
Christoph Kessler, IDA,
Linköpings universitet.

Introduction to Spark

Christoph Kessler

IDA, Linköping University

732A54 / TDDE31
Big Data Analytics

2C. Kessler, IDA, Linköping University

Recall: MapReduce Programming Model

 Designed to operate on LARGE distributed input data sets
stored e.g. in HDFS nodes

 Abstracts from parallelism, data distribution, load balancing, data
transfer, fault tolerance

 Implemented in Hadoop and other frameworks
 Provides a high-level parallel programming construct (= a skeleton)

called MapReduce
 A generalization of the data-parallel MapReduce skeleton of

Lecture 1
 Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

3C. Kessler, IDA, Linköping University

From MapReduce to Spark
MapReduce
 is for large-scale computations matching the MapReduce pattern,
 with input, intermediate and output data stored in secondary storage

Limitations
 For complex computations composed of multiple MapReduce steps

 E.g. iterative computations
e.g. parameter optimization by gradient search

 Much unnecessary disk I/O – data for next MapReduce step
could remain in main memory or even cache memory

 Data blocks used multiple times are read multiple times from disk
 Bad data locality across subsequent Mapreduce phases

 Sharing of data only in secondary storage
 Latency can be too long for interactive analytics

 Fault tolerance by replication of data – more I/O to store copies slow

…

By chaining multiple MapReduce steps, we
can emulate any distributed computation.

4C. Kessler, IDA, Linköping University

Splitting the MapReduce Construct
into Simpler Operations – 2 Main Categories:
 Transformations: Elementwise operations, fully parallelizable

 Working on distributed data. Mostly variants of Map
 Actions: Operations with internally global dependence structure

 Mostly variants of Reduce and writing back to non-distr. file / to master

RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.
Table source: Zaharia et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.

Local
dep.

Global
dep.

Global
dep.

Both input and
output data
operands are
distributed

Output data is
not distributed

Element-wise
dependences
only,
e.g. map, filter,
flatMap

Involves some
shuffle and
sorting across
blocks, but still
produces
distributed
output (“RDD”)

5C. Kessler, IDA, Linköping University

Remark on data types

 Most transformations and actions can work on arbitrary
element data types (i.e., not only on key-value pairs).

 Some transformations work only on key-value pairs,
namely groupByKey(), reduceByKey(), combineByKey(),
aggregateByKey().

 These are transformations (return a RDD, are evaluated
lazily) but include a shuffle-and-sort-by-key phase (as in
MapReduce) a non-local dependence pattern

 The implementation uses internally a combiner.

 Also some actions work only on key-value pairs, e.g.
countByKey

6C. Kessler, IDA, Linköping University

Spark Idea: Data Flow Computing in Memory

Instead of calling subsequent rigid MapReduce steps,
the Spark programmer describes the overall data flow graph
of how to compute all intermediate and final results from the
initial input data
 Lazy evaluation of transformations

 Transformations are just added to the graph (postponed)
 Actions ”push the button” for computing (= materializing

the results) according to the data flow graph
 Gives more flexibility to the scheduler

 Better data locality (esp. with local dependence patterns)
 Keep data in memory as capacity permits,

can skip unnecessary disk storage of temporary data
 No replication of data blocks for fault tolerance –

in case of task failure (worker failure),
recompute it from available, earlier computed data blocks
according to the data flow graph
 Needs a data structure for operand data that ”knows” how

its data blocks are to be computed: the RDD

7C. Kessler, IDA, Linköping University

Spark Execution Model

 Driver program (sequential) runs on host / master

 Operations on distributed data (RDDs) run on workers

 Collect data from workers to driver program on demand

Driver

Worker

Worker

Worker

8C. Kessler, IDA, Linköping University

Resilient Distributed Datasets (RDDs)

 Containers for operand data passed between parallel operations
 Read-only (after construction) collection of data objects
 Partitioned and distributed across workers (cluster nodes)
 Materialized on demand from construction description
 Can be rebuilt if a partition (data block) is lost
 By default, cached in main memory –

not persistent (in secondary storage) until written back

 Construction of new RDDs:
 By reading in from a file e.g. in HDFS
 By partitioning and distributing a non-distributed collection

(e.g., array) previously residing on master node (”scatter”)
 By a Map operation: A List(B)

(elementwise transformation, filtering, …) applied on another RDD

 Changing persistence state of a RDD:
By a caching hint for data to be reused – if enough space in memory
By materializing (persisting, saving) to a file

