
Christoph Kessler, IDA,

Linköpings universitet.

Introduction to

Parallel I/O by

Distributed File Systems

Christoph Kessler

IDA, Linköping University

2003

732A54

Big Data Analytics

2C. Kessler, IDA, Linköping University

Cluster: How to speed up the slow I/O?

The default file system in a compute cluster
is an ordinary (sequential) shared file system

▪ Remote shared file server (containing, e.g., users’ home directories, bin)

▪ Connected to cluster nodes by the interconnection network

▪ File system ”mounted” for remote access from each cluster node

▪ Files exist (in principle) only in one place – easy to find, consistent

▪ Cluster nodes access the file server concurrently
with remote file-read / file-write commands
over the interconnection network

 Performance (throughput) bottleneck for I/O intensive programs!

 Performance (latency) bottleneck for accessing LARGE files!

 Single point of failure

▪ Each cluster node also has its own node-local secondary storage

▪ usually a node-local hard disk
with local file system controlled by the node’s operating system

 Directly accessible to that node only

3C. Kessler, IDA, Linköping University

Towards Parallel I/O Processing of Big-Data

Big Data …

▪ too large to be read+processed in reasonable time by 1 server only

▪ too large to fit in main memory at a time

▪ Usually residing on secondary storage

(local or remote)

▪ Storage on a single hard disk

(sequential access) would

prevent parallel I/O processing

▪ Solution: Partition and distribute the

contents of the file system across nodes

to allow for parallel access

→ For parallelizing the I/O work,

need to use a distributed file system

4C. Kessler, IDA, Linköping University

* Estimation based on: P. Helland et al.: Too big NOT to fail.

Communications of the ACM 60(6):46-50, June 2017.

More Cluster Issues:

The Need for Fault Tolerance

Typical disk-based server failure rate *

▪ Assume 4 SATA disks per server (node)

▪ Assume 5% disk failure rate / year

→ 20% of servers fail from disk every year!

▪ Assume 5% server failures from other reasons
(power supplies etc.)

→ 25% of the servers fail every year

→ 1 in 1360 servers fails each day

→ In a datacenter with 50,000 servers, 37 servers fail each day!

Solution:

▪ Redundancy by replication of data at file system level prevents data loss

▪ Combine with the distributed file system approach

5C. Kessler, IDA, Linköping University

Distributed File System

▪ Large files are distributed (”sharded”)

= split into blocks of e.g. 64MB (shards)
and spread out (e.g., hashed) across the cluster nodes

▪ Each shard may be stored as an ordinary file on a node-local hard disk

▪ Each node owns only some shards = a fraction of a distributed file

▪ Need a directory to look up where (on which node) to find which shard

 Directory / name server to look up distributed files’ metadata and
shard locations

▪ Parallel access to distributed files is possible

 Can access multiple shards of the same file in parallel

☺ Higher bandwidth, lower latency

▪ Also, replicas for fault tolerance

▪ E.g. 3 copies of each shard on different servers

▪ ☺ Can read from the closest copy

▪ Need to keep copies consistent – writes (all copies) are expensive

▪ Examples of distributed file systems: Google GFS, Hadoop HDFS

▪ If starting from input data in an ordinary file, need to first copy the data from
ordinary (host) file system to distributed FS

Christoph Kessler, IDA,

Linköpings universitet.

Example:

Hadoop Distributed File System

(HDFS)

2023-04-04 Title/Lecturer

7C. Kessler, IDA, Linköping University

Example: HDFS

▪ Hadoop Distributed File System

▪ For very large files on clusters

▪ Runs on top of the native file systems

▪ Files divided into 64MB or 128 MB blocks (shards)

Block size is a configuration parameter

▪ Usually, 3 copies per block for fault tolerance

Stored on different nodes, preferably one on a different rack

▪ HDFS file: Write once, read multiple times

▪ Caching blocks is possible

▪ Exposes the locations of file blocks via API

▪ Handles failures – disk/node/rack failures

8C. Kessler, IDA, Linköping University

HDFS Organization

▪ Name-node (master)

▪ Process that manages the file system

namespace and metadata

▪ Stores in memory the locations

of all copies of all blocks (shards)

for each HDFS file

▪ Lookup of block locations

▪ Data-nodes (workers)

▪ Process, one on each node

▪ Performs writing and reading

of blocks

▪ Send heartbeat to the name-node

for failure detection

9C. Kessler, IDA, Linköping University

HDFS Example

▪ How to distribute the blocks (shards) with replicas?

9

Cluster with Racks of Compute Nodes

File:

shards

Source: J. D. Ullman invited talk EDBT 2011

10C. Kessler, IDA, Linköping University

HDFS Block Placement and Replication

▪ Aim: improve data reliability, availability, and network

bandwidth utilization

▪ Default replica placement policy

▪ No data-node contains more than one replica

▪ No rack contains more than two replicas of the same block

▪ Name-node ensures that the number of replicas is reached

▪ Balancer tool – balances the disk space usage

▪ Block scanner – periodically verifies checksums

11C. Kessler, IDA, Linköping University

Default HDFS block placement policy

Write:

▪ 1st replica located on the writer node

▪ 2nd and 3rd replicas on two different nodes in a different rack

▪ Any other replicas (if any) are located on random nodes

11

12C. Kessler, IDA, Linköping University

HDFS – File Reads

client process

13C. Kessler, IDA, Linköping University

HDFS – File Writes

client process

14C. Kessler, IDA, Linköping University

HDFS is Good for …

▪ Storing very large files – GBs and TBs

▪ High-throughput parallel I/O

▪ Time to read the entire dataset is more important

than the latency in reading the first record.

▪ Commodity hardware

▪ Clusters are built from commonly available hardware

▪ Designed to continue working without a noticeable

interruption in case of failure

15C. Kessler, IDA, Linköping University

HDFS is currently Not Good for …

▪ Low-latency data access

▪ HDFS is optimized for delivering high throughput of data

▪ Lots of small files

▪ Re-writing the same HDFS file, and arbitrary file modifications

▪ HDFS files are append-only

– write is only allowed at the end of the file

	Slide 1: Introduction to Parallel I/O by Distributed File Systems
	Slide 2: Cluster: How to speed up the slow I/O?
	Slide 3: Towards Parallel I/O Processing of Big-Data
	Slide 4: More Cluster Issues: The Need for Fault Tolerance
	Slide 5: Distributed File System
	Slide 6: Example: Hadoop Distributed File System (HDFS)
	Slide 7: Example: HDFS
	Slide 8: HDFS Organization
	Slide 9: HDFS Example
	Slide 10: HDFS Block Placement and Replication
	Slide 11: Default HDFS block placement policy
	Slide 12: HDFS – File Reads
	Slide 13: HDFS – File Writes
	Slide 14: HDFS is Good for …
	Slide 15: HDFS is currently Not Good for …

