732A54 | TDDE31 ..
. . LINKOPING
Slig) IRElE A TES Ilo“ UNIVERSITY

Introduction to Spark

Christoph Kessler
IDA, LinkGping University

Christoph Kessler, IDA,
Link&pings universitet.



v
Recall: MapReduce Programming Model

0 Designed to operate on LARGE distributed input data sets
stored e.g. in HDFS nodes

0 Abstracts from parallelism, data distribution, load balancing, data
transfer, fault tolerance

0 Implemented in Hadoop and other frameworks

0 Provides a high-level parallel programming construct (= a skeleton)
called MapReduce

0 A generalization of the data-parallel MapReduce skeleton of
Lect. 1

0 Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase
= mn—O<" =
0 mun—-O<l g —CO—mm— &
0
% :::::::ﬁih i —— O i — %

M MaJoper (+combiner) tasks R Reducer (+shuffle) tasks
C. Kessler, IDA, Linkdpings uniVersitet. 2



LINKOPING
II.“ UNIVERSITY

From MapReduce to Spark

MapReduce

0 is for large-scale computations matching the MapReduce pattern,
0 with input, intermediate and output data stored in secondary storage

By chaining multiple MapReduce steps, we
Limitations can emulate any distributed computation.
0 For complex computations composed of multiple MapReduce steps

0 E.g. iterative computations
» €.g. parameter optimization by gradient search
m

Oy = o<t =<l
SR o EEE e EE ey
- Much unnecessary disk I/O — data for next MapReduce step

could remain in main memory or even cache memory
- Data blocks used multiple times are read multiple times from disk
- Bad data locality across subsequent Mapreduce phases
0 Sharing of data only in secondary storage
0 Latency can be too long for interactive analytics

0 Fault tolerance by replication of data — more 1/O to store copies - slow

C. Kessler, IDA, Linkdpings universitet.

0aanm




LINKOPING

Splitting the MapReduce Construct s
Into Simpler Operations — 2 Main Categories:

0 Transformations: Elementwise operations, fully parallelizable
0 Mostly variants of Map and reading from distributed file
0 Actions: Operations with internally global dependence structure
0 Mostly variants of Reduce and writing back to non-distr. file / to master

map(f:T=U

filter(f : T = Bool
flatMap(f : T = Seq[U]
sample(fraction : Float
groupByKey(
reduceByKey(f: (V,V) =V
Transformations union
join

cogroup

(
(
(
crossProduct(
mapValues(f: V=W
sort(c : Comparator[K]
partitionBy(p : Partitioner[K]
count|()

collect()
Actions reduce(f: (T, T)=T) Q

lookup(k : K)
save(path : String)

)
)
)
)
|
) O
)
)
)
)
)

o - - wr -

RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.
C. Kessler, IDA, Linkdpings Table source: Zaharia et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. 4



II LINKOPING
[ UNIVERSITY

Spark Idea: Data Flow Computing in Memory

Instead of calling subsequent rigid MapReduce steps, S ,
the Spark programmer describes the overall data flow graph | ‘
of how to compute all intermediate and final results from the
initial input data

0 Lazy evaluation of transformatons | @ & @ W
0 Transformations are just added to the graph (postponed) """"""""""""" ;

0 Actions "push the button” for computing (= materlallzmg
the results) according to the data flow graph

0 More like declarative, functional programming
0 Gives more flexibility to the scheduler
0 Better data locality

0 Keep data in memory as capacity permlts can skip
unnecessary disk storage of temporary data

0 No replication of data blocks for fault tolerance - in case of
task failure (worker failure), recompute it from available,
earlier computed data blocks
according to the data flow graph

0 Needs a container data structure for operand data that
"knows” how its data blocks are to be computed: the RDD

C. Kessler, IDA, Linkdpings universitet.



II LINKOPING
[ UNIVERSITY

Spark Execution Model ,/?
IZriver “%*\?

0 Driver program (sequential) runs on host / master

0 Operations on distributed data (RDDs) run on workers
0 Collect data from workers to driver program on demand

C. Kessler, IDA, Linkdpings universitet. (9)



LINKOPING
II.“ UNIVERSITY

Resilient Distributed Datasets (RDDs) EEtPa”‘“"”’b'Ock

0 Containers for operand data passed between parallel operations

0 Read-only (after construction) collection of data objects T
0 Partitioned and distributed across workers (cluster nodes)
0 Materialized on demand from construction description
0 Can be rebuilt if a partition (data block) is lost @@@@
0 By default, cached in main memory —
not persistent (in secondary storage) until written back
O
0
0

C. Kessler, IDA, Linkdpings universitet. 7



LINKOPING
II.“ UNIVERSITY

Resilient Distributed Datasets (RDDs) EEtPa”“‘O”’b'“k

0 Containers for operand data passed between parallel operations

O O o o O

0 Construction of new RDDs:

O
O

O

Read-only (after construction) collection of data objects e (i
Partitioned and distributed across workers (cluster nodes)
Materialized on demand from construction description

