
Christoph Kessler, IDA,

Linköpings universitet.

Introduction to

Parallel Computing

Christoph Kessler

IDA, Linköping University

732A54 / TDDE31

Big Data Analytics

2C. Kessler, IDA, Linköpings universitet.

5 Lectures

Lectures 1-2: Introduction to parallel computing

Parallel architectural concepts

Parallel algorithms design and analysis

Parallel algorithmic patterns and skeleton programming

Lecture 3: MapReduce

Lecture 4: Spark

Lecture 5: Cluster management systems.

Big-graph computing (as time permits).

Selected exercises (exam training).

3C. Kessler, IDA, Linköpings universitet.

Traditional Use of Parallel Computing:

Large-Scale HPC Applications

High Performance Computing (HPC)

Much computational work
(in FLOPs, floatingpoint operations)

Often, large data sets

E.g. climate simulations, particle physics, engineering, sequence
matching or proteine docking in bioinformatics, …

Single-CPU computers and even today’s
multicore processors cannot provide such
massive computation power

Aggregate LOTS of computers → Clusters

Need scalable parallel algorithms

Need exploit multiple levels of parallelism

NSC Tetralith

4C. Kessler, IDA, Linköpings universitet.

More Recent Use of Parallel Computing:

Big-Data Analytics Applications

Big Data Analytics

Data access intensive (disk I/O, memory accesses)

Typically, very large data sets (GB … TB … PB … EB …)

Also some computational work for combining/aggregating data

E.g. data center applications, business analytics, click stream
analysis, scientific data analysis, machine learning, …

Soft real-time requirements on interactive querys

Single-CPU and multicore processors cannot
provide such massive computation power
and I/O bandwidth+capacity

Aggregate LOTS of computers → Clusters

Need scalable parallel algorithms

Need exploit multiple levels of parallelism

Fault tolerance
NSC Tetralith

5C. Kessler, IDA, Linköpings universitet.

HPC vs Big-Data Computing

Both need parallel computing

Same kind of hardware – Clusters of (multicore) servers

Same OS family (Linux)

Different programming models, languages, and tools

HW: Cluster

OS: Linux

Par. programming models:

MPI, OpenMP, …

HW: Cluster

OS: Linux

Par. programming models:

MapReduce, Spark, …

HPC prog. languages:

Fortran, C/C++ (Python)
Big-Data prog. languages:

Java, Scala, Python, …

→ Let us start with the common basis: Parallel computer architecture

Big-data storage/access:

HDFS, …

Scientific computing

libraries: BLAS, …

HPC application Big-Data application

6C. Kessler, IDA, Linköpings universitet.

Parallel Computer

7C. Kessler, IDA, Linköpings universitet.

Parallel Computer Architecture Concepts

Classification of parallel computer architectures:

by control structure

SISD, SIMD, MIMD

by memory organization

in particular, Distributed memory vs. Shared memory

by interconnection network topology

8C. Kessler, IDA, Linköpings universitet.

Classification by Control Structure

…

vop

op op op op
1 2 3 4

op

9C. Kessler, IDA, Linköpings universitet.

Classification by Memory Organization

Most common today in HPC and Data centers:

Hybrid Memory System
• Cluster (distributed memory)

of hundreds, thousands of

shared-memory servers

each containing one or several multi-core CPUs

NSC Triolith

e.g. (traditional) HPC cluster e.g. multiprocessor (SMP) or computer

with a standard multicore CPU

NSC Tetralith

10C. Kessler, IDA, Linköpings universitet.

Hybrid (Distributed + Shared) Memory

M M

NSC Tetralith

11C. Kessler, IDA, Linköpings universitet.

Interconnection Networks (1)

Network

= physical interconnection medium (wires, switches)

+ communication protocol

(a) connecting cluster nodes with each other (DMS)

(b) connecting processors with memory modules (SMS)

Classification

Direct / static interconnection networks

connecting nodes directly to each other

Hardware routers (communication coprocessors)

can be used to offload processors from most communication work

Switched / dynamic interconnection networks

P R

12C. Kessler, IDA, Linköpings universitet.

