
Christoph Kessler, IDA,
Linköpings universitet.

Introduction to
Parallel Computing

Christoph Kessler

IDA, Linköping University

732A54 / TDDE31
Big Data Analytics

2C. Kessler, IDA, Linköping University

5 Lectures

 Lectures 1-2: Introduction to parallel computing

 Parallel architectural concepts

 Parallel algorithms design and analysis

 Parallel algorithmic patterns and skeleton programming

 Lecture 3: MapReduce

 Lecture 4: Spark

 Lecture 5: Cluster management systems.
Selected exercises (exam training).

3C. Kessler, IDA, Linköping University

Traditional Use of Parallel Computing:
Large-Scale HPC Applications

 High Performance Computing (HPC)

 Much computational work
(in FLOPs, floatingpoint operations)

 Often, large data sets

 E.g. climate simulations, particle physics, engineering, sequence
matching or proteine docking in bioinformatics, …

 Single-CPU computers and even today’s
multicore processors cannot provide such
massive computation power

 Aggregate LOTS of computers Clusters

 Need scalable parallel algorithms

 Need exploit multiple levels of parallelism

NSC Tetralith

4C. Kessler, IDA, Linköping University

More Recent Use of Parallel Computing:
Big-Data Analytics Applications

 Big Data Analytics

 Data access intensive (disk I/O, memory accesses)

 Typically, very large data sets (GB … TB … PB … EB …)

 Also some computational work for combining/aggregating data

 E.g. data center applications, business analytics, click stream
analysis, scientific data analysis, machine learning, …

 Soft real-time requirements on interactive querys

 Single-CPU and multicore processors cannot
provide such massive computation power
and I/O bandwidth+capacity

 Aggregate LOTS of computers Clusters

 Need scalable parallel algorithms

 Need exploit multiple levels of parallelism

 Fault tolerance
NSC Tetralith

5C. Kessler, IDA, Linköping University

HPC vs Big-Data Computing

 Both need parallel computing

 Same kind of hardware – Clusters of (multicore) servers

 Same OS family (Linux)

 Different programming models, languages, and tools

HW: Cluster

OS: Linux

Par. programming models:
MPI, OpenMP, …

HW: Cluster

OS: Linux

Par. programming models:
MapReduce, Spark, …

HPC prog. languages:
Fortran, C/C++ (Python)

Big-Data prog. languages:
Java, Scala, Python, …

 Let us start with the common basis: Parallel computer architecture

Big-data storage/access:
HDFS, …

Scientific computing
libraries: BLAS, …

HPC application Big-Data application

Cluster manager: Slurm, … Cluster manager: YARN, …

6C. Kessler, IDA, Linköping University

Parallel Computer

7C. Kessler, IDA, Linköping University

Parallel Computer Architecture Concepts

Classification of parallel computer architectures:

 by control structure

 SISD, SIMD, MIMD

 by memory organization

 in particular, Distributed memory vs. Shared memory

 by interconnection network topology

8C. Kessler, IDA, Linköping University

Classification by Control Structure

…

vop

op op op op
1 2 3 4

op

9C. Kessler, IDA, Linköping University

Classification by Memory Organization

Most common today in HPC and Data centers:

Hybrid Memory System
• Cluster (distributed memory)

of hundreds, thousands of
shared-memory servers
each containing one or several multi-core CPUs

NSC Triolith

e.g. (traditional) HPC cluster e.g. multiprocessor (SMP) or computer
with a standard multicore CPU

NSC Tetralith

10C. Kessler, IDA, Linköping University

Hybrid (Distributed + Shared) Memory

M M

NSC Tetralith

contains

11C. Kessler, IDA, Linköping University

Interconnection Networks (1)

 Network
= physical interconnection medium (wires, switches)
+ communication protocol

(a) connecting cluster nodes with each other (DMS)

(b) connecting processors with memory modules (SMS)

Classification

 Direct / static interconnection networks
 connecting nodes directly to each other

 Hardware routers (communication coprocessors)
can be used to offload processors from
most communication work

 Switched / dynamic interconnection networks
 Graphs of routers (switches) connecting the nodes