(and discarding its copy in memory)

Partition/block

9C. Kessler, IDA, Linköping University

Resilient Distributed Datasets (RDDs)

 Containers for operand data passed between parallel operations
 Read-only (after construction) collection of data objects
 Partitioned and distributed across workers (cluster nodes)
 Materialized on demand from construction description
 Can be rebuilt if a partition (data block) is lost
 By default, cached in main memory –

not persistent (in secondary storage) until written back

 Construction of new RDDs:
 By reading in from a file e.g. in HDFS
 By partitioning and distributing a non-distributed collection

(e.g., array) previously residing on master node (”scatter”)
 By a Map operation: A List(B)

(elementwise transformation, filtering, …) applied on another RDD

 Changing persistence state of a RDD:
By a caching hint for data to be reused – if enough space in memory
By materializing (persisting, saving) to a file

(and discarding its copy in memory)

Partition/block

data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)

10C. Kessler, IDA, Linköping University

Resilient Distributed Datasets (RDDs)

 Containers for operand data passed between parallel operations
 Read-only (after construction) collection of data objects
 Partitioned and distributed across workers (cluster nodes)
 Materialized on demand from construction description
 Can be rebuilt if a partition (data block) is lost
 By default, cached in main memory –

not persistent (in secondary storage) until written back

 Construction of new RDDs:
 By reading in from a file e.g. in HDFS
 By partitioning and distributing a non-distributed collection

(e.g., array) previously residing on master node (”scatter”)
 By a Map operation: A List(B)

(elementwise transformation, filtering, …) applied on another RDD

 Changing persistence state of a RDD:
By a caching hint for data to be reused – if enough space in memory
By materializing (persisting, saving) to a file

(and discarding its copy in memory)

Partition/block

data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)

cachedData = distdata.cache()

distdata.saveAsTextFile(...)

11C. Kessler, IDA, Linköping University

Actions on RDDs

Recall: Spark execution model:
 Driver program (sequential) runs on host / master
 Operations on RDDs run on workers
 Collect data from workers to driver program on demand:

Parallel Collect Operations on RDDs:

 Reduce

 Combine RDD elements using an associative binary function to produce a
(scalar) result at the driver program.

 Key-value pairs to reduce over are grouped by key, as in MapReduce

 Collect

 Send all elements of the RDD to the driver program (”gather”)
 The reverse operation of parallelize

 Foreach

 Pass each RDD element through a user-provided function
 Eager evaluation - Not producing another RDD (difference from Map/Filter)
 Might be used e.g. for copying data to another system

Driver

Worker

Worker

Worker

12C. Kessler, IDA, Linköping University

Classification of RDD Operations

 Transformations: Lazy, parallelizable
 Working on distributed data. Mostly variants of Map

 Actions: Materialization points (”push the button”)
 Mostly variants of Reduce and writing back to non-distr. file / master

RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.
Table source: Zaharia et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.

Both input and
output data
operands are
distributed

Output data is
not distributed

13C. Kessler, IDA, Linköping University

Shared Variables

 shared = not partitioned and distributed,
accessible by all workers

 Broadcast Variables
 Replicated shared variables – 1 copy on each worker
 Read-only for workers
 For global data needed by all workers,

e.g. filtering parameters, lookup table

 Accumulator Variables
 Residing on driver program process
 Workers can not read,

only add their contributions using an associative operation
 Good for implementing counters and for global sum

Driver

Worker

Worker

Worker

14C. Kessler, IDA, Linköping University

Example: Text Search

 Count lines containing ”ERROR” in a large log file in HDFS

 RDDs errs and ones are lazy RDDs
that are never materialized to secondary storage.

 Call to reduce (action) triggers computation of ones, which triggers
computation of errs, which triggers reading blocks from the file.

// Create a RDD from file:
file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with ”ERROR”:
errs = file.filter(lambda line: line.find("ERROR”)>=0)

// Map each line to a 1:
ones = errs.map(lambda word: (word, 1))

// Add up the 1’s using Reduce:
count = ones.reduce(lambda x, y: x+y)

Python code adapted from Zaharia et al. 2010

The ”lineage” (DFG)
of RDDs leading
to the result count

15C. Kessler, IDA, Linköping University

Example: Text Search, with reuse of errs

 Count lines containing ”ERROR” in a large log file in HDFS

// Create a RDD from file:
file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with ”ERROR”:
errs = file.filter(lambda line: line.find("ERROR”)>=0)

