
Christoph Kessler, IDA,

Linköpings universitet.

Introduction to Spark

Christoph Kessler

IDA, Linköping University

732A54 / TDDE31

Big Data Analytics

2C. Kessler, IDA, Linköpings universitet.

Recall: MapReduce Programming Model

Designed to operate on LARGE distributed input data sets
stored e.g. in HDFS nodes

Abstracts from parallelism, data distribution, load balancing, data
transfer, fault tolerance

Implemented in Hadoop and other frameworks

Provides a high-level parallel programming construct (= a skeleton)
called MapReduce

A generalization of the data-parallel MapReduce skeleton of
Lect. 1

Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

3C. Kessler, IDA, Linköpings universitet.

From MapReduce to Spark

MapReduce

is for large-scale computations matching the MapReduce pattern,

with input, intermediate and output data stored in secondary storage

Limitations

For complex computations composed of multiple MapReduce steps

E.g. iterative computations

e.g. parameter optimization by gradient search

→ Much unnecessary disk I/O – data for next MapReduce step
could remain in main memory or even cache memory

→ Data blocks used multiple times are read multiple times from disk

→ Bad data locality across subsequent Mapreduce phases

Sharing of data only in secondary storage

Latency can be too long for interactive analytics

Fault tolerance by replication of data – more I/O to store copies → slow

…

By chaining multiple MapReduce steps, we

can emulate any distributed computation.

4C. Kessler, IDA, Linköpings universitet.

Splitting the MapReduce Construct

into Simpler Operations – 2 Main Categories:

Transformations: Elementwise operations, fully parallelizable

Mostly variants of Map and reading from distributed file

Actions: Operations with internally global dependence structure

Mostly variants of Reduce and writing back to non-distr. file / to master

RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.
Table source: Zaharia et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.

Local

dep.

Global

dep.

5C. Kessler, IDA, Linköpings universitet.

Spark Idea: Data Flow Computing in Memory

Instead of calling subsequent rigid MapReduce steps,
the Spark programmer describes the overall data flow graph
of how to compute all intermediate and final results from the
initial input data

Lazy evaluation of transformations

Transformations are just added to the graph (postponed)

Actions ”push the button” for computing (= materializing
the results) according to the data flow graph

More like declarative, functional programming

Gives more flexibility to the scheduler

Better data locality

Keep data in memory as capacity permits, can skip
unnecessary disk storage of temporary data

No replication of data blocks for fault tolerance - in case of
task failure (worker failure), recompute it from available,
earlier computed data blocks
according to the data flow graph

Needs a container data structure for operand data that
”knows” how its data blocks are to be computed: the RDD

6C. Kessler, IDA, Linköpings universitet.

Spark Execution Model

Driver program (sequential) runs on host / master

Operations on distributed data (RDDs) run on workers

Collect data from workers to driver program on demand

Driver

Worker

Worker

Worker

7C. Kessler, IDA, Linköpings universitet.

Resilient Distributed Datasets (RDDs)

Containers for operand data passed between parallel operations

Read-only (after construction) collection of data objects

Partitioned and distributed across workers (cluster nodes)

Materialized on demand from construction description

Can be rebuilt if a partition (data block) is lost

By default, cached in main memory –
not persistent (in secondary storage) until written back

Construction of new RDDs:

By reading in from a file e.g. in HDFS

By partitioning and distributing a non-distributed collection
(e.g., array) previously residing on one node (”scatter”)

By a Map operation: A → List(B)
(elementwise transformation, filtering, …) applied on another RDD

Changing persistence state of a RDD:

 By a caching hint for data to be reused – if enough space in memory

 By materializing (persisting, saving) to a file
(and discarding its copy in memory)

Partition/block

8C. Kessler, IDA, Linköpings universitet.