Can be rebuilt if a partition (data block) is lost @

By default, cached in main memory —
not persistent (in secondary storage) until written back

data =1[1, 2, 3, 4, 5]
distData = sc.parallelize(data)

By reading in from a file e.g. in HDFS

By partitioning and distributing a non-distributed collection
(e.g., array) previously residing on one node ("scatter”)

By a Map operation: A - List(B)
(elementwise transformation, filtering, ...) applied on another RDD

C. Kessler, IDA, Linkdpings universitet. 8



LINKOPING
II.“ UNIVERSITY

Resilient Distributed Datasets (RDDs) EEtPa”“‘O”’b'“k

0 Containers for operand data passed between parallel operations

Read-only (after construction) collection of data objects o
Partitioned and distributed across workers (cluster nodes)
Materialized on demand from construction description

Can be rebuilt if a partition (data block) is lost

By default, cached in main memory —
not persistent (in secondary storage) until written back

data =1[1, 2, 3, 4, 5]
distData = sc.parallelize(data)

O O o o O

0 Construction of new RDDs:
0 By reading in from a file e.g. in HDFS

0 By partitioning and distributing a non-distributed collection
(e.g., array) previously residing on master node ("scatter”)

0 By a Map operation: A - List(B)
(elementwise transformation, filtering, ...) applied on another RDD

0 Changing persistence state of a RDD:
» By a caching hint for data to be reused — if enough space in memory

» By materializing (persisting, saving) to a file .
(and discarding its copy in memory[m cachedData = OIIStOlata-Cc’:mhe()]

C. Kessler, IDA, Linkdpings universitet. distdata.saveASTextFiIe(...)] 9




LINKOPING
II.“ UNIVERSITY

Actions on RDDs

Recall: Spark execution model:

0 Driver program (sequential) runs on host / master
0 Operations on RDDs run on workers

0 Collect data from workers to driver program on demand:

Parallel Collect Operations on RDDs:

0 Reduce

0 Combine RDD elements using an associative binary function to produce a
(scalar) result at the driver program

0 Key-value pairs to reduce over are grouped by key, as in MapReduce
0 Collect
0 Send all elements of the RDD to the driver program ("gather”)
» The reverse operation of parallelize
0 Foreach
0 Pass each RDD element through a user-provided function

0 Eager evaluation - Not producing another RDD (difference from Map/Filter)
0 Might be used e.g. for copying data to another system

C. Kessler, IDA, Linkdpings universitet. 10



Classification of RDD Operations

0 Transformations: Lazy, parallelizable
0 Mostly variants of Map and reading from file
0 Actions: Materialization points ("push the button”)
0 Mostly variants of Reduce and writing back to file/master

LINKOPING
UNIVERSITY

lookup(k : K)
save(path : String)

map(f:T=U) RDD|T] = RDDI[U]
filter(f : T = Bool) RDD[T] = RDD|T]
flatMap(f : T = Seq[U]) RDDI|T] = RDDI[U]
sample(fraction : Float) RDDI[T] = RDDIT] (Deterministic sampling)
groupByKey() RDDI[(K, V)] = RDDI[(K, Seq[V])]
reduceByKey(f : (V,V)=V) RDDI(K, V)] = RDD[(K, V)]
Transformations union() (RDD[T],RDDI[T]) = RDD[T]
join() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)],RDD[(K, W)]) = RDDI(K, (Seq[V], Seq[W]))]
crossProduct() (RDD[T],RDD[U]) = RDD[(T, U)]
mapValues(f:V = W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDDI[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() : RDDI[T]= Long
collect() RDD[T] = Seq[T]
Actions reduce(f: (T, T)=T) RDD[T] =T

RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
Outputs RDD to a storage system, e.g., HDFS

C. Kessler, IDA, Linkopings

RDD transformations and actions available in Spark. Seq[T] denotes a sequence of elements of type T.
Table source: Zaharia et al.: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. 17



II LINKOPING
[ UNIVERSITY

Shared Variables
-

Driver —— tasks

0 shared = not partitioned and distributed,
accessible by all workers

0 Broadcast Variables
0 Replicated shared variables — 1 copy on each worker
0 Read-only for workers

0 For global data needed by all workers,
e.g. filtering parameters, lookup table

0 Accumulator Variables
0 Residing on driver program process

0 Workers can not read, | o |
only add their contributions using an associative operation

0 Good for implementing counters and for global sum

C. Kessler, IDA, Linkdpings universitet. 12



II LINKOPING
[ UNIVERSITY

Example: Text Search
0 Count lines containing "ERROR” in a large log file stored in HDFS

Il Create a RDD from file:
file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with "ERROR™:
errs = file.filter( lambda line: line.find("ERROR")>=0 )

/[ Map each line to a 1:
ones = errs.map( lambda word: (word, 1) )

The "lineage” (DFG)
// Add up the 1’s using Reduce: of RDDs leading
to the result count

count = ones.reduce( lambda x, y: x+y)

0 RDDs errs and ones are lazy RDDs
that are never materialized to secondary storage.

0 Call to reduce (action) triggers computation of ones, which triggers
computation of errs, which triggers reading blocks from the file.

