
Christoph Kessler, IDA,

Linköpings universitet.

Introduction to MapReduce

Christoph Kessler

IDA, Linköping University

2023

732A54 / TDDE31

Big Data Analytics

4C. Kessler, IDA, Linköping University

MapReduce Programming Model

▪ Designed to operate on LARGE distributed input data sets
stored e.g. in HDFS nodes

▪ Abstracts from parallelism, data distribution, load balancing, data
transfer, fault tolerance

▪ Implemented in Hadoop and other frameworks

▪ Provides a high-level parallel programming construct (= a skeleton)
called MapReduce

▪ A generalization of the data-parallel MapReduce skeleton of
Lecture 1

▪ Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

5C. Kessler, IDA, Linköping University

Reduce Phase

- Reduce

- Output formatter

Shuffle Phase

- Shuffle

and sort

MapReduce Programming Model

▪ Designed to operate on LARGE input data sets
stored e.g. in HDFS nodes

▪ Abstracts from parallelism, data distribution, load balancing, data
transfer, fault tolerance

▪ Implemented in Hadoop and other frameworks

▪ Provides a high-level parallel programming construct (= a skeleton)
called MapReduce

▪ A generalization of the data-parallel MapReduce skeleton of
Lecture 1

▪ Covers the following algorithmic design pattern:

Map Phase

- Record reader

- Mapper

- Combiner

- Partitioner

6C. Kessler, IDA, Linköping University

MapReduce Programming Model

▪ Designed to operate on LARGE distributed input data sets
stored e.g. in HDFS nodes

▪ Abstracts from parallelism, data distribution, load balancing, data
transfer, fault tolerance

▪ Implemented in Hadoop and other frameworks

▪ Provides a high-level parallel programming construct (= a skeleton)
called MapReduce

▪ A generalization of the data-parallel MapReduce skeleton of
Lecture 1

▪ Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

Data elements:

Key-value pairs

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

7C. Kessler, IDA, Linköping University

MapReduce Programming Model

▪ Designed to operate on LARGE distributed input data sets
stored e.g. in HDFS nodes

▪ Abstracts from parallelism, data distribution, load balancing, data
transfer, fault tolerance

▪ Implemented in Hadoop and other frameworks

▪ Provides a high-level parallel programming construct (= a skeleton)
called MapReduce

▪ A generalization of the data-parallel MapReduce skeleton of
Lecture 1

▪ Covers the following algorithmic design pattern:

Map Phase Shuffle Phase Reduce Phase

M Mapper (+combiner) tasks R Reducer (+shuffle) tasks

Reduce function:

K2 x List(K2 x V2) → List(V2)

Map function:

K1 x V1 → List(K2 x V2)

8C. Kessler, IDA, Linköping University

Record Reader

▪ Parses an input file block from stdin

into key-value pairs that define input data records

▪ Key in K1 is typically positional information (location in file)

▪ Value in V1 = chunk of input data that composes a record

Map Phase

- Record reader

- Mapper

- Combiner

- Partitioner

9C. Kessler, IDA, Linköping University

Mapper

▪ Applies a user-defined function to each element (i.e.,

key/value pair coming from the Record reader).

▪ Examples:

Filter function – drop elements that do not fulfill a

constraint

Transformation function – calculation on each element

▪ Produces a list of zero or more new key/value pairs

= intermediate elements

▪ Key in K2: index for grouping of data

▪ Value in V2: Data to be forwarded to reducer

▪ Buffered in memory

Map Phase

- Record reader

- Mapper

- Combiner

- Partitioner

10C. Kessler, IDA, Linköping University

Combiner

▪ An optional local reducer

run in the mapper task as postprocessor

▪ Applies a user-provided function to aggregate values in the

intermediate elements of one mapper task

▪ Reduction/aggregation could also be done by the reducer,

but local reduction can improve performance considerably

▪ Data locality – key/value pairs still in cache resp. memory

of same node

▪ Data reduction – aggregated information is often smaller

▪ Applicable if the user-defined Reduce function is commutative

and associative

▪ Recommended if there is significant repetition of intermediate

keys produced by each Mapper task

Map Phase

- Record reader

- Mapper

- Combiner

- Partitioner

11C. Kessler, IDA, Linköping University

Partitioner

▪ Splits the intermediate elements from the mapper/combiner

into shards (64MB blocks stored in local files)

