732A54 | TDDE31

Big Data Analytics LINKOPING

UNIVERSITY

Introduction to
Parallel 1/O by
Distributed File Systems

Christoph Kessler
IDA, Linkoping University

Christoph Kessler, IDA,
Linkopings universitet.

v
Cluster: How to speed up the slow I/O?

The default file system in a compute cluster
is an ordinary (sequential) shared file system

= Remote shared file server (containing, e.g., users’ home directories, bin)
= Connected to cluster nodes by the interconnection network
= File system "mounted” for remote access from each cluster node

- Cluster nodes access the file server concurrently
with remote file-read (file-write commands
over the interconnection network

© Files exist (in principle) only in one place — easy to find, consistent
® Performance (throughput) bottleneck for I/O intensive programs!

® Performance (latency) bottleneck for accessing LARGE files!
® Single point of failure

= Each cluster node also has its own node-local secondary storage

= usually a node-local hard disk
with local file system controlled by the node’s operating system

@ Directly accessible to that node only

C. Kessler, IDA, Linkoping University 2

LINKOPING
Il.u UNIVERSITY

Towards Parallel I/O Processing of Big-Data

Big Data ...

= too large to be read+processed in reasonable time by 1 server only

= too large to fit in main memory at a time

= Usually residing on secondary storage
(local or remote)

= Storage on a single hard disk
(sequential access) would
prevent parallel I/O processing

= Also, all disk I/O would put additional
communication load on the
interconnection network

= Solution: Partition and distribute the
contents of the file system across nodes
to allow for parallel access

—> For parallelizing the 1/O work,
need to use a distributed file system

C. Kessler, IDA, Linkoping University

Interconnection Network

r ™)

g n

.

)

\ J

\ J

S —C

b

B

]

Interconnection Network

r "

g R

K

B

. >

\ J

Seww

==
b
e

M,
3

II LINKOPING
[UNIVERSITY

More Cluster Issues:
The Need for Fault Tolerance

Typical disk-based server failure rate *

= Assume 4 hard disks per server (node)
= Assume 5% disk failure rate / year

- 20% of servers fail from disk every year!

= Assume 5% server failures from other reasons
(power supplies etc.)

- 25% of the servers fail every year
- 1in 1360 servers fails each day |
-> In a datacenter with 50,000 servers, 37 servers fail each day!

Solution:

= Redundancy by replication of data at file system level prevents data loss
= Combine with the distributed file system approach

* Estimation based on: P. Helland et al.: Too big NOT to fail.
c Communications of the ACM 60(6):46-50, June 2017.

essler, IDA, LINKoping UNIVETSITy 4

LINKOPING
Il.u UNIVERSITY

Distributed File System

= Large files are distributed ("sharded”)

= split into blocks of e.g. 64MB (shards)
and spread out (e.g., hashed) across the cluster nodes

Each shard may be stored as an ordinary file on a node-local hard disk
Each node owns only some shards = a fraction of a distributed file
Need a directory to look up where (on which node) to find which shard

» Directory / name server to look up distributed files’ metadata and
shard locations

Parallel access to distributed files is possible
» Can access multiple shards of the same file in parallel
» © Higher bandwidth, lower latency
= Also, replicas for fault tolerance
E.g. 3 copies of each shard on different servers
© Can read from the closest copy
@® Need to keep copies consistent — writes (all copies) are expensive
= Examples of distributed file systems: Google GFS, Hadoop HDFS

= |f starting from input data in an ordinary file, need to first copy the data from
ordinary (host) file system to distributed FS

C. Kessler, IDA, Linkoping University 5

LINKOPING
UNIVERSITY

Example:
Hadoop Distributed File System
(HDFS)

s

Christoph Kessler, IDA,
Linkopings universitet.

Example: HDFS '
| HIES;
= Hadoop Distributed File System

= For very large files on clusters
= Runs on top of the native file systems
= Files divided into 64MB or 128 MB blocks (shards)

» Block size is a configuration parameter

= Usually, 3 copies per block for fault tolerance

» Stored on different nodes, preferably one on a different rack
= HDFS file: Write once, read multiple times
= Caching blocks is possible
= Exposes the locations of file blocks via API
= Handles failures — disk/node/rack failures

C. Kessler, IDA, Linkoping University

LINKOPING
vy,

HDFS Organization

= Name-node (master)

Process that manages the file system

namespace and metadata
Stores in memory the locations
of all copies of all blocks (shards) T

for each HDFS file
Lookup of block locations

= Data-nodes (workers)

C. Kessler, IDA, Linkdping University

Process, one on each node [RElELLI DataNode DataNode

Performs writing and reading datanode datanode datanode
of blocks

Send heartbeat to the name-node
for failure detection

LINKOPING
II." UNIVERSITY

HDFS Example

= How to distribute the blocks (shards) with replicas?

AW e

shards

File:

Cluster with Racks of Compute Nodes

Source: J. D. Ullman invited talk EDBT 2011
9

C. Kessler, IDA, Linkoping University 9

LINKOPING
II." UNIVERSITY

Default HDFS block placement policy 10
i [
-
[| i
i]
-
i []
I
Write: — - —

= 1streplica located on the writer node

= 2" and 3" replicas on two different nodes in a different rack

= Any other replicas (if any) are located on random nodes

C. Kessler, IDA, Linkoping University

10

LINKOPING
II.“ UNIVERSITY

HDFS Block Placement and Replication

= Aim: improve data reliability, availability, and network
bandwidth utilization

= Default replica placement policy

= No data-node contains more than one replica

= No rack contains more than two replicas of the same block
= Name-node ensures that the number of replicas is reached
= Balancer tool — balances the disk space usage

= Block scanner — periodically verifies checksums

C. Kessler, IDA, Linkdping University 11

LINKOPING
vy,

HDFS - File Read

2: get block

1: istri locations
HDFS oPe NameNode
{1 -3 read
HDFS namanode
_ 5. close
client process :

g ! .'-."-. \\
dient node Pl =
4: remote read block “..4: remote read block

DataNode DataNode

DataNode

datanode datanode

C. Kessler, IDA, Linképing University 12

LINKOPING
II." UNIVERSITY

HDFS - File Create and Write

2 create
HDFS gE== 7 complete t NameNode
Client :
e namenode
6. close
_ client process T
client node j}
4: remote i 5: ackn.
write block : : write block
¥
LT 8 DataNode [lli DataNode |jlli DataNode
datanodes
4 datanode datanode
Default replication Writer’s Some node on Other node on
factor in HDFS is 3. node other rack other rack

C. Kessler, IDA, Linképing University 13

LINKOPING
Il.u UNIVERSITY

HDFS is Good for ...

= Storing very large files — GBs and TBs

= Hig

t

n-throughput parallel 1/O
'ime to read the entire dataset is more important

nan the latency in reading the first record.

= Commodity hardware

= Clusters are built from commonly available hardware

= Designed to continue working without a noticeable
interruption in case of failure

C. Kessler, IDA, Linkdping University 14

LINKOPING
II.“ UNIVERSITY

HDFS is currently Not Good for ...

= Low-latency data access
- HDFS is optimized for delivering high throughput of data
= Lots of small files
= Re-writing the same HDFS file, and arbitrary file modifications

= HDFS files are append-only
— write is only allowed at the end of the file

C. Kessler, IDA, Linkoping University 1 5