C. Kessler, IDA, Linkdpings universitet. 13



II LINKOPING
[ UNIVERSITY

Example: Text Search, with reuse of errs

0 Count lines containing errors in a large log file stored in HDFS

/I Create a RDD from file: Python pseudocode
file = sc.textFile("hdfs://...")

// Filter operation to create RDD containing lines with "ERROR?”:
errs = file.filter( lambda line: line.find("ERROR")>=0 )

/[ Cache hint that errs will be reused in another operation:
[> cachedErrs = errs.cache();

/[ Map each line to a 1:
ones = cachedErrs.map( lambda word: (word, 1) )

// Add up the 1's using Reduce:
count = ones.reduce( lambda x, y: x+y )

C. Kessler, IDA, Linkdpings universitet. 14



[T e
Example: Pi Calculation

0 Stochastic approximation of Pi:
0 A random point (x,y) in [0,1]x[0,1]

. o : 1

IS located within quarter unit cycle

iff x2+y2<1

1
Argument not used (index) }
def sample(p):

A Y= ran_dom()’ random() Create a RDD containing all
return 1if x*>x +y*y <1lelse O indexes 0, ..., NUM_SAMPLES-

count = sc.parallelize( xrange(0, NUM_SAMPLES) ) \
.map(sample) \

reduce( lambda a, b: a + b) RDD variables are implicit
(operation return values)

print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)

C. Kessler, IDA, Linkdpings universitet. 15



v
Example: Logistic Regression

0 lterative classification algorithm to find a hyperplane that best
separates 2 sets of data points

0 Gradient descent method:
0 Start at a random normal-vector (hyperplane) w

0 In each iteration, add to w an error-correction term (based on the
gradient) that is a function of w and the data points, to improve w

// Read points from a text file and cache them:
points = sc.textFile(...).map(parsePoint).cache()
/ Initialize w to random D-dimensional vector:
w = Vector.random(D)
// Run multiple iterations to update w:
for (i <- 1 to NUMBER_OF ITERATIONS) {
grad = sc.accumulator( new Vector(D) )
for (p <- points) { // Runs in parallel:
val s = (1/(1+exp(-p.y*(w dot p.x)))-1) * p.y
grad +=s * p.x // remotely add contribution to gradient value

}

w -= grad.value  // correction of w

C. Kessl } 16



LINKOPING
II.“ UNIVERSITY

Spark Execution Model ﬁ

0 Depending on the kind of operations,
the data dependences between RDDs in the lineage graph
can be local (elementwise) or global (shuffle-like)

0 When a user (program) runs an action on an RDD,
the Spark scheduler builds a DAG (directed acyclic graph) of stages
from the RDD lineage graph (data flow graph).

0 A stage contains a contiguous subDAG of as many as possible
operations with local (element-wise) dependencies between RDDs

0 The boundary of a stage is thus defined by
» Operations with global dependencies
» Already computed (materialized) RDD partitions.
0 Execution of the operations within a stage is pipelined
0 Intermediate results forwarded in memory

0 The scheduler launches tasks to workers (cluster nodes) to comput
missing partitions from each stage until it computes the target RDD.

0 Tasks are assigned to nodes based on data locality.

0 If atask needs a partition that is available in the memory of a
node, the task is sent to that node. T

C. Kessler, IDA, Linkdpings universitet. 17




houiios
Spark Performance

Results from original paper on Spark 2010:

0 Spark can outperform Hadoop by 10x in iterative machine
learning jobs

0 Interactive query of a 39GB data set in < 1s

—~ 4000
»

S—"

3000

=
2000 ® Hadoop
€ 1000 I Spark
I
5 10 20 30

Number of lterations

me

Running

Figure 2: Logistic regression performance in Hadoop and Spark.