P R

P P

P

R

12C. Kessler, IDA, Linköping University

Interconnection Networks (2):
Simple Topologies fully connected

router

router

Server nodes in leaves only

All communication paths sender-receiver
go via at most 2 log2 N hops (with N nodes),
but the root (and other upper levels) in the tree
network is the communication bottleneck

P

P

P
P

P

P one
server
node

13C. Kessler, IDA, Linköping University

Interconnection Networks (3):
Fat-Tree Network

 Switching network extended for higher communication bandwidth in
the layers closer to the root (more switches, more links)
 avoids bandwidth bottleneck
 still logarithmic length of longest communication distance

 Example: Infiniband network,
Omnipath network

14C. Kessler, IDA, Linköping University

More about Interconnection Networks

 Hypercube, Crossbar, Butterfly, Hybrid networks… TDDE65

 Switching and routing algorithms

 Discussion of interconnection network properties

 Cost (#switches, #lines)

 Scalability
(asymptotically, cost grows not much faster than #nodes)

 Node degree

 Longest path (latency)

 Accumulated bandwidth

 Fault tolerance (worst-case impact of node or switch failure)

 …

15C. Kessler, IDA, Linköping University

Example: Beowulf-class PC Clusters

with off-the-shelf CPUs
(Xeon, Opteron, …)

16C. Kessler, IDA, Linköping University

Example: Tetralith / Sigma (NSC, 2018/2019)

• Each Tetralith compute node has
2 Intel Xeon Gold 6130 CPUs (2.1GHz)
each with 16 cores (32 hardware threads)

• 1832 "thin" nodes with 96 GiB of primary
memory (RAM)

• and 60 "fat" nodes with 384 GiB.
 1892 nodes, 60544 cores in total
All nodes are interconnected with a 100 Gbps
Intel Omni-Path network (Fat-Tree topology)

• Sigma is similar (same HW/SW), only smaller

A so-called Capability cluster
(fast network for parallel applications,
not for just lots of independent sequential jobs)

17C. Kessler, IDA, Linköping University

The Challenge

 Today, basically all computers are parallel computers!

 Single-thread performance stagnating

 Dozens of cores and hundreds of HW threads available per server

 May even be heterogeneous (core types, accelerators)

 Data locality matters

 Large clusters for HPC and Data centers, require message passing
 Utilizing more than one CPU core requires thread-level parallelism
 One of the biggest software challenges: Exploiting parallelism

 Need LOTS of (mostly, independent) tasks to keep cores/HW threads
busy and overlap waiting times (cache misses, I/O accesses)

 All application areas, not only traditional HPC
 General-purpose, data mining, graphics, games, embedded, DSP, …

 Affects HW/SW system architecture, programming languages,
algorithms, data structures …

 Parallel programming is more error-prone than sequential programming
(deadlocks, data races, load balancing, further sources of inefficiencies)
 And thus more expensive and time-consuming

18C. Kessler, IDA, Linköping University

Can’t the compiler fix it for us?

 Automatic parallelization?

 at compile time:

 Requires static analysis – not effective for pointer-based
languages

 inherently limited – missing runtime information

 needs programmer hints / rewriting ...

 ok only for few benign special cases:
 loop vectorization

 extraction of instruction-level parallelism

 at run time (e.g. speculative multithreading)

 High overheads, not scalable

19C. Kessler, IDA, Linköping University

Insight

 Design of efficient / scalable parallel algorithms is,
in general, a creative task that is not automatizable

 But some good recipes exist …

 Parallel algorithmic design patterns

20C. Kessler, IDA, Linköping University

The remaining solution …

 Manual parallelization!

 using a parallel programming language / framework,

 e.g. MPI message passing interface for distributed memory;

 Pthreads, OpenMP, TBB, … for shared-memory

 Generally harder, more error-prone than sequential
programming,

 requires special programming expertise to exploit the HW
resources effectively

 Promising approach:
Domain-specific languages/frameworks,

 Restricted set of predefined constructs
doing most of the low-level stuff under the hood

 e.g. MapReduce, Spark, … for big-data computing

21C. Kessler, IDA, Linköping University

Parallel Programming Model

 System-software-enabled programmer’s view of the underlying hardware

 Abstracts from details of the underlying architecture, e.g. network topology

 Focuses on a few characteristic properties, e.g. memory model

 Portability of algorithms/programs across a family of parallel architectures

Programmer’s view of
the underlying system

(Lang. constructs, API, …)
 Programming model

Underlying parallel
computer architecture

Mapping(s) performed by
programming toolchain

(compiler, runtime system,
library, OS, …)

Shared Memory

Message passing

Christoph Kessler, IDA,
Linköpings universitet.