Resilient Distributed Datasets (RDDs)

Containers for operand data passed between parallel operations

Read-only (after construction) collection of data objects

Partitioned and distributed across workers (cluster nodes)

Materialized on demand from construction description

Can be rebuilt if a partition (data block) is lost

By default, cached in main memory –
not persistent (in secondary storage) until written back

Construction of new RDDs:

By reading in from a file e.g. in HDFS

By partitioning and distributing a non-distributed collection
(e.g., array) previously residing on one node (”scatter”)

By a Map operation: A → List(B)
(elementwise transformation, filtering, …) applied on another RDD

Changing persistence state of a RDD:

 By a caching hint for data to be reused – if enough space in memory

 By materializing (persisting, saving) to a file
(and discarding its copy in memory)

Partition/block

data = [1, 2, 3, 4, 5]

distData = sc.parallelize(data)

9C. Kessler, IDA, Linköpings universitet.

Resilient Distributed Datasets (RDDs)

Containers for operand data passed between parallel operations

Read-only (after construction) collection of data objects

Partitioned and distributed across workers (cluster nodes)

Materialized on demand from construction description

Can be rebuilt if a partition (data block) is lost

By default, cached in main memory –
not persistent (in secondary storage) until written back

Construction of new RDDs:

By reading in from a file e.g. in HDFS

By partitioning and distributing a non-distributed collection
(e.g., array) previously residing on master node (”scatter”)

By a Map operation: A → List(B)
(elementwise transformation, filtering, …) applied on another RDD

Changing persistence state of a RDD:

 By a caching hint for data to be reused – if enough space in memory

 By materializing (persisting, saving) to a file
(and discarding its copy in memory)

Partition/block

data = [1, 2, 3, 4, 5]

distData = sc.parallelize(data)

cachedData = distdata.cache()

distdata.saveAsTextFile(...)

10C. Kessler, IDA, Linköpings universitet.

Actions on RDDs

Recall: Spark execution model:

Driver program (sequential) runs on host / master

Operations on RDDs run on workers

Collect data from workers to driver program on demand:

Parallel Collect Operations on RDDs:

Reduce

Combine RDD elements using an associative binary function to produce a
(scalar) result at the driver program

Key-value pairs to reduce over are grouped by key, as in MapReduce

Collect

Send all elements of the RDD to the driver program (”gather”)

 The reverse operation of parallelize

Foreach

Pass each RDD element through a user-provided function

Eager evaluation - Not producing another RDD (difference from Map/Filter)

Might be used e.g. for copying data to another system

Driver

Worker

Worker

Worker

11C. Kessler, IDA, Linköpings universitet.

Classification of RDD Operations

Transformations: Lazy, parallelizable

Mostly variants of Map and reading from file

Actions: Materialization points (”push the button”)

Mostly variants of Reduce and writing back to file/master

RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.
Table source: Zaharia et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.

map

RDD[T1]

produce exactly one

output element per input

element. If T1 is List[T’],

only one output element

per input list will be

computed (usually also

a list). I.e., the

multidimensional

structure of the RDD is

preserved.

flatmap

RDD[List[T1]]

= map + flatten: produce

0, 1 or several basic

output elements per

input element (which

could be a

list/array/

target RDD.

12C. Kessler, IDA, Linköpings universitet.

Shared Variables

shared = not partitioned and distributed,
accessible by all workers

Broadcast Variables

Replicated shared variables – 1 copy on each worker

Read-only for workers

For global data needed by all workers,
e.g. filtering parameters, lookup table

Accumulator Variables

Residing on driver program process

Workers can not read,
only add their contributions using an associative operation

Good for implementing counters and for global sum

Driver

Worker

Worker

Worker

13C. Kessler, IDA, Linköpings universitet.

Example: Text Search

Count lines containing ”ERROR” in a large log file stored in HDFS

RDDs errs and ones are lazy RDDs
that are never materialized to secondary storage.

Call to reduce (action) triggers computation of ones, which triggers
computation of errs, which triggers reading blocks from the file.

// Create a RDD from file:

file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with ”ERROR”:

errs = file.filter(lambda line: line.find("ERROR”)>=0)

// Map each line to a 1:

ones = errs.map(lambda word: (word, 1))

// Add up the 1’s using Reduce:

count = ones.reduce(lambda x, y: x+y)

Python code adapted from Zaharia et al. 2010

The ”lineage” (DFG)

of RDDs leading

to the result count

14C. Kessler, IDA, Linköpings universitet.