▪ one shard per reducer

▪ Default: element to hashCode(element.key) modulo R

for even (round-robin) distribution of elements

Usually good for load balancing

▪ Writes the shards to the local file system

Map Phase

- Record reader

- Mapper

- Combiner

- Partitioner

12C. Kessler, IDA, Linköping University

Shuffle-and-sort

▪ Downloads the needed files written by the partitioners

to the node on which the reducer is running

▪ Sort the received (key,value) pairs by key into one list

▪ Pairs with equivalent keys will now be next to each other

(groups)

▪ To be handled by the reducer

▪ No customization here beyond how to sort and group by keys

Shuffle Phase

- Shuffle

and sort

13C. Kessler, IDA, Linköping University

Reducer

▪ Run a user-defined reduce function once per key grouping

▪ Can aggregate, filter, and combine data

▪ Output: 0 or more key/value pairs sent to output formatter.

Reduce Phase

- Reducer

- Output formatter

14C. Kessler, IDA, Linköping University

Output Formatter

▪ Translates the final (key,value) pair from the reduce function

and writes it to stdout → to a file in HDFS

▪ Default formatting (key <TAB> value <NEWLINE>)

can be customized

Reduce Phase

- Reducer

- Output formatter

15C. Kessler, IDA, Linköping University

Example: Word Count

▪ Python code for the Mapper task:

import sys

for line in sys.stdin:

for each input document:

remove leading and trailing whitespace:

line = line.strip()

split the line into words:

words = line.split()

increase counters:

for word in words:

print '%s\t%s' % (word, 1)
Python code adapted from

MapReduce tutorial, Princeton U., 2015

ABC DEF.

- GHI ABC?

DEF

…

ABC<tab>1

DEF<tab>1

GHI<tab>1

ABC<tab>1

DEF<tab>1

…

ABC DEF.

- GHI ABC?

DEF

…

ABC DEF.

- GHI ABC?

DEF

…

ABC<tab>1

DEF<tab>1

GHI<tab>1

ABC<tab>1

DEF<tab>1

…

ABC<tab>1

DEF<tab>1

GHI<tab>1

ABC<tab>1

DEF<tab>1

…

16C. Kessler, IDA, Linköping University

Example: Word Count

▪ Python code for the Combiner task:

import sys

for line in sys.stdin:

for each document create dictionary of words:

wordcounts = dict()

line = line.strip()

words = line.split()

for word in words:

if word not in wordcounts.keys(): wordcounts[word] = 1

else: wordcounts[word] += 1

emit key-value pairs only for distinct words per document

for w in wordcounts.keys():

print '%s\t%s' % (w, wordcounts[w])

ABC<tab>1

DEF<tab>1

GHI<tab>1

ABC<tab>1

DEF<tab>1

ABC<tab>2

DEF<tab>2

GHI<tab>1

17C. Kessler, IDA, Linköping University

Example: Word Count

▪ Effect of Shuffle-And-Sort:

ABC<tab>2

DEF<tab>2

GHI<tab>1

PQR<tab>1

DEF<tab>1

GHI<tab>3

UVW<tab>2

ABC<tab>2

DEF<tab>2

DEF<tab>1

GHI<tab>1

GHI<tab>3

UVW<tab>2

PQR<tab>1

18C. Kessler, IDA, Linköping University

Example: Word Count

▪ Python code for the Reducer task:

import sys

current_word = None

current_count = 0

word = None

for line in sys.stdin:

remove leading and trailing whitespace

line = line.strip()

parse the input we got from mapper:

word, count = line.split('\t', 1)

convert count from string to int:

try:

count = int(count)

except ValueError:

silently ignore invalid line

continue

….