Design and Analysis
of Parallel Algorithms

Introduction

23C. Kessler, IDA, Linköping University

Foster’s Generic Method for the
Design of Parallel Programs (”PCAM”)

PROBLEM
+ algorithmic

approach
PARTITIONING

COMMUNICATION
+ SYNCHRONIZATION

PARALLEL
ALGORITHM
DESIGN

AGGLOMERATION
PARALLEL
ALGORITHM
ENGINEERING

(Implementation and
adaptation for a specific
(type of) parallel
computer)

Elementary
Tasks

Textbook-style
parallel algorithm

MAPPING
+ SCHEDULING

 I. Foster, Designing and Building Parallel Programs. Addison-Wesley, 1995.

P1 P2 P3

Macrotasks

24C. Kessler, IDA, Linköping University

Parallel Computation Model
= Programming Model + Cost Model

Christoph Kessler, IDA,
Linköpings universitet.

Parallel Cost Models

A Quantitative Basis for the
Design of Parallel Algorithms

Background reading:
C. Kessler, Design and Analysis of Parallel Algorithms, Chapter 2.
Compendium TDDE65/TDDD56, (c) 2024.
https://www.ida.liu.se/~TDDE65/handouts login: parallel
(For internal use in my courses only – please do not share publically)

26C. Kessler, IDA, Linköping University

Cost Model

27C. Kessler, IDA, Linköping University

How to analyze sequential algorithms:
The RAM (von Neumann) model for sequential computing

Basic operations (instructions):
- Arithmetic (add, mul, …) on registers
- Load
- Store
- Branch

Simplifying assumptions
for time analysis:
- All of these take 1 time unit
- Serial composition adds time costs
T(op1;op2) = T(op1)+T(op2)

op

op1

op2

28C. Kessler, IDA, Linköping University

Analysis of sequential algorithms:
RAM model (Random Access Machine)

s = d[0]
for (i=1; i<N; i++)

s = s + d[i]

s = d[0]
for (i=1; i<N; i++)

s = s + d[i]

 Data flow graph,
showing dependences
(precedence constraints)
between operations

29C. Kessler, IDA, Linköping University

The PRAM Model – a Parallel RAM

PRAM variants TDDD56, TDDC78

30C. Kessler, IDA, Linköping University

Remark

PRAM model is very idealized,
extremely simplifying / abstracting from real parallel architectures:

 Good for early analysis of parallel algorithm designs:
A parallel algorithm that does not scale under the PRAM model
does not scale well anywhere else!

The PRAM cost model
has only 1 machine-specific
parameter:
the number of processors

31C. Kessler, IDA, Linköping University

A first parallel sum algorithm …

 Data flow graph,
showing dependences
(precedence constraints)
between operations

Keep the sequential sum algorithm’s structure / data flow graph.
Giving each processor one task (load, add) does not help much
– All n loads could be done in parallel, but
– Processor i needs to wait for partial result from processor i-1, for i=1,…,n-1

 Still O(n) time steps!

time

32C. Kessler, IDA, Linköping University

Divide&Conquer Parallel Sum Algorithm
in the PRAM / Circuit (DAG) cost model

T(1) = O(1)

Recurrence equation for
parallel execution time:

Idea:

+ associative ((x1 + x2) + x3) + x4 = (x1 + x2) + (x3 + x4)

+ is associative:

(x1 + x2) + x3 = x1 + (x2 + x3)

33C. Kessler, IDA, Linköping University

Divide&Conquer Parallel Sum Algorithm
in the PRAM / Circuit (DAG) cost model

T(1) = O(1)

Recurrence equation for
parallel execution time:

