
Christoph Kessler, IDA,
Linköpings universitet.

Introduction to
Parallel I/O by

Distributed File Systems

Christoph Kessler

IDA, Linköping University

732A54 / TDDE31
Big Data Analytics

2C. Kessler, IDA, Linköping University

Cluster: How to speed up the slow I/O?

The default file system in a compute cluster
is an ordinary (sequential) shared file system

 Remote shared file server (containing, e.g., users’ home directories, bin)
 Connected to cluster nodes by the interconnection network
 File system ”mounted” for remote access from each cluster node
 Cluster nodes access the file server concurrently

with remote file-read / file-write commands
over the interconnection network

 Files exist (in principle) only in one place – easy to find, consistent
 Performance (throughput) bottleneck for I/O intensive programs!
 Performance (latency) bottleneck for accessing LARGE files!
 Single point of failure

 Each cluster node also has its own node-local secondary storage
 usually a node-local hard disk

with local file system controlled by the node’s operating system
 Directly accessible to that node only

3C. Kessler, IDA, Linköping University

Towards Parallel I/O Processing of Big-Data

Big Data …
 too large to be read+processed in reasonable time by 1 server only
 too large to fit in main memory at a time

 Usually residing on secondary storage
(local or remote)

 Storage on a single hard disk
(sequential access) would
prevent parallel I/O processing
 Also, all disk I/O would put additional

communication load on the
interconnection network

 Solution: Partition and distribute the
contents of the file system across nodes
to allow for parallel access

 For parallelizing the I/O work,
need to use a distributed file system

4C. Kessler, IDA, Linköping University

* Estimation based on: P. Helland et al.: Too big NOT to fail.
Communications of the ACM 60(6):46-50, June 2017.

More Cluster Issues:
The Need for Fault Tolerance

Typical disk-based server failure rate *

 Assume 4 hard disks per server (node)

 Assume 5% disk failure rate / year

 20% of servers fail from disk every year!

 Assume 5% server failures from other reasons
(power supplies etc.)

 25% of the servers fail every year

 1 in 1360 servers fails each day

 In a datacenter with 50,000 servers, 37 servers fail each day!

Solution:

 Redundancy by replication of data at file system level prevents data loss

 Combine with the distributed file system approach

5C. Kessler, IDA, Linköping University

Distributed File System

 Large files are distributed (”sharded”)
= split into blocks of e.g. 64MB (shards)

and spread out (e.g., hashed) across the cluster nodes
 Each shard may be stored as an ordinary file on a node-local hard disk
 Each node owns only some shards = a fraction of a distributed file
 Need a directory to look up where (on which node) to find which shard

Directory / name server to look up distributed files’ metadata and
shard locations

 Parallel access to distributed files is possible
Can access multiple shards of the same file in parallel
 Higher bandwidth, lower latency

 Also, replicas for fault tolerance
 E.g. 3 copies of each shard on different servers
 Can read from the closest copy
 Need to keep copies consistent – writes (all copies) are expensive

 Examples of distributed file systems: Google GFS, Hadoop HDFS
 If starting from input data in an ordinary file, need to first copy the data from

ordinary (host) file system to distributed FS

Christoph Kessler, IDA,
Linköpings universitet.

Example:
Hadoop Distributed File System

(HDFS)

7C. Kessler, IDA, Linköping University

Example: HDFS

 Hadoop Distributed File System

 For very large files on clusters

 Runs on top of the native file systems

 Files divided into 64MB or 128 MB blocks (shards)
Block size is a configuration parameter

 Usually, 3 copies per block for fault tolerance
Stored on different nodes, preferably one on a different rack

 HDFS file: Write once, read multiple times

 Caching blocks is possible

 Exposes the locations of file blocks via API

 Handles failures – disk/node/rack failures

8C. Kessler, IDA, Linköping University

HDFS Organization

 Name-node (master)
 Process that manages the file system

namespace and metadata

 Stores in memory the locations
of all copies of all blocks (shards)
for each HDFS file

 Lookup of block locations

 Data-nodes (workers)
 Process, one on each node

 Performs writing and reading
of blocks

 Send heartbeat to the name-node
for failure detection

DataNode DataNode DataNodeDataNode

NameNode

9C. Kessler, IDA, Linköping University

HDFS Example

 How to distribute the blocks (shards) with replicas?

9

Cluster with Racks of Compute Nodes

File:

shards

Source: J. D. Ullman invited talk EDBT 2011

10C. Kessler, IDA, Linköping University

Default HDFS block placement policy

Write:

 1st replica located on the writer node

 2nd and 3rd replicas on two different nodes in a different rack

 Any other replicas (if any) are located on random nodes

10

11C. Kessler, IDA, Linköping University

HDFS Block Placement and Replication

 Aim: improve data reliability, availability, and network
bandwidth utilization

 Default replica placement policy

 No data-node contains more than one replica

 No rack contains more than two replicas of the same block

 Name-node ensures that the number of replicas is reached

 Balancer tool – balances the disk space usage

 Block scanner – periodically verifies checksums

12C. Kessler, IDA, Linköping University

HDFS – File Read

client process

1: open
2: get block

locations

3: read

4: remote read block 4: remote read block

5. close

Distributed
File System

HDFS
Input Stream

NameNode

DataNode DataNodeDataNode

HDFS
Client

…

13C. Kessler, IDA, Linköping University

HDFS – File Create and Write

client processclient process

1: create 2: create

3: write

4: remote
write block

6. close

Distributed
File System

FSdata
output stream

NameNode

DataNode DataNodeDataNode

HDFS
Client

…

5: ackn.
write block

7: complete

Writer’s
node

Some node on
other rack

Other node on
other rack

Default replication
factor in HDFS is 3.

14C. Kessler, IDA, Linköping University

HDFS is Good for …

 Storing very large files – GBs and TBs

 High-throughput parallel I/O

 Time to read the entire dataset is more important
than the latency in reading the first record.

 Commodity hardware

 Clusters are built from commonly available hardware

 Designed to continue working without a noticeable
interruption in case of failure

15C. Kessler, IDA, Linköping University

HDFS is currently Not Good for …

 Low-latency data access

 HDFS is optimized for delivering high throughput of data

 Lots of small files

 Re-writing the same HDFS file, and arbitrary file modifications

 HDFS files are append-only
– write is only allowed at the end of the file