….

if current_word == word:

current_count += count

else:

new word – print tuple for

the previous one to stdout:

if current_word:

print '%s\t%s' %

(current_word,

current_count)

current_count = count

current_word = word

loop done, write the last tuple:

if current_word == word:

print '%s\t%s' % (current_word,

current_count)

NB words come in

sorted order – if word

is same as the last one,

just add its count

19C. Kessler, IDA, Linköping University

Example: Word Count

▪ Effect of Reducer:

ABC<tab>2

DEF<tab>2

DEF<tab>1

GHI<tab>1

GHI<tab>3

UVW<tab>2

PQR<tab>1

ABC<tab>2

DEF<tab>3

GHI<tab>4

UVW<tab>2

PQR<tab>1

20C. Kessler, IDA, Linköping University

Special Cases of MapReduce

Map only (Reduce is identity function)

▪ Data Filtering

▪ E.g. distributed grep

▪ Data Transformation

Shuffle-and-sort only:

▪ Sorting values by key

▪ Mapper extracts key from record and forms <key, record> pairs

▪ Shuffle-and-sort phase does the sorting by key

Reduce only: (Map is identity function, Combiner for local reduce)

▪ Reductions (summarizations):

▪ Find global maximum/minimum, global sum,
average, median, standard deviation, …

▪ Find top-10

21C. Kessler, IDA, Linköping University

Further Examples for MapReduce

▪ Count URL frequencies (a variant of wordcount)

▪ Input: logs of web page requests <URL, 1>

▪ Reduce function adds together all values for same URL

▪ Construct reverse web-link graph

▪ Input: <sourceURL, targetURL> pairs

▪ Mapper reverses: <targetURL, sourceURL>

▪ Shuffle-and-sort →
<targetURL, list of all URLs pointing to targetURL>

▪ no reduction → Reduce function is identity function

▪ Indexing web documents

▪ Input: list of documents (e.g. web pages)

▪ Mapper parses documents and builds sequences <word, documentID>*

▪ Shuffle-and-sort produces for each word a list of all documentIDs where
word occurs (Reduce function is identity)

URL

URL

URL

22C. Kessler, IDA, Linköping University

MapReduce Implementation / Execution Flow

▪ User application calls MapReduce and waits.

▪ MapReduce library implementation splits the input data (if
not already done) in M blocks (of e.g. 64MB) and creates
P MapReduce processes on different cluster nodes:
1 master and P-1 workers.

▪ Master creates M mapper tasks and R reducer tasks, and
dispatches them to idle workers (dynamic scheduling)

▪ Worker executing a Mapper task reads its block of
input, applies the Map (and local Combine) function,
and buffers (key,value) pairs in memory.
Buffered pairs are periodically written to local disk,
locations of these files are sent to Master.

▪ Worker executing a Reducer task is notified by Master
about locations of intermediate data to shuffle+sort and
fetches them by remote memory access request, then
sorts them by key (K2).
It applies the Reduce function to the sorted data and
appends its output to a local file.

▪ When all mapper and reducer tasks have completed,
the master wakes up the user program and returns the
locations of the R output files.

Run-time

scheduler

…

Worker processes
on different cluster nodes

23C. Kessler, IDA, Linköping University

MapReduce Implementation: Fault Tolerance

▪ Worker failure

▪ Master pings every worker periodically.