// Cache hint that errs will be reused in another operation:
cachedErrs = errs.cache();

// Map each line to a 1:
ones = cachedErrs.map(lambda word: (word, 1))

// Add up the 1’s using Reduce:
count = ones.reduce(lambda x, y: x+y)

Python pseudocode

16C. Kessler, IDA, Linköping University

Example: Pi Calculation

 Stochastic approximation of Pi:
 A random point (x,y) in [0,1]x[0,1]

is located within quarter unit cycle
iff x2 + y2 < 1

def sample(p):
x, y = random(), random()
return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \
.map(sample) \
.reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)

1

1

Create a RDD containing all
indexes 0, …, NUM_SAMPLES-1

RDD variables are implicit
(operation return values)

Argument not used (index)

17C. Kessler, IDA, Linköping University

Example: Logistic Regression

 Iterative classification algorithm to find a hyperplane that best
separates 2 sets of data points

 Gradient descent method:
 Start at a random normal-vector (hyperplane) w
 In each iteration, add to w an error-correction term (based on the

gradient) that is a function of w and the data points, to improve w

// Read points from a text file and cache them:
points = sc.textFile(...).map(parsePoint).cache()
// Initialize w to random D-dimensional vector:
w = Vector.random(D)
// Run multiple iterations to update w:
for (i <- 1 to NUMBER_OF_ITERATIONS) {

grad = sc.accumulator(new Vector(D))
for (p <- points) { // Runs in parallel:

val s = (1/(1+exp(-p.y*(w dot p.x)))-1) * p.y
grad += s * p.x // remotely add contribution to gradient value

}
w -= grad.value // correction of w

}

Scala pseudocode, adapted from
Zaharia et al., 2010

18C. Kessler, IDA, Linköping University

Spark Execution Model

 Depending on the kind of operations,
the data dependences between RDDs in the lineage graph
can be local (elementwise) or global (shuffle-like)

 When a user (program) runs an action on an RDD,
the Spark scheduler builds a DAG (directed acyclic graph) of stages
from the RDD lineage graph (data flow graph, task graph).

 A stage contains a contiguous subDAG of as many as possible
operations with local (element-wise) dependencies between RDDs
 The boundary of a stage is thus defined by

Operations with global dependencies
Already computed (materialized) RDD partitions.

 Execution of the operations within a stage is pipelined
 intermediate results forwarded in memory

 The scheduler launches tasks to workers (cluster nodes) to compute
missing partitions from each stage until it computes the target RDD.

 Tasks are assigned to nodes based on data locality.
 If a task needs a partition that is available in the memory of a node,

the task is sent to that node.

Local
dep.

Global
dep.

Input RDD

Output RDD

19C. Kessler, IDA, Linköping University

Spark Performance

Results from original paper on Spark 2010:

 Spark can outperform Hadoop by 10x in iterative machine
learning jobs

 Interactive query of a 39GB data set in < 1s

Image source:
M. Zaharia et al.,
2010. © ACM

20C. Kessler, IDA, Linköping University

Using Spark

 Spark can run atop HDFS, but other implementations also exist

 Language bindings exist for Scala, Java, Python (PySpark)

 Some minor restrictions for Python

 Spark Context object

 The main entry point to Spark functionality

 Represents connection to a Spark cluster

 PySpark context sc is up and running from start

 Create your own Spark context object for stand-alone applications

 sc = new pyspark.SparkContext(master, applName, [sparkHome], […])

local
local[k]
spark://host:port
mesos://host:port

21C. Kessler, IDA, Linköping University

Spark Streaming

22C. Kessler, IDA, Linköping University

Pipelining (Pattern)

 applies a sequence of dependent computations/tasks (f1, f2, ..., fk)
elementwise to data sequence x = (x1,x2,x3,...,xn)

 For fixed xj, must compute fi(xj) before fi+1(xj)

 … and fi(xj) before fi(xj+1) if the tasks fi have a run-time state

 Parallelizability: Overlap execution of all fi for k subsequent xj

 time=1: compute f1(x1)

 time=2: compute f1(x2) and f2(x1)

 time=3: compute f1(x3) and f2(x2) and f3(x1)

 ...