Interconnection Networks (2):

Simple Topologies P

P

P
P

P

Pfully connected

13C. Kessler, IDA, Linköpings universitet.

Interconnection Networks (3):

Fat-Tree Network

Tree network extended for higher bandwidth (more switches,

more links) closer to the root

avoids bandwidth bottleneck

Example: Infiniband network

(www.mellanox.com)

14C. Kessler, IDA, Linköpings universitet.

More about Interconnection Networks

Hypercube, Crossbar, Butterfly, Hybrid networks… → TDDC78

Switching and routing algorithms

Discussion of interconnection network properties

Cost (#switches, #lines)

Scalability

(asymptotically, cost grows not much faster than #nodes)

Node degree

Longest path (→ latency)

Accumulated bandwidth

Fault tolerance (worst-case impact of node or switch failure)

…

15C. Kessler, IDA, Linköpings universitet.

Example: Beowulf-class PC Clusters

with off-the-shelf CPUs

(Xeon, Opteron, …)

16C. Kessler, IDA, Linköpings universitet.

Example: Tetralith (NSC, 2018/2019)

• Each Tetralith compute node has

2 Intel Xeon Gold 6130 CPUs (2.1GHz)

each with 16 cores (32 hardware threads)

• 1832 "thin" nodes with 96 GiB of primary

memory (RAM)

• and 60 "fat" nodes with 384 GiB.

→ 1892 nodes, 60544 cores in total

All nodes are interconnected with a 100 Gbps

Intel Omni-Path network (Fat-Tree topology)

• Sigma is similar (same HW/SW), only smaller

A so-called Capability cluster

(fast network for parallel applications,

not for just lots of independent sequential jobs)

17C. Kessler, IDA, Linköpings universitet.

The Challenge

Today, basically all computers are parallel computers!

Single-thread performance stagnating

Dozens of cores and hundreds of HW threads available per server

May even be heterogeneous (core types, accelerators)

Data locality matters

Large clusters for HPC and Data centers, require message passing

Utilizing more than one CPU core requires thread-level parallelism

One of the biggest software challenges: Exploiting parallelism

Need LOTS of (mostly, independent) tasks to keep cores/HW threads
busy and overlap waiting times (cache misses, I/O accesses)

All application areas, not only traditional HPC

 General-purpose, data mining, graphics, games, embedded, DSP, …

Affects HW/SW system architecture, programming languages,
algorithms, data structures …

Parallel programming is more error-prone
(deadlocks, races, further sources of inefficiencies)

 And thus more expensive and time-consuming

18C. Kessler, IDA, Linköpings universitet.

Can’t the compiler fix it for us?

Automatic parallelization?

at compile time:

Requires static analysis – not effective for pointer-based

languages

– inherently limited – missing runtime information

needs programmer hints / rewriting ...

ok only for few benign special cases:

– loop vectorization

– extraction of instruction-level parallelism

at run time (e.g. speculative multithreading)

High overheads, not scalable

19C. Kessler, IDA, Linköpings universitet.

Insight

Design of efficient / scalable parallel algorithms is,

in general, a creative task that is not automatizable

But some good recipes exist …

Parallel algorithmic design patterns →

20C. Kessler, IDA, Linköpings universitet.

The remaining solution …

Manual parallelization!

using a parallel programming language / framework,

e.g. MPI message passing interface for distributed memory;

Pthreads, OpenMP, TBB, … for shared-memory

Generally harder, more error-prone than sequential

programming,

requires special programming expertise to exploit the HW

resources effectively

Promising approach:

Domain-specific languages/frameworks,

Restricted set of predefined constructs

doing most of the low-level stuff under the hood

e.g. MapReduce, Spark, … for big-data computing

21C. Kessler, IDA, Linköpings universitet.

Parallel Programming Model

System-software-enabled programmer’s view of the underlying hardware

Abstracts from details of the underlying architecture, e.g. network topology

Focuses on a few characteristic properties, e.g. memory model

→ Portability of algorithms/programs across a family of parallel architectures

Programmer’s view of

the underlying system

(Lang. constructs, API, …)

→ Programming model

Underlying parallel

computer architecture

Mapping(s) performed by

programming toolchain

(compiler, runtime system,

library, OS, …)

Shared Memory

Message passing

Christoph Kessler, IDA,

Linköpings universitet.

