

Introduction to MapReduce

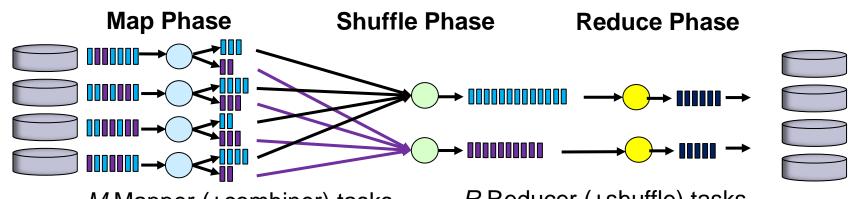
Christoph Kessler

IDA, Linköping University

2023

MapReduce Programming Model

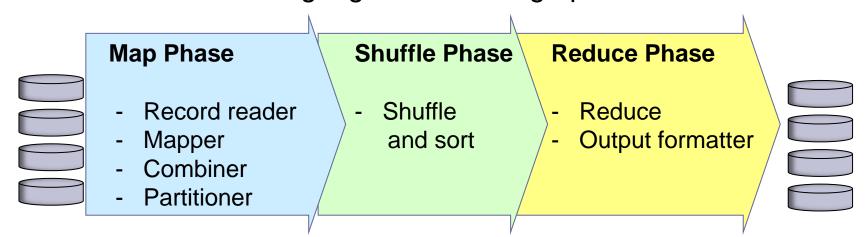
- Designed to operate on LARGE distributed input data sets stored e.g. in HDFS nodes
- Abstracts from parallelism, data distribution, load balancing, data transfer, fault tolerance
- Implemented in **Hadoop** and other frameworks
- Provides a high-level parallel programming construct (= a skeleton) called MapReduce
 - A generalization of the data-parallel *MapReduce* skeleton of Lecture 1
 - Covers the following algorithmic design pattern:



R Reducer (+shuffle) tasks

MapReduce Programming Model

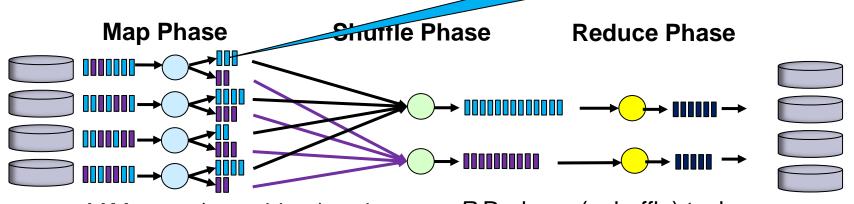
- Designed to operate on LARGE input data sets stored e.g. in HDFS nodes
- Abstracts from parallelism, data distribution, load balancing, data transfer, fault tolerance
- Implemented in Hadoop and other frameworks
- Provides a high-level parallel programming construct (= a skeleton) called MapReduce
 - A generalization of the data-parallel MapReduce skeleton of Lecture 1
 - Covers the following algorithmic design pattern:



Key-value pairs

MapReduce Programming Model

- Designed to operate on LARGE distributed input data sets stored e.g. in HDFS nodes
- Abstracts from parallelism, data distribution, load balancing, data transfer, fault tolerance
- Implemented in **Hadoop** and other frameworks
- Provides a high-level parallel programming construct (= a skeleton) called MapReduce
 - A generalization of the data-parallel *MapReduce* Data elements: Lecture 1
 - Covers the following algorithmic design patron