▪ Master marks a dead worker’s tasks for re-
execution → eventually reassigned to other
workers

Completed map tasks (as their local files with
intermediate data are no longer accessible)
and unfinished map and reduce tasks

Reducer tasks using data from a failed map
task are informed by master about the new
worker

▪ Master failure

▪ Less likely (1 Master, P-1 Workers)

▪ Use checkpointing, a new master can restart
from latest checkpoint

Run-time

scheduler

…

Worker processes
on different cluster nodes

24C. Kessler, IDA, Linköping University

MapReduce Implementation: Data Locality

▪ For data storage fault tolerance,

have 3 copies of each 64MB data block,

each stored on a different cluster node

▪ Master uses Locality-aware scheduling:

▪ Schedule a mapper task to a worker node

holding one copy of its input data block

▪ Or on a node that is near a copy holder

(e.g. a neighbor node in the network

topology)

Run-time

scheduler

…

Worker processes
on different cluster nodes

25C. Kessler, IDA, Linköping University

MapReduce Implementation: Granularity

Numbers M, R and work of tasks (block size)
might be tuned

▪ Default: M = input file size / block size

▪ User can set other value

▪ M, R should be >> P

▪ For flexibility in dynamic load balancing

▪ Hadoop recommends ~10…100 mappers
per cluster node, or more if lightweight

▪ Not too large, though…

▪ ~ M+R scheduling decisions by master

▪ Block size should be reasonably large
(e.g. 64MB) to keep relative impact of
communication and task overhead low

Run-time

scheduler

…

Worker processes
on different cluster nodes

26C. Kessler, IDA, Linköping University

References

▪ J. Dean, S. Ghemawat: MapReduce: Simplified Data

Processing on Large Clusters. Proc. OSDI 2004.

Also in: Communications of the ACM 51(1), 2008.

▪ D. Miner, A. Shook: MapReduce Design Patterns. O’Reilly,

2012.

▪ Apache Hadoop: https://hadoop.apache.org

27C. Kessler, IDA, Linköping University

Questions for Reflection

▪ A MapReduce computation should process 12.8 TB of data in a distributed file
with block (shard) size 64MB. How many mapper tasks will be created,
by default? (Hint: 1 TB (Terabyte) = 1012 byte)

▪ Discuss the design decision to offer just one MapReduce construct that covers
both mapping, shuffle+sort and reducing. Wouldn’t it be easier to provide one
separate construct for each phase? What would be the performance
implications of such a design operating on distributed files?

▪ Reformulate the wordcount example program to use no Combiner.

▪ Consider the local reduction performed by a Combiner:
Why should the user-defined Reduce function be associative and
commutative? Give examples for reduce functions that are associative and
commutative, and such that are not.

▪ Extend the wordcount program to discard words shorter than 4 characters.

▪ Write a wordcount program to only count all words of odd and of even length.
There are several possibilities.

▪ Show how to calculate a database join with MapReduce.

▪ Sometimes, workers might be temporarily slowed down (e.g. repeated disk
read errors) without being broken. Such workers could delay the completion of
an entire MapReduce computation considerably.
How could the master speed up the overall MapReduce processing
if it observes that some worker is late?

	Slide 1: Introduction to MapReduce
	Slide 4: MapReduce Programming Model
	Slide 5: MapReduce Programming Model
	Slide 6: MapReduce Programming Model
	Slide 7: MapReduce Programming Model
	Slide 8: Record Reader
	Slide 9: Mapper
	Slide 10: Combiner
	Slide 11: Partitioner
	Slide 12: Shuffle-and-sort
	Slide 13: Reducer
	Slide 14: Output Formatter
	Slide 15: Example: Word Count
	Slide 16: Example: Word Count
	Slide 17: Example: Word Count
	Slide 18: Example: Word Count
	Slide 19: Example: Word Count
	Slide 20: Special Cases of MapReduce
	Slide 21: Further Examples for MapReduce
	Slide 22: MapReduce Implementation / Execution Flow
	Slide 23: MapReduce Implementation: Fault Tolerance
	Slide 24: MapReduce Implementation: Data Locality
	Slide 25: MapReduce Implementation: Granularity
	Slide 26: References
	Slide 27: Questions for Reflection