34C. Kessler, IDA, Linköping University

Divide&Conquer Parallel Sum Algorithm
in the PRAM / Circuit (DAG) cost model

T(1) = O(1)

Recurrence equation for
parallel execution time:

35C. Kessler, IDA, Linköping University

Recursive formulation of DC parallel sum
algorithm in some programming model

int parsum (int *d, int from, int to)
{

int mid, sumleft, sumright;
if (from == to) return d[from]; // base case
else {

mid = (from + to) / 2;
sumleft = spawn parsum (d, from, mid);
sumright = spawn parsum(d, mid+1, to);
sync;
return sumleft + sumright;

}
}

Task-parallel implementation
(shared memory, e.g. in OpenMP 3+, Cilk, ...):

// The main program:

main()
{
…
parsum (data, 0, n-1);
…

}

Fork-Join execution style:
single task starts,
tasks spawn child tasks for
independent subtasks, and
synchronize with them

36C. Kessler, IDA, Linköping University

Circuit / DAG model
 Independent of how the parallel computation is expressed,

the resulting (unfolded) task graph looks the same.

 Task graph is a directed acyclic graph (DAG) G=(V,E)
 Set V of vertices: elementary tasks (taking time 1 resp. O(1) each)
 Set E of directed edges: dependences (partial order on tasks)

(v1,v2) in E v1 must be finished before v2 can start
 Critical path = longest path from an entry to an exit node

 Length of critical path is a lower bound for parallel time complexity
 Parallel time can be longer if number of processors is limited

 schedule tasks to processors such that dependences are preserved
 (by programmer (SPMD execution) or run-time system (fork-join exec.))

37C. Kessler, IDA, Linköping University

For a fixed number of processors … ?

 Usually, p << n
 Requires scheduling the work to p processors

(A) manually, at algorithm design time:
 Requires algorithm engineering
 E.g. stop the parallel divide-and-conquer e.g. at subproblem size n/p

and switch to sequential divide-and-conquer (= task agglomeration)
 For parallel sum:

 Step 0. Partition the array of n elements in p slices of n/p
elements each (= domain decomposition)

 Step 1. Each processor calculates a local sum for one slice,
using the sequential sum algorithm,
resulting in p partial sums (intermediate values)

 Step 2. The p processors run the parallel algorithm
to sum up the intermediate values to the global sum.

38C. Kessler, IDA, Linköping University

For a fixed number of processors … ?

 Usually, p << n

 Requires scheduling the work to p processors

(B) automatically, at run time:

 Requires a task-based runtime system
with dynamic scheduler

 Each newly created task is dispatched
at runtime to an available worker processor
once its input operands are available
(predecessor tasks have finished).

 (More) Automatic load balancing
Tasks with their workloads and dependences

need not be known prior to runtime

 Runtime overhead for explicit task
representation and management

Run-time
scheduler

…

Worker threads
1:1 pinned to cores

Task graph
(tasks, dependences)
maintained in memory

Christoph Kessler, IDA,
Linköpings universitet.

Analysis of Parallel Algorithms

40C. Kessler, IDA, Linköping University

Analysis of Parallel Algorithms

Performance metrics of parallel programs

 Parallel execution time

 Counted from the start time of the earliest task
to the finishing time of the latest task

 Work – the total number of performed elementary operations

 Cost – the product of parallel execution time and #processors

 Speed-up

 the factor by how much faster we can solve a problem with p
processors than with 1 processor, usually in range (0…p)

 Parallel efficiency = Speed-up / #processors, usually in (0…1)

 Throughput = #operations finished per second

 Scalability

 does speedup keep growing well
also when #processors grows large?