Example: Text Search, with reuse of errs

Count lines containing errors in a large log file stored in HDFS

// Create a RDD from file:

file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with ”ERROR”:

errs = file.filter(lambda line: line.find("ERROR”)>=0)

// Cache hint that errs will be reused in another operation:

cachedErrs = errs.cache();

// Map each line to a 1:

ones = cachedErrs.map(lambda word: (word, 1))

// Add up the 1’s using Reduce:

count = ones.reduce(lambda x, y: x+y)

Python pseudocode

15C. Kessler, IDA, Linköpings universitet.

Example: Pi Calculation

Stochastic approximation of Pi:

A random point (x,y) in [0,1]x[0,1]

is located within quarter unit cycle

iff x2 + y2 < 1

def sample(p):

x, y = random(), random()

return 1 if x*x + y*y < 1 else 0

count = sc.parallelize(xrange(0, NUM_SAMPLES)) \

.map(sample) \

.reduce(lambda a, b: a + b)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)

1

1

Create a RDD containing all

indexes 0, …, NUM_SAMPLES-1

RDD variables are implicit

(operation return values)

Argument not used (index)

16C. Kessler, IDA, Linköpings universitet.

Example: Logistic Regression

Iterative classification algorithm to find a hyperplane that best
separates 2 sets of data points

Gradient descent method:

Start at a random normal-vector (hyperplane) w

In each iteration, add to w an error-correction term (based on the
gradient) that is a function of w and the data points, to improve w

// Read points from a text file and cache them:

points = sc.textFile(...).map(parsePoint).cache()

// Initialize w to random D-dimensional vector:

w = Vector.random(D)

// Run multiple iterations to update w:

for (i <- 1 to NUMBER_OF_ITERATIONS) {

grad = sc.accumulator(new Vector(D))

for (p <- points) { // Runs in parallel:

val s = (1/(1+exp(-p.y*(w dot p.x)))-1) * p.y

grad += s * p.x // remotely add contribution to gradient value

}

w -= grad.value // correction of w

}

Scala pseudocode, adapted from

Zaharia et al., 2010

17C. Kessler, IDA, Linköpings universitet.

Spark Execution Model

Depending on the kind of operations,
the data dependences between RDDs in the lineage graph
can be local (elementwise) or global (shuffle-like)

When a user (program) runs an action on an RDD,
the Spark scheduler builds a DAG (directed acyclic graph) of stages
from the RDD lineage graph (data flow graph).

A stage contains a contiguous subDAG of as many as possible
operations with local (element-wise) dependencies between RDDs

The boundary of a stage is thus defined by

Operations with global dependencies

Already computed (materialized) RDD partitions.

Execution of the operations within a stage is pipelined

intermediate results forwarded in memory

The scheduler launches tasks to workers (cluster nodes) to compute
missing partitions from each stage until it computes the target RDD.

Tasks are assigned to nodes based on data locality.

If a task needs a partition that is available in the memory of a
node, the task is sent to that node.

Local

dep.

Global

dep.

18C. Kessler, IDA, Linköpings universitet.

Spark Performance

Results from original paper on Spark 2010:

Spark can outperform Hadoop by 10x in iterative machine

learning jobs

Interactive query of a 39GB data set in < 1s

Image source:

M. Zaharia et al.,

2010. © ACM

19C. Kessler, IDA, Linköpings universitet.

Using Spark

Spark can run atop HDFS, but other implementations also exist

Language bindings exist for Scala, Java, Python (PySpark)

Some minor restrictions for Python

Spark Context object

The main entry point to Spark functionality

Represents connection to a Spark cluster

PySpark context sc is up and running from start

Create your own Spark context object for stand-alone applications

 sc = new pyspark.SparkContext(master, applName, [sparkHome], […])

local

local[k]

spark://host:port

mesos://host:port

20C. Kessler, IDA, Linköpings universitet.

Spark Streaming

21C. Kessler, IDA, Linköpings universitet.

Spark Streaming

Extension of the core Spark API

for scalable, high-throughput, fault-tolerant stream processing

of live data streams.

Discretized stream or DStream

High-level abstraction representing a continuous stream of

data.

Internally: A continuous series of RDDs

Spark

Streaming
Spark

Input data

stream
Batches of

input data
Batches of

processed data

22C. Kessler, IDA, Linköpings universitet.