 Total time: O ((n+k) maxi (time(fi))) with k processors

 Still, requires good mapping of the tasks fi to the processors
for even load balancing – often, static mapping (done before running)

 Notation with higher-order function:

 (y1,…,yn) = pipe ((f1, ..., fk), (x1,…,xn))

…

x3

x2

x1

f1

f2

fk

stage
task
dependence
graph

pipeline
task instance
dependence
graph

23C. Kessler, IDA, Linköping University

Pipelining (Pattern)

 applies a sequence of dependent computations/tasks (f1, f2, ..., fk)
elementwise to data sequence x = (x1,x2,x3,...,xn)

 For fixed xj, must compute fi(xj) before fi+1(xj)

 … and fi(xj) before fi(xj+1) if the tasks fi have a run-time state

 Parallelizability: Overlap execution of all fi for k subsequent xj

 time=1: compute f1(x1)

 time=2: compute f1(x2) and f2(x1)

 time=3: compute f1(x3) and f2(x2) and f3(x1)

 ...

 Total time: O ((n+k) maxi (time(fi))) with k processors

 Still, requires good mapping of the tasks fi to the processors
for even load balancing – often, static mapping (done before running)

 Notation with higher-order function:

 (y1,…,yn) = pipe (f1, ..., fk) (x1,…,xn)

…

x3

x2

x1

f1

f2

fk

24C. Kessler, IDA, Linköping University

Streaming

 Streaming applies pipelining to processing
of large (possibly, infinite) data streams
from or to memory, network or devices,
usually partitioned in fixed-sized data packets,

 in order to overlap the processing of
each packet of data in time with
access of subsequent units of data
and/or processing of preceding packets
of data.

 Examples

 Video streaming from network to display

 Surveillance camera, face recognition

 Network data processing e.g. deep packet inspection

…

x3

x2

x1

f1

f2

f3

Read a
packet of
stream data

Process
a packet

Process
it more

fk
Write
result

25C. Kessler, IDA, Linköping University

Stream Farming

 Independent streaming
subcomputations f1, f2, ..., fm

on each data packet

 Speed up the pipeline
by parallel processing of
subsequent data packets

 In most cases, the original order of packets
must be kept after processing

dispatcher

f2

collector

f1 fm…

…

x3

x2

x1

…

Combining streaming and task farming patterns

26C. Kessler, IDA, Linköping University

Spark Streaming

 Extension of the core Spark API
for scalable, high-throughput, fault-tolerant stream processing
of live data streams.

 Discretized stream or DStream

 High-level abstraction representing a continuous stream of
data.

 Internally: A continuous series of RDDs

Spark
Streaming

Spark

Input data
stream

Batches of
input data

Batches of
processed data

27C. Kessler, IDA, Linköping University

Transformations on DStreams

 map(func), flatMap(func), filter(func) – return a new DStream
with map etc. applied to all its elements

 repartition(), union(other_stream)

 count() – returns a new DStream of single-element RDDs
containing the number of elements in each RDD of the source
DStream

 reduce(func), reduceByKey() – aggregate each RDD of the
source Dstream and return a new Dstream of single-element RDDs

 join (other_stream) – joins 2 streams of (K,V) and (K,W) pairs to a
stream of (K,(V,W)) pairs

 transform(func) – apply arbitrary RDD-to-RDD function to each
RDD in the source DStream

 …

28C. Kessler, IDA, Linköping University

Spark Streaming Example
from pyspark import SparkContext
from pyspark.streaming import StreamingContext

Create a local StreamingContext with two working threads and batch interval of 1 second:
sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)

Create a DStream that will connect to TCP hostname:port, like localhost:9999, as source:
lines = ssc.socketTextStream("localhost", 9999)

Split each line into words:
words = lines.flatMap(lambda line: line.split(" "))

Count each word in each batch:
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

Print the first ten elements of each RDD generated in this DStream to the console:
wordCounts.pprint()

ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate

DStream of lines

Run on local host, alt. cluster name

29C. Kessler, IDA, Linköping University

Spark Streaming: Windowing

 Can define a sliding window over a source DStream

time 1 time 4time 2 time 3 time 5

Window
at time 3

Window
at time 5

Window length (here 3)
Slide length (here 2)
 Overlap size (here 1)

Every time the window slides over a source
DStream, the source RDDs that fall within the
window are combined and operated upon to
produce the RDDs of the windowed DStream.

Example: Reduce last 30 seconds of data, every 10 seconds:
windowedWordCounts = \

pairs.reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y: x - y, 30, 10)

30C. Kessler, IDA, Linköping University

APPENDIX

31C. Kessler, IDA, Linköping University

Questions for Reflection

 Why can MapReduce emulate any distributed computation?

