
Christoph Kessler, IDA,

Linköping University

Resource Management

in Big-Data Clusters

Mesos, YARN

Christoph Kessler

IDA, Linköping University

732A54 / TDDE31

Big Data Analytics

2C. Kessler, IDA, Linköping University

Multiple Big-Data Programming Models Co-Exist

▪ No single programming framework is optimal for all kinds of

big-data applications

MPI

Apache Pig
Apache

Storm

Pregel

3C. Kessler, IDA, Linköping University

Multiple Big-Data Programming Models Co-Exist

▪ Organizations would like to use the same cluster hardware for
multiple programming frameworks, versions, and applications

▪ Sharing of data to be used across frameworks?

▪ Jobs: Both periodic production runs,
development tests, and
short ad-hoc queries

▪ Most jobs are (relatively) short

▪ Jobs consist of (many) tasks
e.g. mappers and reducers

▪ Most tasks are (relatively) short

▪ Need a ”cluster-wide OS” for sharing a cluster among different
big-data frameworks and jobs that know basically nothing about
each other

▪ Fairness, priorities, scalability, protection

= Virtualization of cluster resources

Image source: Mesos, 2011

Median

task

Median

job

4C. Kessler, IDA, Linköping University

Sharing a Cluster?

Dedicated cluster for a single user, single application (e.g. MR)?
→ Low utilization of expensive cluster resources

▪ Idea 1: Support multiple users and multiple MR jobs
that time-share the cluster

▪ Still one application type (here, MR) per node at a time

▪ ”Hadoop-on-demand”

▪ Using a batch scheduler for cluster jobs

MR = Hadoop MapReduce

5C. Kessler, IDA, Linköping University

Background:

Batch Scheduling for Large Parallel Systems

▪ Batch queue systems (common in HPC)

▪ e.g. Torque, Maui, Slurm

▪ Only 1 application (job) per node

▪ Parallel jobs

▪ Job description:

ask for N nodes together for M minutes each to run program A

▪ Ahead-of-time reservation of system partitions and time

▪ Load balancing etc. over this fixed set of resources is up to the

programming framework’s runtime system e.g. of Hadoop, Spark

running

scheduled

reserved

time

unbooked

NSC Tetralith/Sigma

6C. Kessler, IDA, Linköping University

Sharing a Cluster?

Dedicated cluster for a single user, single application (e.g. MR)?
→ Low utilization of expensive cluster resources

▪ Idea 1: Support multiple users and multiple MR jobs
that time-share the cluster

▪ Still one application per node at a time

▪ ”Hadoop-on-demand”

Using a batch scheduler for cluster jobs

MapReduce computation structure
→ Utilization of cluster resources usually good during Map

phases, but often not good during Reduce phases and I/O

▪ Idea 2: Time-share the same cluster nodes for multiple applications
(job types / programming frameworks) to get better overall utilization
(multi-tenancy)

▪ Mesos, YARN

MR = Hadoop MapReduce

7C. Kessler, IDA, Linköping University

Mesos, YARN

▪ Idea:

Separate the resource management functionality

from the programming model (and its runtime system)

☺ Can run multiple applications (e.g. multiple Hadoop

MapReduce jobs) on the same cluster

☺ Can mix task executions from concurrent applications

using different frameworks on same cluster,

e.g. Hadoop MR (incl. different versions of it) and other

frameworks (e.g. MPI)
→ Diversity of programming models

☺ Can reuse the resource management subsystem

for different programming models

Cleaner software structure for the framework (e.g. Hadoop

MapReduce) itself

8C. Kessler, IDA, Linköping University

Mesos [Hindman et al. 2011]

▪ Mesos master process on one node manages all resources

▪ Mesos slaves (daemon processes) offer resources that are currently free

▪ Frameworks (e.g. Hadoop MR) submit requests for allocation and release
of resources, to be approved/committed by Mesos master

Daemon

(background

process)

running on

each node

9C. Kessler, IDA, Linköping University

Mesos Example

Slave (worker) 1 to Master:

I have 4 CPUs

and 4 GB RAM

currently free

Master to Framework 1

(e.g. Hadoop MR master):

I have a node with 4 CPUs

and 4 GB RAM to offer

Framework 1 to Master:

Give 2 CPUs and 1 GB

to task 1 to run on slave1

and 1 CPU with 2 GB

for task 2 on slave 1

Master launches tasks

on behalf of Framework1

on slave 1

10C. Kessler, IDA, Linköping University

YARN

▪ System components (blue)

▪ RM – Resource Manager, AM – Application Master, NM – node mgr.

▪ Two applications running (yellow: using MPI, pink: using Hadoop MR)

Image adapted from: Vavilapalli et al. 2013

YARN = Yet Another Resource Negotiator

Node Node Node

Split up: resource management (global), scheduling/monitoring (application-specific)

11C. Kessler, IDA, Linköping University

YARN

▪ System components (blue)

▪ RM – Resource Manager, AM – Application Master, NM – node mgr.