41C. Kessler, IDA, Linköping University

Analysis of Parallel Algorithms

Asymptotic Analysis

 Estimation based on a cost model and algorithm idea
(pseudocode operations)

 Discuss behavior for large problem sizes, large #processors

Empirical Analysis

 Implement in a concrete parallel programming language

 Measure time on a concrete parallel computer

 Vary number of processors used, as far as possible

 More precise

 More work, and fixing bad designs at this stage is expensive

42C. Kessler, IDA, Linköping University

Parallel Time, Work, Cost

s = d[0]
for (i=1; i<N;i++)

s = s + d[i]

43C. Kessler, IDA, Linköping University

Background: Parallel Time, Work, Cost
 Work is the total number of non-idle-waiting basic operations (instructions or

other operations taking only a constant number of time steps – arithmetics,
memory accesses, branches, … – performed by the algorithm.
 Hence: parallel work = the sum over the number of such operations on

each process(or), accumulated over all process(or)s.
 Usually, a worst-case (over all inputs of same size) metric like time,

given as a function in the size of the input.
 In sequential computing, time and work always coincide.
 We are especially interested in parallel algorithms that are (asymptotically)

work-optimal, i.e., do not do asymptotically more work than the best
sequential algorithm for the same problem.

 (Parallel) Cost is the (worst-case) parallel time multiplied by the number of
processors used.
 At least as large as the work, but may be larger, even asymptotically

larger, due to idle waiting for other processes,
like in the above case of divide-and-conquer parallel sum.

 In sequential computing, time and cost always coincide.
 A sequential program never needs to wait for itself.

 For a cost-effective parallel algorithm, its cost = O(work).

See the compendium for more details and exercises.

44C. Kessler, IDA, Linköping University

Parallel work, time, cost

>

45C. Kessler, IDA, Linköping University

Speedup

Speedup S(p) with p processors is usually in the range (0…p)

46C. Kessler, IDA, Linköping University

Amdahl’s Law: Upper bound on Speedup

47C. Kessler, IDA, Linköping University

Amdahl’s Law

48C. Kessler, IDA, Linköping University

Proof of Amdahl’s Law

Christoph Kessler, IDA,
Linköpings universitet.

Towards More Realistic
Cost Models

Modeling the cost of
communication and data access

50C. Kessler, IDA, Linköping University

Modeling Communication Cost: Delay Model

51C. Kessler, IDA, Linköping University

core

Memory Hierarchy
And The Real Cost of Data Access

Processor / CPU cores
each containing few (~32)
general-purpose data registers
and L1 cacheL1

L2 L2 cache (on-chip) - ~1MB

L3 L3 cache (on-chip) – ~64MB

Capacity
[B]

Transfer
Block

Size [B]

Access
Bandwidth

[GB/s]

Primary Storage
(DRAM)

Access
Latency

[ns]

Very
high

Very
fast
(few
cc)

Very
Slow
(ms
…s)

Computer’s main
memory (off-chip)
~64 GB

Secondary Storage
(Hard Disk, SSD)

I/O

Network
(E.g. other nodes

in a cluster;
internet, …)

Cloud storage

Tertiary Storage
(Tapes, …)

High
(TB)

Large
(KB)

Small
(~10..
100B)

Small
(~10KB)

>
100
cc

Mode-
rate
to
low

52C. Kessler, IDA, Linköping University

Data Locality

 Memory hierarchy rationale: Try to amortize the high access cost
of lower levels (DRAM, disk, …) by caching data in higher levels for
faster subsequent accesses
 Cache miss – stall the computation. fetch the block of data containing

the accessed address from next lower level, then resume
 More reuse of cached data (cache hits) better performance

 Working set = the set of memory addresses accessed together in
a period of computation

 Data locality = property of a computation: keeping the working set
small during a computation
 Temporal locality – re-access same data element multiple times

within a short time interval
 Spatial locality – re-access neighbored memory addresses multiple

times within a short time interval

 High latency favors larger transfer block sizes (cache lines, memory
pages, file blocks, messages) for amortization over many
subsequent accesses

53C. Kessler, IDA, Linköping University

Memory-bound vs. CPU-bound computation

 Arithmetic intensity of a computation
= #arithmetic instructions (computational work) executed

per accessed element of data in memory (after cache miss)

 A computation is CPU-bound
if its arithmetic intensity is >> 1.
 The performance bottleneck is the CPU’s arithmetic throughput

 A computation is memory-access bound otherwise.
 The performance bottleneck is memory accesses,

CPU is not fully utilized

 Examples:
 Matrix-matrix-multiply (if properly implemented) is CPU-bound.

 Array global sum is memory-bound on most architectures.