 For a Spark program consisting of 2 subsequent Map computations,
show how Spark execution differs from Hadoop/MapReduce execution.

 Given is a file containing just integer numbers.
Write a Spark program that adds them up.

 Write a wordcount program for Spark.

 Solution proposal (from spark.apache.org):

 Note – there exist many variants for formulating this.

 Modify the wordcount program by only considering words
with at least 4 characters.

text_file = sc.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")

32C. Kessler, IDA, Linköping University

Map vs. FlatMap in Spark

map: transformation
RDD<T1> RDD<T2>,
produces exactly one output element per input element.
• If T1 is List<T’>, only one output element per input list will be computed

(usually also a list).
I.e., the multidimensional structure of the RDD is preserved.

flatmap:
RDD<List<T1>> RDD<T2>
= map + flatten: produce 0, 1 or several basic output elements per

input element (which could be a list/array/struct)
in the target RDD.

Here (wordcount): The input textfile (its elements are lines) is map’ed with the split
function as operator. As a single line may contain multiple words, the result of each
operator application (one per line) is a list of words (hence, overall an RDD of lists).
Here, we are only interested in a single RDD of all words, without the line structure:
the flatmap concatenates all words of all lists into one flat target RDD of words.

33C. Kessler, IDA, Linköping University

Does Spark have a Combiner (as in MapReduce)?
 reduceByKey performs a full reduction by key including a combiner step,

while reduce does not use a separate combiner step.
 Input RDD must contain key-value pairs.

 Whereas ordinary reduce works on “flat” RDDs of arbitrary element type.

 The combiner step in reduceByKey counts as a transformation,
not an action like reduce: it generates a RDD (of key-value pairs)

 reduceByKey has a global dependence pattern (involves a shuffle-and-sort)
but is still evaluated lazily

 reduceByKey is a specialization of aggregateByKey
 aggregateByKey takes 2 user functions: one that is applied to each block in the

combiner step (sequentially) and one that is applied to reduce globally over the results
of each block (in parallel).
reduceByKey uses the same associative and commutative function in both steps.

 combineByKey() is a combiner working sequentially on each partition of a RDD, locally
reducing it, producing a new RDD.
 It is a transformation (evaluated lazily)
 The input and output element types need not match.
 The user function for combining must be associative only.

 Always processed sequentially for each block.
 But for reduce, the user function must be both associative and commutative.

34C. Kessler, IDA, Linköping University

Transformations
MeaningTransformation

Returns a new RDD formed by passing each element
of the source through a function func.

map(func)

Returns a new RDD formed by selecting those
elements of the source on which func returns true.

filter(func)

Similar to map, but each input item can be mapped to 0
or more output items (so func should return a Seq
rather than a single item).

flatMap(func)

Similar to map, but runs separately on each partition
(block) of the RDD, so func must be of type Iterator<T>
 Iterator<U> when running on an RDD of type T.

mapPartitions(func)

Similar to mapPartitions, but also provides func with an
integer value representing the index of the partition, so
func must be of type (Int, Iterator<T>)Iterator<U>
when running on an RDD of type T.

mapPartitionsWithIndex
(func)

Samples a fraction fraction of the data, with or without
replacement, using a given random number generator
seed.

sample (withReplacement,
fraction, seed)

Returns a new dataset that contains the union of the
elements in the source dataset and the argument.

union(otherDataset)

Source: spark.apache.org

35C. Kessler, IDA, Linköping University

MeaningTransformation

Return a new RDD that contains the intersection of
elements in the source dataset and the argument.

intersection(otherDataset)

Return a new dataset that contains the distinct
elements of the source dataset.

distinct([numPartitions]))

When called on a dataset of (K,V) pairs,
returns a dataset of (K, Iterable<V>) pairs.
If using grouping in order to perform an aggregation
(such as a sum or average) over each key, using
reduceByKey or aggregateByKey will yield much better
performance.
By default, the level of parallelism in the output depends
on the number of partitions of the parent RDD.
One can pass an optional numPartitions argument to
set a different number of tasks.

groupByKey
([numPartitions])

When called on a dataset of (K,V) pairs,
returns a dataset of (K,V) pairs where the values for
each key are aggregated using the given reduce
function func, which must be of type (V,V)V.
Like in groupByKey, the number of reduce tasks is
configurable through an optional second argument.

