters are built from commonly available hardware

– Designed to continue working without a noticeable 
interruption in case of failure

2018-04-09 72Databases for Big Data / Valentina Ivanova
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HDFS is currently Not Good for …

• Low-latency data access 

– HDFS is optimized for delivering high throughput of data 

• Lots of small files 

– the amount of files is limited by the memory of the 
namenode; blocks location is stored in memory

• Multiple writers and arbitrary file modifications 

– HDFS files are append only – write always at the end of the 
file 
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HDFS Organization

• Namenode (master)

– Manages the filesystem namespace and metadata

– Stores in memory the location of all blocks for a given file

• Datanodes (workers)

– Store and retrieve blocks

– Send heartbeat to the namenode

• Secondary namenode

– Periodically merges the namespace image with the edit log

– Not a backup for a namenode, only a checkpoint

2018-04-09 74Databases for Big Data / Valentina Ivanova

HDFS Organization
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secondary

figure based on a figure from [Hadoop]

Block Placement and Replication

• Aim – improve data reliability, availability and 
network bandwidth utilization

• Default replica placement policy

– No Datanode contains more than one replica

– No rack contains more than two replicas of the same block

• Namenode ensures the number of replicas is reached

• Balancer tool – balances the disk space usage

• Block scanner – periodically verifies checksums
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77

Racks of Compute Nodes

File

Chunks Source: J. D. Ullman invited talk EDBT 2011

2018-04-09Databases for Big Data / Valentina Ivanova Default HDFS Block Placement Policy 

• 1st replica located on the writer node

• 2nd and 3rd replicas on two different nodes in a 
different rack

• The other replicas are located on random nodes
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HDFS – File Reads

2018-04-09 79Databases for Big Data / Valentina Ivanova

figure from [Hadoop]

HDFS – File Writes
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figure from [Hadoop]

HDFS – High Availability

• The namenode is single point of failure:

– If a namenode crashes the cluster is down 

• Secondary node

– periodically merges the namespace image with the edit log 
to prevent the edit log from becoming too large.

– lags the state of the primary prevents data loss but does not
provide high availability

– time for cold start 30 minutes 

• In practice, the case for planned downtime is more important
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HDFS – High Availability

• Pair of namenodes in an active stand-by 
configuration:

– Highly available shared storage for the shared edit log

– Datanodes send block reports to all namenodes

– Clients must provide transparent to the user mechanism to 
handle failover

– The standby node takes checkpoints of the active namenode
namespace instead of the secondary node
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HDFS commands

• List all options for the hdfs dfs

– hdfs dfs -help

– dfs – run a filesystem command 

• Create a new folder

– hdfs dfs -mkdir /BigDataAnalytics

• Upload a file from the local file system to the HDFS

– hdfs dfs -put bigdata /BigDataAnalytics
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HDFS commands

• List the files in a folder

– hdfs dfs -ls /BigDataAnalytics

• Determine the size of a file 

– hdfs dfs -du -h /BigDataAnalytics/bigdata

• Print the first 5 lines from a file

– hdfs dfs -cat /BigDataAnalytics/bigdata | 

head -n 5

• Copy a file to another folder

– hdfs dfs –cp /BigDataAnalytics/bigdata

/BigDataAnalytics/AnotherFolder
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HDFS commands

• Copy a file to a local filesystem and rename it

– hdfs dfs -get /BigDataAnalytics/bigdata

bigdata_localcopy

• Scan the entire HDFS for problems

– hdfs fsck / 

• Delete a file from HDFS

– hdfs dfs -rm /BigDataAnalytics/bigdata

• Delete a folder from HDFS

– hdfs dfs -rm -r /BigDataAnalytics
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