Christoph Kessler, IDA,
Linköpings universitet.

Some Parallel Algorithmic
Design Patterns

55C. Kessler, IDA, Linköping University

Data Parallelism

 Given:

 One (or several) data containers x , y, … with n elements each,
e.g. array(s) x = (x1,...xn), y = (y1,…,yn), …

 An operation f on individual elements of x, y, …
(e.g. incr, sqrt, mult, ...)

 Compute: z = f(x) = (f(x1), ..., f(xn)) (similarly for arities > 1)

 Parallelizability: Each data element defines a task

 Fine grained parallelism

 Easily partitioned into independent tasks,
fits very well on all parallel architectures

 Notation with higher-order function:

 z = Map (f) (x)

Map(f)(a,b):

56C. Kessler, IDA, Linköping University

Data-parallel Reduction

 Given:

 A data container x with n elements,
e.g. array x = (x1,...xn)

 A binary, associative operation op on individual elements of x
(e.g. add, max, bitwise-or, ...)

 Compute: y = OPi=1…n x = x1 op x2 op ... op xn

 Parallelizability: Exploit associativity of op

 Notation with higher-order function:

 y = reduce (op, x)

Idea:

op associative

((x1 op x2) op x3) op x4 = (x1 op x2) op (x3 op x4)

op associative:

(x1 op x2) op x3 = x1 op (x2 op x3)

57C. Kessler, IDA, Linköping University

Data-parallel Reduction

 Given:

 A data container x with n elements,
e.g. array x = (x1,...xn)

 A binary, associative operation op on individual elements of x
(e.g. add, max, bitwise-or, ...)

 Compute: y = OPi=1…n x = x1 op x2 op ... op xn

 Parallelizability: Exploit associativity of op

 Notation with higher-order function:

 y = Reduce (op) (x)

58C. Kessler, IDA, Linköping University

MapReduce (pattern)

 A Map operation with operation f
on one or several input data containers x, …,
producing a temporary output data container w,
directly followed by a Reduce with operation g on w
producing result y

 y = MapReduce (f, g) (x, …)

 Example:

Dot product of two vectors x, z: y = i xi * zi

f = scalar multiplication,

g = scalar addition

59C. Kessler, IDA, Linköping University

Task Farming

 Independent subcomputations f1, f2, ..., fm
could be done in parallel and/or in arbitrary
order, e.g.

 independent loop iterations

 independent function calls

 Scheduling (mapping) problem

 m tasks onto p processors

 static (before running) or dynamic

 Load balancing is important:
most loaded processor determines
the parallel execution time

 Notation with higher-order function:

 Farm (f1, ..., fm) (x1,...,xn)

f1

f2

P2

P1

P3

time

dispatcher

f2

collector

f1 fm…

60C. Kessler, IDA, Linköping University

Task Farming

 Independent subcomputations f1, f2, ..., fm
could be done in parallel and/or in arbitrary
order, e.g.

 independent loop iterations

 independent function calls

 Scheduling (mapping) problem

 m tasks onto p processors

 static (before running) or dynamic

 Load balancing is important:
most loaded processor determines
the parallel execution time

 Notation with higher-order function:

 Farm (f1, ..., fm) (x1,...,xn)

f1

f2

P2

P1

P3

time

dispatcher

f2

collector

f1 fm…

61C. Kessler, IDA, Linköping University

Parallel Divide-and-Conquer

(Sequential) Divide-and-conquer:
 Recursive formulation: solve problem instance P

 If the given problem instance P is trivial,
solve P directly.

 Otherwise, do three steps:
1. Divide: Decompose problem instance P in one or several smaller

independent instances of the same problem, P1, ..., Pk

2. For each i: solve Pi by recursion.
3. Combine the solutions of the Pi into an overall solution for P.

Parallel Divide-and-Conquer:
 The recursive calls (2.) are independent tasks can be done in parallel.
 If possible, parallelize also the divide and combine phase (internally).
 Switch in the recursion to sequential divide-and-conquer when enough

parallel tasks have been created.