reduceByKey(func,
[numPartitions])

also: combineByKey

36C. Kessler, IDA, Linköping University

MeaningTransformation

When called on a dataset of (K,V) pairs, returns a
dataset of (K,U) pairs where the values for each key are
aggregated using the given combine functions and a
neutral "zero" value. Allows an aggregated value type
that is different than the input value type, while avoiding
unnecessary allocations. Like in groupByKey, the
number of reduce tasks is configurable through an
optional second argument.

aggregateByKey(
zeroValue) (seqOp,
combOp, [numPartitions])

When called on a dataset of (K,V) pairs where K
implements Ordered, returns a dataset of (K, V) pairs
sorted by keys in ascending or descending order, as
specified in the boolean ascending argument.

sortByKey([ascending],
[numPartitions])

When called on datasets of type (K,V) and (K,W),
returns a dataset of (K, (V, W)) pairs with all pairs of
elements for each key. Outer joins are supported
through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

join(otherDataset,
[numPartitions])

When called on datasets of type (K, V) and (K, W),
returns a dataset of (K, (Iterable<V>, Iterable<W>))
tuples. This operation is also called groupWith.

cogroup(otherDataset,
[numPartitions])

37C. Kessler, IDA, Linköping University

MeaningTransformation

When called on datasets of types T and U, returns a
dataset of (T, U) pairs (all pairs of elements).

cartesian(otherDataset)

Pipe each partition of the RDD through a shell
command, e.g. a Perl or bash script.
RDD elements are written to that process's stdin,
and lines output to its stdout are returned as an RDD of
strings.

pipe(command, [envVars])

Decreases the number of partitions in the RDD to
numPartitions. Useful for running operations more
efficiently after filtering down a large dataset.

coalesce(numPartitions)

Reshuffle the data in the RDD randomly to create either
more or fewer partitions and balance it across them.
This always shuffles all data over the network.

repartition(numPartitions)

Repartitions the RDD according to the given partitioner
and, within each resulting partition, sort records by their
keys. This is more efficient than calling repartition and
then sorting within each partition because it can push
the sorting down into the shuffle machinery.

repartitionAndSortWithinP
artitions(partitioner)

38C. Kessler, IDA, Linköping University

Actions

MeaningAction

Aggregates the elements of the dataset using a function
func (which takes two arguments and returns one).
The function should be commutative and associative so
that it can be computed correctly in parallel.

reduce(func)

Returns all the elements of the dataset as an array at the
driver program.
This is usually useful after a filter or other operation that
returns a sufficiently small subset of the data.

collect()

Returns the number of elements in the dataset. count()

Returns the first element of the dataset (similar to take(1)). first()

Returns an array with the first n elements of the dataset. take(n)

Returns an array with a random sample of num elements
of the dataset, with or without replacement, optionally pre-
specifying a random number generator seed.

takeSample(withReplac
ement, num, [seed])

Returns the first n elements of the RDD using either their
natural order or a custom comparator.

takeOrdered(n,
[ordering])

39C. Kessler, IDA, Linköping University

MeaningAction

Write the elements of the RDD as a text file (or set of text
files) in a given directory in the local filesystem, HDFS or
any other supported file system. Spark will call toString on
each element to convert it to a line of text in the file.

saveAsTextFile(path)

Write the elements of the RDD as a SequenceFile in a
given path in the local filesystem, HDFS or any other
supported file system. This is available on RDDs of key-
value pairs that implement Hadoop's Writable interface. In
Scala, it is also available on types that are implicitly
convertible to Writable (Spark includes conversions for
basic types like Int, Double, String, etc).

saveAsSequenceFile
(path)
(Java and Scala)

Write the elements of the dataset in a simple format using
Java serialization, which can then be loaded using
SparkContext.objectFile().

saveAsObjectFile(path)
(Java and Scala)

Only available on RDDs of type (K, V). Returns a hashmap
of (K, Int) pairs with the count of each key.

countByKey()

Runs a function func on each element of the dataset.
This is usually done for side effects such as updating an
Accumulator or interacting with external storage systems.
Note: modifying variables other than Accumulators outside
of the foreach() may result in undefined behavior.

foreach(func)

40C. Kessler, IDA, Linköping University

References

 M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica:
Spark: Cluster Computing with Working Sets.
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing (HotCloud'10), 2010, ACM.

 See also: M. Zaharia et al.: Apache Spark: A Unified
Engine for Big Data Processing. Communications of the
ACM, 59(11):56-65, Nov. 2016.

 Apache Spark: http://spark.apache.org

 A. Nandi: Spark for Python Developers. Packt Publishing,
2015.