Design and Analysis

of Parallel Algorithms

Introduction

23C. Kessler, IDA, Linköpings universitet.

Foster’s Generic Method for the

Design of Parallel Programs (”PCAM”)

PROBLEM

+ algorithmic

approach
PARTITIONING

COMMUNICATION

+ SYNCHRONIZATION

PARALLEL

ALGORITHM

DESIGN

AGGLOMERATION
PARALLEL

ALGORITHM

ENGINEERING

(Implementation and

adaptation for a specific

(type of) parallel

computer)

Elementary

Tasks

Textbook-style

parallel algorithm

MAPPING

+ SCHEDULING

→ I. Foster, Designing and Building Parallel Programs. Addison-Wesley, 1995.

P1 P2 P3

Macrotasks

24C. Kessler, IDA, Linköpings universitet.

Parallel Computation Model

= Programming Model + Cost Model

Christoph Kessler, IDA,

Linköpings universitet.

Parallel Cost Models

A Quantitative Basis for the

Design of Parallel Algorithms

Background reading:

C. Kessler, Design and Analysis of Parallel Algorithms, Chapter 2.

Compendium TDDC78/TDDD56, (c) 2020.

https://www.ida.liu.se/~TDDC78/handouts login: parallel

(For internal use in my courses only – please do not share publically)

26C. Kessler, IDA, Linköpings universitet.

Cost Model

27C. Kessler, IDA, Linköpings universitet.

How to analyze sequential algorithms:
The RAM (von Neumann) model for sequential computing

Basic operations (instructions):

- Arithmetic (add, mul, …) on registers

- Load

- Store

- Branch

Simplifying assumptions

for time analysis:

- All of these take 1 time unit

- Serial composition adds time costs

T(op1;op2) = T(op1)+T(op2)

op

op1

op2

28C. Kessler, IDA, Linköpings universitet.

Analysis of sequential algorithms:

RAM model (Random Access Machine)

s = d[0]

for (i=1; i<N; i++)

s = s + d[i]

 Data flow graph,
showing dependences

(precedence constraints)

between operations

29C. Kessler, IDA, Linköpings universitet.

The PRAM Model – a Parallel RAM

PRAM variants → TDDD56, TDDC78

30C. Kessler, IDA, Linköpings universitet.

Remark

PRAM model is very idealized,

extremely simplifying / abstracting from real parallel architectures:

→ Good for early analysis of parallel algorithm designs:

A parallel algorithm that does not scale under the PRAM model

does not scale well anywhere else!

The PRAM cost model

has only 1 machine-specific

parameter:

the number of processors

31C. Kessler, IDA, Linköpings universitet.

A first parallel sum algorithm …

 Data flow graph,
showing dependences

(precedence constraints)

between operations

Keep the sequential sum algorithm’s structure / data flow graph.

Giving each processor one task (load, add) does not help much

– All n loads could be done in parallel, but

– Processor i needs to wait for partial result from processor i-1, for i=1,…,n-1

→ Still O(n) time steps!

time

32C. Kessler, IDA, Linköpings universitet.

Divide&Conquer Parallel Sum Algorithm

in the PRAM / Circuit (DAG) cost model

T(1) = O(1)

Recurrence equation for

parallel execution time:

Idea:

+ associative → (((x1 + x2) + x3) + x4 = (x1 + x2) + (x3 + x4)

+ is associative:

(x1 + x2) + x3 = x1 + (x2 + x3)

33C. Kessler, IDA, Linköpings universitet.

Divide&Conquer Parallel Sum Algorithm

in the PRAM / Circuit (DAG) cost model

T(1) = O(1)

Recurrence equation for

parallel execution time:

34C. Kessler, IDA, Linköpings universitet.

Divide&Conquer Parallel Sum Algorithm

in the PRAM / Circuit (DAG) cost model

T(1) = O(1)

Recurrence equation for

parallel execution time:

35C. Kessler, IDA, Linköpings universitet.

