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Cluster: How to speed up the slow I/O?

The default file system in a compute cluster
is an ordinary (sequential) shared file system

= Remote shared file server (containing, e.g., users’ home directories, bin)
= Connected to cluster nodes by the interconnection network
= File system "mounted” for remote access from each cluster node

- Cluster nodes access the file server concurrently
with remote file-read ( file-write commands
over the interconnection network

© Files exist (in principle) only in one place — easy to find, consistent
® Performance (throughput) bottleneck for I/O intensive programs!

® Performance (latency) bottleneck for accessing LARGE files!
® Single point of failure

= Each cluster node also has its own node-local secondary storage

= usually a node-local hard disk
with local file system controlled by the node’s operating system

@ Directly accessible to that node only
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Towards Parallel I/O Processing of Big-Data

Big Data ...

= too large to be read+processed in reasonable time by 1 server only

= too large to fit in main memory at a time

= Usually residing on secondary storage
(local or remote)

= Storage on a single hard disk
(sequential access) would
prevent parallel I/O processing

= Also, all disk I/O would put additional
communication load on the
interconnection network

=  Solution: Partition and distribute the
contents of the file system across nodes
to allow for parallel access

—> For parallelizing the 1/O work,
need to use a distributed file system
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More Cluster Issues:
The Need for Fault Tolerance

Typical disk-based server failure rate *

= Assume 4 hard disks per server (node)
=  Assume 5% disk failure rate / year

- 20% of servers fail from disk every year!

=  Assume 5% server failures from other reasons
(power supplies etc.)

- 25% of the servers fail every year
- 1in 1360 servers fails each day |
-> In a datacenter with 50,000 servers, 37 servers fail each day!

Solution:

= Redundancy by replication of data at file system level prevents data loss
= Combine with the distributed file system approach

* Estimation based on: P. Helland et al.: Too big NOT to fail.
c Communications of the ACM 60(6):46-50, June 2017.
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Distributed File System

= Large files are distributed ("sharded”)

= split into blocks of e.g. 64MB (shards)
and spread out (e.g., hashed) across the cluster nodes

Each shard may be stored as an ordinary file on a node-local hard disk
Each node owns only some shards = a fraction of a distributed file
Need a directory to look up where (on which node) to find which shard

» Directory / name server to look up distributed files’ metadata and
shard locations

Parallel access to distributed files is possible
» Can access multiple shards of the same file in parallel
» © Higher bandwidth, lower latency
= Also, replicas for fault tolerance
E.g. 3 copies of each shard on different servers
© Can read from the closest copy
@® Need to keep copies consistent — writes (all copies) are expensive
= Examples of distributed file systems: Google GFS, Hadoop HDFS

= |f starting from input data in an ordinary file, need to first copy the data from
ordinary (host) file system to distributed FS
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Example:
Hadoop Distributed File System
(HDFS)

s
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Example: HDFS '
| HIES;
= Hadoop Distributed File System

= For very large files on clusters
= Runs on top of the native file systems
= Files divided into 64MB or 128 MB blocks (shards)

» Block size is a configuration parameter

= Usually, 3 copies per block for fault tolerance

» Stored on different nodes, preferably one on a different rack
= HDFS file: Write once, read multiple times
= Caching blocks is possible
= Exposes the locations of file blocks via API
= Handles failures — disk/node/rack failures
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HDFS Organization

= Name-node (master)

Process that manages the file system

namespace and metadata
Stores in memory the locations
of all copies of all blocks (shards) T

for each HDFS file
Lookup of block locations

= Data-nodes (workers)
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Process, one on each node  [RElELLI DataNode DataNode

Performs writing and reading  datanode datanode datanode
of blocks

Send heartbeat to the name-node
for failure detection
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HDFS Example

= How to distribute the blocks (shards) with replicas?

AW e

shards

File:

Cluster with Racks of Compute Nodes

Source: J. D. Ullman invited talk EDBT 2011
9
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Default HDFS block placement policy 10
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Write: — - —

= 1streplica located on the writer node

= 2" and 3" replicas on two different nodes in a different rack

= Any other replicas (if any) are located on random nodes
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HDFS Block Placement and Replication

= Aim: improve data reliability, availability, and network
bandwidth utilization

= Default replica placement policy

= No data-node contains more than one replica

= No rack contains more than two replicas of the same block
= Name-node ensures that the number of replicas is reached
= Balancer tool — balances the disk space usage

= Block scanner — periodically verifies checksums
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HDFS - File Read

2: get block

1: istri locations
HDFS oPe NameNode
{1 -3 read
HDFS namanode
_ 5. close
client process :

g ! .'-."-. \\
dient node Pl =
4: remote read block “..4: remote read block

DataNode DataNode

DataNode

datanode datanode
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HDFS - File Create and Write

2 create
HDFS gE== 7 complete t NameNode
Client :
e namenode
6. close
_ client process T
client node j}
4: remote i 5: ackn.
write block : : write block
¥
LT 8 DataNode [lli DataNode |jlli DataNode
datanodes
4 datanode datanode
Default replication Writer’s Some node on  Other node on
factor in HDFS is 3. node other rack other rack
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HDFS is Good for ...

= Storing very large files — GBs and TBs

= Hig

t

n-throughput parallel 1/O
'ime to read the entire dataset is more important

nan the latency in reading the first record.

= Commodity hardware

= Clusters are built from commonly available hardware

= Designed to continue working without a noticeable
interruption in case of failure
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HDFS is currently Not Good for ...

= Low-latency data access
- HDFS is optimized for delivering high throughput of data
= Lots of small files
= Re-writing the same HDFS file, and arbitrary file modifications

= HDFS files are append-only
— write is only allowed at the end of the file
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