Notation with higher-order function:
 solution = DC (divide, combine, istrivial, solvedirectly) (P, n)

62C. Kessler, IDA, Linköping University

Example: Parallel Divide-and-Conquer

Example: Parallel Sum over integer-array x

Exploit associativity:

Sum(x1,...,xn) = Sum(x1,...xn/2) + Sum(xn/2+1,...,xn)

Divide: trivial, split array x in place

Combine is just an addition.

y = DC (split, add, nEqualsOne, loadElement) (x, n)

 Data-parallel reductions are an important special case of DC.

63C. Kessler, IDA, Linköping University

Pipelining

 applies a sequence of dependent computations/tasks (f1, f2, ..., fk)
elementwise to data sequence x = (x1,x2,x3,...,xn)

 For fixed xj, must compute fi(xj) before fi+1(xj)

 … and fi(xj) before fi(xj+1) if the tasks fi have a run-time state

 Parallelizability: Overlap execution of all fi for k subsequent xj

 time=1: compute f1(x1)

 time=2: compute f1(x2) and f2(x1)

 time=3: compute f1(x3) and f2(x2) and f3(x1)

 ...

 Total time: O ((n+k) maxi (time(fi))) with k processors

 Still, requires good mapping of the tasks fi to the processors
for even load balancing – often, static mapping (done before running)

 Notation with higher-order function:

 (y1,…,yn) = pipe ((f1, ..., fk), (x1,…,xn))

…

x3

x2

x1

f1

f2

fk

stage
task
dependence
graph

pipeline
task instance
dependence
graph

64C. Kessler, IDA, Linköping University

Pipelining

 applies a sequence of dependent computations/tasks (f1, f2, ..., fk)
elementwise to data sequence x = (x1,x2,x3,...,xn)

 For fixed xj, must compute fi(xj) before fi+1(xj)

 … and fi(xj) before fi(xj+1) if the tasks fi have a run-time state

 Parallelizability: Overlap execution of all fi for k subsequent xj

 time=1: compute f1(x1)

 time=2: compute f1(x2) and f2(x1)

 time=3: compute f1(x3) and f2(x2) and f3(x1)

 ...

 Total time: O ((n+k) maxi (time(fi))) with k processors

 Still, requires good mapping of the tasks fi to the processors
for even load balancing – often, static mapping (done before running)

 Notation with higher-order function:

 (y1,…,yn) = pipe (f1, ..., fk) (x1,…,xn)

…

x3

x2

x1

f1

f2

fk

65C. Kessler, IDA, Linköping University

Streaming

 Streaming applies pipelining to processing
of large (possibly, infinite) data streams
from or to memory, network or devices,
usually partitioned in fixed-sized data packets,

 in order to overlap the processing of
each packet of data in time with
access of subsequent units of data
and/or processing of preceding packets
of data.

 Examples

 Video streaming from network to display

 Surveillance camera, face recognition

 Network data processing e.g. deep packet inspection

…

x3

x2

x1

f1

f2

f3

Read a
packet of
stream data

Process
a packet

Process
it more

fk
Write
result

66C. Kessler, IDA, Linköping University

Stream Farming

 Independent streaming
subcomputations f1, f2, ..., fm

on each data packet

 Speed up the pipeline
by parallel processing of
subsequent data packets

 In most cases, the original order of packets
must be kept after processing

dispatcher

f2

collector

f1 fm…

…

x3

x2

x1

…

Combining streaming and task farming patterns

67C. Kessler, IDA, Linköping University

(Algorithmic) Skeletons

 Skeletons are reusable, parameterizable SW components with well defined
semantics for which efficient parallel implementations may be available.

 Inspired by higher-order functions in functional programming

 One or very few skeletons per parallel algorithmic paradigm
 map, farm, DC, reduce, pipe, scan ...