Transformations on DStreams

map(func), flatMap(func), filter(func) – return a new DStream

with map etc. applied to all its elements

repartition(), union(other_stream)

count() – returns a new DStream of single-element RDDs

containing the number of elements in each RDD of the source

DStream

reduce(func), reduceByKey() – aggregate each RDD of the

source Dstream and return a new Dstream of single-element RDDs

join (other_stream) – joins 2 streams of (K,V) and (K,W) pairs to a

stream of (K,(V,W)) pairs

transform(func) – apply arbitrary RDD-to-RDD function to each

RDD in the source DStream

…

map

RDD[T1]

produce exactly one

output element per input

element. If T1 is List[T’],

only one output element

per input list will be

computed (usually also

a list). I.e., the

multidimensional

structure of the RDD is

preserved.

flatmap

RDD[List[T1]]

= map + flatten: produce

0, 1 or several basic

output elements per

input element (which

could be a

list/array/

target RDD.

23C. Kessler, IDA, Linköpings universitet.

Spark Streaming Example

from pyspark import SparkContext

from pyspark.streaming import StreamingContext

Create a local StreamingContext with two working threads and batch interval of 1 second:

sc = SparkContext("local[2]", "NetworkWordCount")

ssc = StreamingContext(sc, 1)

Create a DStream that will connect to TCP hostname:port, like localhost:9999, as source:

lines = ssc.socketTextStream("localhost", 9999)

Split each line into words:

words = lines.flatMap(lambda line: line.split(" "))

Count each word in each batch:

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKey(lambda x, y: x + y)

Print the first ten elements of each RDD generated in this DStream to the console:

wordCounts.pprint()

ssc.start() # Start the computation

ssc.awaitTermination() # Wait for the computation to terminate

DStream of lines

Run on local host, alt. cluster name

24C. Kessler, IDA, Linköpings universitet.

Spark Streaming: Windowing

Can define a sliding window over a source DStream

time 1 time 4time 2 time 3 time 5

Window

at time 3

Window

at time 5

Window length (here 3)

Slide length (here 2)

→ Overlap size (here 1)

Every time the window slides over a source

DStream, the source RDDs that fall within the

window are combined and operated upon to

produce the RDDs of the windowed DStream.

Example: Reduce last 30 seconds of data, every 10 seconds:

windowedWordCounts = \

pairs.reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y: x - y, 30, 10)

25C. Kessler, IDA, Linköpings universitet.

APPENDIX

26C. Kessler, IDA, Linköpings universitet.

Questions for Reflection

Why can MapReduce emulate any distributed computation?

For a Spark program consisting of 2 subsequent Map computations,
show how Spark execution differs from Hadoop/MapReduce execution.

Given is a file containing just integer numbers.
Write a Spark program that adds them up.

Write a wordcount program for Spark.

Solution proposal (from spark.apache.org):

Note – there exist many variants for formulating this.

Modify the wordcount program by only considering words
with at least 4 characters.

text_file = sc.textFile("hdfs://...")

counts = text_file.flatMap(lambda line: line.split(" ")) \

.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")

27C. Kessler, IDA, Linköpings universitet.

Map vs. FlatMap in Spark

map: transformation

RDD[T1] → RDD[T2],

produces exactly one output element per input element.

If T1 is List[T’], only one output element per input list will be computed

(usually also a list).

I.e., the multidimensional structure of the RDD is preserved.

flatmap:

RDD[List[T1]]→RDD[T2]

= map + flatten: produce 0, 1 or several basic output elements per input

element (which could be a list/array/struct) in the target RDD.

28C. Kessler, IDA, Linköpings universitet.

References

M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica:

Spark: Cluster Computing with Working Sets.

Proceedings of the 2nd USENIX conference on Hot topics in

cloud computing (HotCloud'10), 2010, ACM.

See also: M. Zaharia et al.: Apache Spark: A Unified

Engine for Big Data Processing. Communications of the

ACM, 59(11):56-65, Nov. 2016.

Apache Spark: http://spark.apache.org

A. Nandi: Spark for Python Developers. Packt Publishing,

2015.