C. Kessler, IDA, Linkdpings universitet. 18



LINKOPING
II.“ UNIVERSITY

Using Spark

0 Spark can run atop HDFS, but other implementations also exist
0 Language bindings exist for Scala, Java, Python (PySpark)

0 Some minor restrictions for Python
0 Spark Context object

0 The main entry point to Spark functionality

0 Represents connection to a Spark cluster

0 PySpark context sc is up and running from start

0 Create your own Spark context object for stand-alone applications
» sSC = new pyspark.SparkContext( master, applName, [sparkHome], [...])

local
local[k]
spark://host:port
mesos://host:port

C. Kessler, IDA, Linkdpings universitet.

19



LINKOPING
II.“ UNIVERSITY

Spark Streaming

C. Kessler, IDA, Linkdpings universitet. 20



LINKOPING
II.“ UNIVERSITY

Spark Streaming

0 Extension of the core Spark API
for scalable, high-throughput, fault-tolerant stream processing
of live data streams.

0 Discretized stream or DStream

0 High-level abstraction representing a continuous stream of
data.

0 Internally: A continuous series of RDDs

Input data Batches of Batches of
stream input data processed data

heaning L] | sear | [T

C. Kessler, IDA, Linkdpings universitet. 21




LINKOPING
II.“ UNIVERSITY

Transformations on DStreams

map( func ), flatMap( func ), filter( func ) — return a new DStream
with map etc. applied to all its elements

repartition(), union( other_stream )

count() — returns a new DStream of single-element RDDs
containing the number of elements in each RDD of the source
DStream

reduce( func ), reduceByKey() — aggregate each RDD of the
source Dstream and return a new Dstream of single-element RDDs

join ( other_stream ) — joins 2 streams of (K,V) and (K,W) pairs to a
stream of (K,(V,W)) pairs

transform( func ) — apply arbitrary RDD-to-RDD function to each
RDD in the source DStream

o ...

C. Kessler, IDA, Linkdpings universitet. 22



v
Spark Streaming Example

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

# Create a local StreamingContext with two working threads and batch interval of 1 second:
sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)

[ Run on local host, alt. cluster name }

# Create a DStream that will connect to TCP hostname:port, like localhost:9999, as source:
lines = ssc.socketTextStream("localhost", 9999)

\L DStream of lines ]
# Split each line into words:

words = lines.flatMap( lambda line: line.split(" ") )

# Count each word in each batch:
pairs = words.map( lambda word: (word, 1))
wordCounts = pairs.reduceByKey( lambda x, y: x +y)

# Print the first ten elements of each RDD generated in this DStream to the console:
wordCounts.pprint()

ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate

C. Kessler, IDA, Linkdpings universitet. 23



II LINKOPING
[ UNIVERSITY

Spark Streaming: Windowing

0 Can define a sliding window over a source DStream

time 1 time 2 time 3 time 4 time 5

Window Window

at time 3 | at time 5
Window length (here 3) Every time the window slides over a source
Slide length (here 2) DStream, the source RDDs that fall within the
- Overlap size (here 1) window are combined and operated upon to

produce the RDDs of the windowed DStream.

# Example: Reduce last 30 seconds of data, every 10 seconds:
windowedWordCounts =\

pairs.reduceByKeyAndWindow( lambda x, y: x +y, lambda x, y: x -y, 30, 10) 24

C.K



II LINKOPING
[ UNIVERSITY

APPENDIX

C. Kessler, IDA, Linkdpings universitet. 25



oz
Questions for Reflection

0 Why can MapReduce emulate any distributed computation?

For a Spark program consisting of 2 subsequent Map computations,
show how Spark execution differs from Hadoop/MapReduce execution.

0 Givenis a file containing just integer numbers.
Write a Spark program that adds them up.
0 Write a wordcount program for Spark. ?
0 Solution proposal (from spark.apache.org):

text_file = sc.textFile("hdfs://...")

counts = text_file.flatMap( lambda line: line.split(" ") ) \
.map( lambda word: (word, 1) ) \
reduceByKey( lambdaa, b:a+b)

counts.saveAsTextFile("hdfs://...")

0 Note — there exist many variants for formulating this.

0 Modify the wordcount program by only considering words
with at least 4 characters.

C. Kessler, IDA, Linkdpings universitet. 20



LINKOPING
II.“ UNIVERSITY

Map vs. FlatMap In Spark

map: transformation

RDD[T1] - RDD[T2],

produces exactly one output element per input element.

If T1 is List[T’], only one output element per input list will be computed
(usually also a list).

|.e., the multidimensional structure of the RDD is preserved.

flatmap:

RDD[List[T1]]>RDDI[T2]

= map + flatten: produce 0, 1 or several basic output elements per input
element (which could be a list/array/struct) in the target RDD.

C. Kessler, IDA, Linkdpings universitet. 27



[T e
References

0 M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, |. Stoica:
Spark: Cluster Computing with Working Sets.
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing (HotCloud'10), 2010, ACM.

0 See also: M. Zaharia et al.: Apache Spark: A Unified
Engine for Big Data Processing. Communications of the
ACM, 59(11):56-65, Nov. 2016.

0 Apache Spark: http://spark.apache.org

0 A. Nandi: Spark for Python Developers. Packt Publishing,
2015.

C. Kessler, IDA, Linkdpings universitet. 28