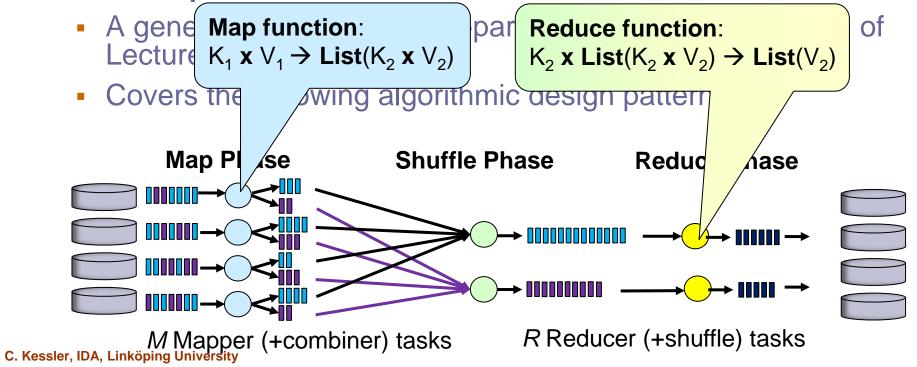


M Mapper (+combiner) tasks C. Kessler, IDA, Linköping University

R Reducer (+shuffle) tasks

MapReduce Programming Model

- Designed to operate on LARGE distributed input data sets stored e.g. in HDFS nodes
- Abstracts from parallelism, data distribution, load balancing, data transfer, fault tolerance
- Implemented in **Hadoop** and other frameworks
- Provides a high-level parallel programming construct (= a skeleton) called MapReduce



R Reducer (+shuffle) tasks

Record Reader

- **Map Phase**
 - Record reader
 - Mapper
- Combiner
- **Partitioner**
- Parses an input file block from stdin into **key-value pairs** that define input data records
 - **Key** in K₁ is typically positional information (location in file)
 - **Value** in V_1 = chunk of input data that composes a record

Mapper

Map Phase

- LINKÖPING UNIVERSITY
- Record reader
- Mapper
- Combiner
- Partitioner
- Applies a user-defined function to each element (i.e., key/value pair coming from the Record reader).
 - Examples:
 - Filter function drop elements that do not fulfill a constraint
 - Transformation function calculation on each element
- Produces a list of zero or more new key/value pairs
 - = intermediate elements
 - Key in K₂: index for grouping of data
 - Value in V₂: Data to be forwarded to reducer
 - Buffered in memory

Combiner

- Map Phase
 - Record reader
 - Mapper
- Combiner
- Partitioner
- An optional local reducer run in the mapper task as postprocessor
- Applies a user-provided function to aggregate values in the intermediate elements of one mapper task
- Reduction/aggregation could also be done by the reducer, but local reduction can improve performance considerably
 - Data locality key/value pairs still in cache resp. memory of same node
 - Data reduction aggregated information is often smaller
- Applicable if the user-defined Reduce function is commutative and associative
- Recommended if there is significant repetition of intermediate keys produced by each Mapper task

Partitioner

- Record reader
- Mapper
- Combiner
- Partitioner
- Splits the intermediate elements from the mapper/combiner into shards (64MB blocks stored in local files)
 - one shard per reducer
 - Default: element to hashCode(element.key) modulo R
 for even (round-robin) distribution of elements
 - Usually good for load balancing
- Writes the shards to the local file system

Shuffle-and-sort

Shuffle and sort

- Downloads the needed files written by the partitioners to the node on which the reducer is running
- Sort the received (key, value) pairs by key into one list
 - Pairs with equivalent keys will now be next to each other (groups)
 - To be handled by the reducer
- No customization here beyond how to sort and group by keys

Reducer

Reduce Phase

- Reducer
- Output formatter

- Run a user-defined reduce function once per key grouping
 - Can aggregate, filter, and combine data
 - Output: 0 or more key/value pairs sent to output formatter.

Output Formatter

- Reducer
- Output formatter
- Translates the final (key,value) pair from the reduce function and writes it to stdout → to a file in HDFS
 - Default formatting (key <TAB> value <NEWLINE>)
 can be customized

Python code for the **Mapper** task:

```
import sys
for line in sys.stdin:
  # for each input document:
  # remove leading and trailing whitespace:
  line = line.strip()
  # split the line into words:
  words = line.split()
  # increase counters:
  for word in words:
                                              Python code adapted from
     print '%s\t%s' % (word, 1)
                                              MapReduce tutorial, Princeton U., 2015
                                               ABC<tab>1
     ABC
            DEF.
                                               DEF<tab>1
     - GHI ABC?
                                               GHI<tab>1
     DEF
                                               ABC<tab>1
                                               DEF<tab>1
```