 Parameterised in user code

 Customization by instantiating a skeleton template
in a user-provided function

 Composition of skeleton instances in program code
normally by sequencing+data flow

 e.g. squaresum(x) can be defined by
{

tmp = Map(sqr)(x);
return Reduce(add)(tmp);

}

{
MapReduce(sqr, add)(x);

}

For frequent combinations, may
define advanced skeletons, e.g.:

Image source:
A. Ernstsson, 2016

68C. Kessler, IDA, Linköping University

SkePU https://skepu.github.io

 Skeleton programming library for heterogeneous multicore systems,
based on C++

 Example: Vector addition in SkePU [Ernstsson et al. 2016, 2021]

Add

Add

Image source:
A. Ernstsson, 2016

add

add

69C. Kessler, IDA, Linköping University

High-Level Parallel Programming
with Skeletons
Skeletons (constructs) implement (parallel) algorithmic design patterns
 Abstraction, hiding complexity (parallelism and low-level programming)
 Enforces structuring, using a restricted set of constructs
 Parallelization for free
 Easier to analyze and transform
 Requires complete understanding and rewriting of a computation
 Available skeleton set does not always fit
 May lose some efficiency compared to manual parallelization

 Idea developed in HPC (mostly in Europe) since the late 1980s.
 Many (esp., academic) frameworks exist, mostly as libraries
 Industry (also beyond HPC domain) has adopted skeletons

 map, reduce, scan in many modern parallel programming APIs
 e.g., Intel Threading Building Blocks (TBB): par. for, par. reduce, pipe
 NVIDIA Thrust

 Google/Hadoop MapReduce, Apache Spark
(for distributed data mining applications)

70C. Kessler, IDA, Linköping University

Questions for Reflection

 Draw an example task graph with at least 5 tasks that fulfills the assumptions
made in Amdahl’s Law. (Hint: The divide-and-conquer parallel sum algorithm
above does not qualify here – why?)
Show which of the tasks contribute to the parallelizable and to the sequential
parts of the work. Assume for simplicity that each task takes 1 unit of time.
Identify the longest chain of dependences in the task graph and give a good
lower bound for the parallel execution time.

 How would you implement a global sum computation in parallel for a cluster
with distributed memory, given a message-passing programming model with
operations for sending and receiving blocks of data in memory?
Assume that each of the p cluster nodes initially has a partition of 1/p th of the
input array in its memory.
 What is the parallel time, work and cost complexity of your solution?
 How would you adapt the above algorithm for more parallelism if the

cluster nodes are internally shared-memory parallel computers?
 Why should servers in datacenters running I/O-intensive tasks (such as

disk/DB accesses) get many more tasks to run than they have cores?
 What are the possible advantages and disadvantages of a very fine or very

coarse granularity of tasks (work per task) in dynamic scheduling?
 How would you extend the skeleton programming approach for computations

that operate on secondary storage (file/DB accesses)?

71C. Kessler, IDA, Linköping University

Questions for Reflection (2)

Only if the streaming/pipelining pattern was taken up in the lecture:

 Model the overall cost of a streaming computation with a very large
number N of input data elements on a single processor
(a) if implemented as a loop over the data elements

running on an ordinary memory hierarchy
with hardware caches (see above)

(b) if overlapping computation for a data packet
with transfer/access of the next data packet
(b1) if the computation is CPU-bound
(b2) if the computation is memory-bound

 Which property of streaming computations makes it possible to overlap
computation with data transfer?

 Can each dataparallel computation be streamed?

 What are the performance advantages and disadvantages of large vs.
small packet sizes in streaming?

72C. Kessler, IDA, Linköping University

Further Reading

Introduction to programming parallel computers in general:
 Wilkinson, Allen: Parallel Programming, 2nd edition. Addison Wesley, 2004.
 See also literature on programming in MPI, OpenMP and other parallel

programming models.

On the Design and Analysis of Parallel Algorithms:
 H. Jordan, G. Alaghband: Fundamentals of Parallel Processing.

Prentice Hall, 2003.
 A. Grama, G. Karypis, V. Kumar, A. Gupta: Introduction to Parallel

Computing.
2nd Edition. Addison-Wesley, 2003.

On skeleton programming with SkePU:
 https://skepu.github.io

C. Kessler: Design and Analysis of Parallel Algorithms – An Introduction.
Compendium for the theory part of TDDE65 and TDDD56, Edition Dec. 2023. PDF.
http://www.ida.liu.se/~TDDE65/handouts (login: parallel, password see whiteboard)
• Chapter 2 on analysis of parallel algorithms as background reading

