
Christoph Kessler, IDA, 
Linköpings universitet.

Introduction to 
Parallel I/O by

Distributed File Systems

Christoph Kessler

IDA, Linköping University

732A54 / TDDE31
Big Data Analytics



2C. Kessler, IDA, Linköping University

Cluster:  How to speed up the slow I/O?

The default file system in a compute cluster  
is an ordinary (sequential) shared file system 

 Remote shared file server (containing, e.g., users’ home directories, bin)
 Connected to cluster nodes by the interconnection network
 File system ”mounted” for remote access from each cluster node
 Cluster nodes access the file server concurrently

with remote file-read / file-write commands
over the interconnection network

 Files exist (in principle) only in one place – easy to find, consistent
 Performance (throughput) bottleneck for I/O intensive programs!
 Performance (latency) bottleneck for accessing LARGE files!
 Single point of failure

 Each cluster node also has its own node-local secondary storage
 usually a node-local hard disk 

with local file system controlled by the node’s operating system
 Directly accessible to that node only



3C. Kessler, IDA, Linköping University

Towards Parallel I/O Processing of Big-Data

Big Data …
 too large to be read+processed in reasonable time by 1 server only
 too large to fit in main memory at a time

 Usually residing on secondary storage
(local or remote)

 Storage on a single hard disk 
(sequential access) would
prevent parallel I/O processing
 Also, all disk I/O would put additional 

communication load on the 
interconnection network

 Solution: Partition and distribute the 
contents of the file system across nodes
to allow for parallel access

 For parallelizing the I/O work, 
need to use a distributed file system



4C. Kessler, IDA, Linköping University

* Estimation based on:  P. Helland et al.: Too big NOT to fail. 
Communications of the ACM 60(6):46-50, June 2017.

More Cluster Issues:  
The Need for Fault Tolerance

Typical disk-based server failure rate *

 Assume 4 hard disks per server (node)

 Assume 5% disk failure rate / year

 20% of servers fail from disk every year!

 Assume 5% server failures from other reasons 
(power supplies etc.)

 25% of the servers fail every year

 1 in 1360 servers fails each day

 In a datacenter with 50,000 servers, 37 servers fail each day!

Solution:  

 Redundancy by replication of data at file system level prevents data loss

 Combine with the distributed file system approach



5C. Kessler, IDA, Linköping University

Distributed File System

 Large files are distributed (”sharded”)
= split into blocks of e.g. 64MB (shards) 

and spread out (e.g., hashed) across the cluster nodes
 Each shard may be stored as an ordinary file on a node-local hard disk
 Each node owns only some shards = a fraction of a distributed file
 Need a directory to look up where (on which node) to find which shard

Directory / name server to look up distributed files’ metadata and 
shard locations

 Parallel access to distributed files is possible
Can access multiple shards of the same file in parallel
 Higher bandwidth, lower latency

 Also, replicas for fault tolerance
 E.g. 3 copies of each shard on different servers
  Can read from the closest copy
  Need to keep copies consistent – writes (all copies) are expensive

 Examples of distributed file systems:  Google GFS, Hadoop HDFS
 If starting from input data in an ordinary file, need to first copy the data from

ordinary (host) file system to distributed FS



Christoph Kessler, IDA, 
Linköpings universitet.

Example: 
Hadoop Distributed File System 

(HDFS)



7C. Kessler, IDA, Linköping University

Example: HDFS 

 Hadoop Distributed File System

 For very large files on clusters    

 Runs on top of the native file systems 

 Files divided into 64MB or 128 MB blocks (shards)
Block size is a configuration parameter

 Usually, 3 copies per block for fault tolerance
Stored on different nodes, preferably one on a different rack

 HDFS file: Write once, read multiple times

 Caching blocks is possible

 Exposes the locations of file blocks via API

 Handles failures – disk/node/rack failures



8C. Kessler, IDA, Linköping University

HDFS Organization

 Name-node (master)
 Process that manages the file system 

namespace and metadata

 Stores in memory the locations 
of all copies of all blocks (shards) 
for each HDFS file

 Lookup of block locations

 Data-nodes (workers)
 Process, one on each node

 Performs writing and reading
of blocks

 Send heartbeat to the name-node
for failure detection

DataNode DataNode DataNodeDataNode

NameNode



9C. Kessler, IDA, Linköping University

HDFS Example

 How to distribute the blocks (shards) with replicas?

9

Cluster with Racks of Compute Nodes

File:

shards

Source: J. D. Ullman invited talk EDBT 2011



10C. Kessler, IDA, Linköping University

Default HDFS block placement policy 

Write:

 1st replica located on the writer node

 2nd and 3rd replicas on two different nodes in a different rack

 Any other replicas (if any) are located on random nodes

10



11C. Kessler, IDA, Linköping University

HDFS Block Placement and Replication

 Aim:  improve data reliability, availability, and network 
bandwidth utilization

 Default replica placement policy

 No data-node contains more than one replica

 No rack contains more than two replicas of the same block

 Name-node ensures that the number of replicas is reached

 Balancer tool – balances the disk space usage

 Block scanner – periodically verifies checksums



12C. Kessler, IDA, Linköping University

HDFS – File Read

client process

1: open
2: get block 

locations

3: read

4: remote read block 4: remote read block 

5. close

Distributed
File System

HDFS
Input Stream

NameNode

DataNode DataNodeDataNode

HDFS
Client

…



13C. Kessler, IDA, Linköping University

HDFS – File Create and Write

client processclient process

1: create 2: create

3: write

4: remote 
write block 

6. close

Distributed
File System

FSdata
output stream

NameNode

DataNode DataNodeDataNode

HDFS
Client

…

5: ackn. 
write block 

7: complete

Writer’s
node

Some node on 
other rack

Other node on 
other rack

Default replication 
factor in HDFS is 3.



14C. Kessler, IDA, Linköping University

HDFS is Good for …

 Storing very large files – GBs and TBs

 High-throughput parallel I/O

 Time to read the entire dataset is more important 
than the latency in reading the first record.

 Commodity hardware

 Clusters are built from commonly available hardware

 Designed to continue working without a noticeable 
interruption in case of failure



15C. Kessler, IDA, Linköping University

HDFS is currently Not Good for …

 Low-latency data access 

 HDFS is optimized for delivering high throughput of data 

 Lots of small files 

 Re-writing the same HDFS file, and arbitrary file modifications 

 HDFS files are append-only 
– write is only allowed at the end of the file 