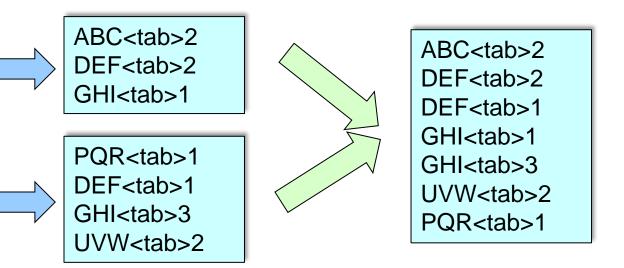

Python code for the Combiner task:

```
import sys
for line in sys.stdin:
  # for each document create dictionary of words:
  wordcounts = dict()
  line = line.strip()
  words = line.split()
  for word in words:
     if word not in wordcounts.keys(): wordcounts[word] = 1
     else: wordcounts[word] += 1
  # emit key-value pairs only for distinct words per document
  for w in wordcounts.keys():
     print '%s\t%s' % (w, wordcounts[w])
```

ABC<tab>1 DEF<tab>1 GHI<tab>1 ABC<tab>1 DEF<tab>1

ABC<tab>2
DEF<tab>2

Effect of Shuffle-And-Sort:



Python code for the **Reducer** task:

NB words come in sorted order – if word is same as the last one, just add its count

```
import sys
current_word = None
current count = 0
word = None
for line in sys.stdin:
  # remove leading and trailing whitespace
  line = line.strip()
  # parse the input we got from mapper:
  word, count = line.split('\t', 1)
  # convert count from string to int:
  try:
     count = int(count)
  except ValueError:
     # silently ignore invalid line
     continue
```

```
if current_word == word:
     current count += count
  else:
     # new word – print tuple for
     # the previous one to stdout:
     if current_word:
       print '%s\t%s' %
                   (current_word,
                    current_count)
     current_count = count
     current_word = word
# loop done, write the last tuple:
if current_word == word:
  print '%s\t%s' % (current_word,
                    current_count)
```


Effect of Reducer:

ABC<tab>2

DEF<tab>2

DEF<tab>1

GHI<tab>1

GHI<tab>3

UVW<tab>2

PQR<tab>1

ABC<tab>2

DEF<tab>3

GHI<tab>4

UVW<tab>2

PQR<tab>1

Special Cases of MapReduce

Map only (Reduce is identity function)

- Data Filtering
 - E.g. distributed grep
- Data Transformation

Shuffle-and-sort only:

- Sorting values by key
 - Mapper extracts key from record and forms < key, record > pairs
 - Shuffle-and-sort phase does the sorting by key

Reduce only: (Map is identity function, Combiner for local reduce)

- Reductions (summarizations):
 - Find global maximum/minimum, global sum, average, median, standard deviation, ...
 - Find top-10

Further Examples for MapReduce

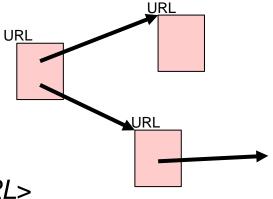
- Count URL frequencies (a variant of wordcount)
 - Input: logs of web page requests < URL, 1>
 - Reduce function adds together all values for same URL

Construct reverse web-link graph

- Input: <sourceURL, targetURL> pairs
- Mapper reverses: <targetURL, sourceURL>
- Shuffle-and-sort →
 <targetURL, list of all URLs pointing to targetURL>
- no reduction → Reduce function is identity function

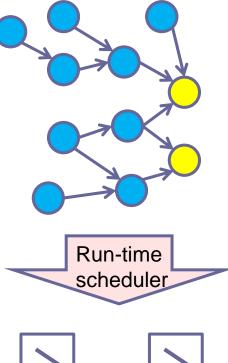
Indexing web documents

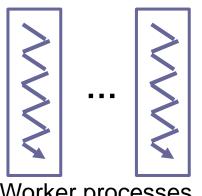
- Input: list of documents (e.g. web pages)
- Mapper parses documents and builds sequences < word, documentID>*
- Shuffle-and-sort produces for each word a list of all documentIDs where word occurs (Reduce function is identity)



MapReduce Implementation / Execution Flow

- User application calls MapReduce and waits.
- MapReduce library implementation splits the input data (if not already done) in M blocks (of e.g. 64MB) and creates (P MapReduce processes on different cluster nodes: 1 master and P-1 workers.
- Master creates M mapper tasks and R reducer tasks, and dispatches them to idle workers (dynamic scheduling)
 - Worker executing a Mapper task reads its block of input, applies the Map (and local Combine) function, and buffers (key,value) pairs in memory.
 Buffered pairs are periodically written to local disk, locations of these files are sent to Master.
 - Worker executing a Reducer task is notified by Master about locations of intermediate data to shuffle+sort and fetches them by remote memory access request, then sorts them by key (K₂).
 It applies the Reduce function to the sorted data and appends its output to a local file.
- When all mapper and reducer tasks have completed, the master wakes up the user program and returns the locations of the R output files.