▪ Two applications running (yellow: using MPI, pink: using Hadoop)

Image source: Vavilapalli et al. 2013

Resource Manager (RM):

• A daemon process running on a

dedicated cluster node (e.g. node 0)

• Periodically polls the node managers

to check for liveness

• Jobs are submitted to the RM

with resource requirements

(e.g. share of 20% CPU time, …)

• RM performs admission control,

checks security credentials, and

allocates (leases) a bundle of free

resources on particular nodes,

e.g. <2GB RAM, 1 CPU>,

to a container (= virtual node)

for the job’s execution on each of

these nodes.

• RM informs the Node Managers of

these nodes about the lease.

• Job state is moved from new to

admitted to running.

12C. Kessler, IDA, Linköping University

YARN

▪ System components (blue)

▪ RM – Resource Manager, AM – Application Master, NM – node mgr.

▪ Two applications running (yellow: using MPI, pink: using Hadoop)

Image source: Vavilapalli et al. 2013

Application Master (AM):

• The ”head” of a job (e.g., a MR job)

• a daemon process (virtual master node)

• application / framework - specific

• Manages all intra-job lifecycle aspects

including dynamically increasing and

decreasing resource allocation by

issuing resource requests to the RM,

within the lease obtained from RM

• Manages the flow of execution,

e.g. dispatching Mapper and Reducer

tasks in Hadoop MapReduce to the

job’s containers on the other nodes

(= virtual worker nodes) assigned to it

• Handles faults and computation skew

(straggling tasks) in a framework-

specific way

• YARN itself makes no assumptions

about the job’s type of application

(programming framework),

this is entirely up to the AM

• Only the protocols to communicate

with RM and NM are fixed.

13C. Kessler, IDA, Linköping University

YARN

▪ System components (blue)

▪ RM – Resource Manager, AM – Application Master, NM – node mgr.

▪ Two applications running (yellow: using MPI, pink: using Hadoop MR)

Image source: Vavilapalli et al. 2013

Node Manager:

• The ”worker” daemon on each node

• Authenticates container leases,

manages container dependences,

monitors their execution,

provides services to containers

• Deallocates containers on request

from AM or RM, when work is finished

or when their resources must be

preempted for a new higher-priority

job

• Monitors health of the physical node

• Log aggregation for the containers

• Handles node-local persistence of

data that escape the lifetime of a job.

14C. Kessler, IDA, Linköping University

Summary: Cluster Resource Management

▪ Cluster-wide ”OS” for resource sharing across multiple concurrent jobs,
programming frameworks, and their versions

▪ Virtualization of Cluster Resources

▪ 2-level resource allocation+management

▪ Scheduling e.g. of mapper/reducer tasks to the resources assigned by the
cluster manager is still done internally by each framework manager/master

▪ Mesos is offer-based, YARN is request-based

HW: Cluster

OS: Linux

Par. programming models:

MapReduce, Spark, …

Big-Data prog. languages:

Java, Scala, Python, …

Big-data storage/access:

HDFS, …

Big-Data application

Cluster Resource Manager

(Mesos, YARN)

Big-Data System-Software Stack

15C. Kessler, IDA, Linköping University

References

▪ Benjamin Hindman et al.: Mesos: A Platform for Fine-Grained

Resource Sharing in the Data Center. Proc. NSDI'11,

USENIX, 2011.

▪ Apache Mesos: http://mesos.apache.org/

▪ V. Vavilapalli et al.: Apache Hadoop YARN: Yet Another

Resource Negotiator. Proc. SoCC'13, ACM, 2013.

▪ Apache Hadoop YARN:

▪ https://hadoop.apache.org/docs/r2.7.2/hadoop-

yarn/hadoop-yarn-site/YARN.html

16C. Kessler, IDA, Linköping University

Questions for Reflection

▪ Why is it reasonable that Application Masters can request and

return resources dynamically from/to the Resource Manager

(within the maximum lease initially granted to their job by the

RM), instead of requesting their maximum lease on all nodes

immediately and keeping it throughout the job’s lifetime?

▪ Contrast this mechanism to the resource allocation

performed by batch queuing systems for clusters.

▪ Explain why the Node Manager’s tasks are better performed

in a daemon process controlled by the RM and not under the

control of the framework-specific application.

	Slide 1: Resource Management in Big-Data Clusters Mesos, YARN
	Slide 2: Multiple Big-Data Programming Models Co-Exist
	Slide 3: Multiple Big-Data Programming Models Co-Exist
	Slide 4: Sharing a Cluster?
	Slide 5: Background: Batch Scheduling for Large Parallel Systems
	Slide 6: Sharing a Cluster?
	Slide 7: Mesos, YARN
	Slide 8: Mesos [Hindman et al. 2011]
	Slide 9: Mesos Example
	Slide 10: YARN
	Slide 11: YARN
	Slide 12: YARN
	Slide 13: YARN
	Slide 14: Summary: Cluster Resource Management
	Slide 15: References
	Slide 16: Questions for Reflection