MapReduce Implementation: Fault Tolerance

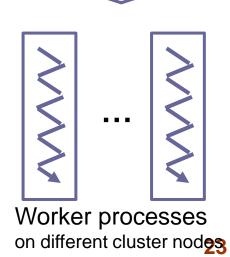
Worker failure

- Master pings every worker periodically.
- Master marks a dead worker's tasks for reexecution → eventually reassigned to other workers
 - Completed map tasks (as their local files with intermediate data are no longer accessible) and unfinished map and reduce tasks
 - Reducer tasks using data from a failed map task are informed by master about the new worker

Run-time scheduler

Master failure

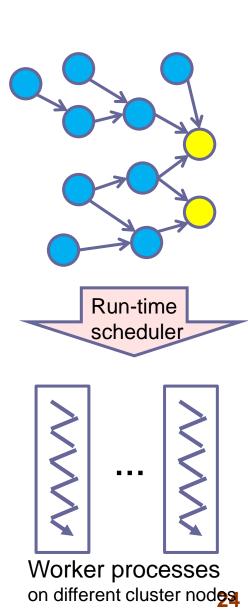
- Less likely (1 Master, P-1 Workers)
- Use checkpointing, a new master can restart from latest checkpoint



MapReduce Implementation: Data Locality

 For data storage fault tolerance, have 3 copies of each 64MB data block, each stored on a different cluster node

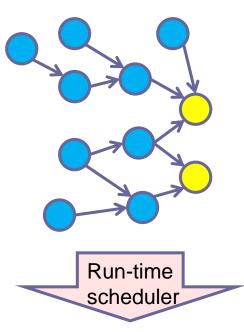
- Master uses Locality-aware scheduling:
 - Schedule a mapper task to a worker node holding one copy of its input data block
 - Or on a node that is near a copy holder (e.g. a neighbor node in the network topology)

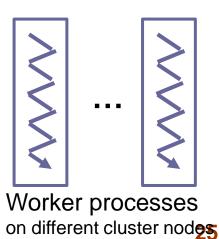


MapReduce Implementation: Granularity

Numbers *M*, *R* and work of tasks (block size) might be tuned

- Default: M = input file size / block size
 - User can set other value
- *M*, *R* should be >> *P*
 - For flexibility in dynamic load balancing
 - Hadoop recommends ~10...100 mappers per cluster node, or more if lightweight
- Not too large, though...
 - ~ M+R scheduling decisions by master
 - Block size should be reasonably large (e.g. 64MB) to keep relative impact of communication and task overhead low





References

- J. Dean, S. Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. Proc. OSDI 2004.
 Also in: Communications of the ACM 51(1), 2008.
- D. Miner, A. Shook: MapReduce Design Patterns. O'Reilly, 2012.
- Apache Hadoop: https://hadoop.apache.org

Questions for Reflection

- A MapReduce computation should process 12.8 TB of data in a distributed file with block (shard) size 64MB. How many mapper tasks will be created, by default? (Hint: 1 TB (Terabyte) = 10¹² byte)
- Discuss the design decision to offer just one MapReduce construct that covers both mapping, shuffle+sort and reducing. Wouldn't it be easier to provide one separate construct for each phase? What would be the performance implications of such a design operating on distributed files?
- Reformulate the wordcount example program to use no Combiner.
- Consider the local reduction performed by a Combiner:
 Why should the user-defined Reduce function be associative and commutative? Give examples for reduce functions that are associative and commutative, and such that are not.
- Extend the wordcount program to discard words shorter than 4 characters.
- Write a wordcount program to only count all words of odd and of even length.
 There are several possibilities.
- Show how to calculate a database join with MapReduce.
- Sometimes, workers might be temporarily slowed down (e.g. repeated disk read errors) without being broken. Such workers could delay the completion of an entire MapReduce computation considerably. How could the master speed up the overall MapReduce processing if it observes that some worker is late?