Recursive formulation of DC parallel sum

algorithm in some programming model

cilk int parsum (int *d, int from, int to)

{

int mid, sumleft, sumright;

if (from == to) return d[from]; // base case

else {

mid = (from + to) / 2;

sumleft = spawn parsum (d, from, mid);

sumright = parsum(d, mid+1, to);

sync;

return sumleft + sumright;

}

}

Implementation e.g. in Cilk: (shared memory)

// The main program:

main()

{

…

parsum (data, 0, n-1);

…

}

Fork-Join execution style:

single task starts,

tasks spawn child tasks for

independent subtasks, and

synchronize with them

36C. Kessler, IDA, Linköpings universitet.

Circuit / DAG model

Independent of how the parallel computation is expressed,
the resulting (unfolded) task graph looks the same.

Task graph is a directed acyclic graph (DAG) G=(V,E)

Set V of vertices: elementary tasks (taking time 1 resp. O(1) each)

Set E of directed edges: dependences (partial order on tasks)
(v1,v2) in E→ v1 must be finished before v2 can start

Critical path = longest path from an entry to an exit node

Length of critical path is a lower bound for parallel time complexity

Parallel time can be longer if number of processors is limited

→ schedule tasks to processors such that dependences are preserved

(by programmer (SPMD execution) or run-time system (fork-join exec.))

37C. Kessler, IDA, Linköpings universitet.

For a fixed number of processors … ?

Usually, p << n

Requires scheduling the work to p processors

(A) manually, at algorithm design time:

Requires algorithm engineering

E.g. stop the parallel divide-and-conquer e.g. at subproblem size n/p
and switch to sequential divide-and-conquer (= task agglomeration)

For parallel sum:

Step 0. Partition the array of n elements in p slices of n/p
elements each (= domain decomposition)

Step 1. Each processor calculates a local sum for one slice,
using the sequential sum algorithm,
resulting in p partial sums (intermediate values)

Step 2. The p processors run the parallel algorithm
to sum up the intermediate values to the global sum.

38C. Kessler, IDA, Linköpings universitet.

For a fixed number of processors … ?

Usually, p << n

Requires scheduling the work to p processors

(B) automatically, at run time:

Requires a task-based runtime system
with dynamic scheduler

Each newly created task is dispatched
at runtime to an available worker processor.

Load balancing (→ runtime overhead)

Central task queue where idle workers
fetch next task to execute

Local task queues + Work stealing –
idle workers steal a task from
some other processor

Run-time

scheduler

…

Worker threads
1:1 pinned to cores

Christoph Kessler, IDA,

Linköpings universitet.

Analysis of Parallel Algorithms

40C. Kessler, IDA, Linköpings universitet.

Analysis of Parallel Algorithms

Performance metrics of parallel programs

Parallel execution time

Counted from the start time of the earliest task
to the finishing time of the latest task

Work – the total number of performed elementary operations

Cost – the product of parallel execution time and #processors

Speed-up

the factor by how much faster we can solve a problem with p
processors than with 1 processor, usually in range (0…p)

Parallel efficiency = Speed-up / #processors, usually in (0…1)

Throughput = #operations finished per second

Scalability

does speedup keep growing well
also when #processors grows large?

High latency,

high

bandwidth

41C. Kessler, IDA, Linköpings universitet.

Analysis of Parallel Algorithms

Asymptotic Analysis

Estimation based on a cost model and algorithm idea

(pseudocode operations)

Discuss behavior for large problem sizes, large #processors

Empirical Analysis

Implement in a concrete parallel programming language

Measure time on a concrete parallel computer

Vary number of processors used, as far as possible

More precise

More work, and fixing bad designs at this stage is expensive

42C. Kessler, IDA, Linköpings universitet.

Parallel Time, Work, Cost

s = d[0]

for (i=1; i<N;i++)

s = s + d[i]

44C. Kessler, IDA, Linköpings universitet.

Speedup

Speedup S(p) with p processors is usually in the range (0…p)

45C. Kessler, IDA, Linköpings universitet.

Amdahl’s Law: Upper bound on Speedup

46C. Kessler, IDA, Linköpings universitet.

Amdahl’s Law

47C. Kessler, IDA, Linköpings universitet.

Proof of Amdahl’s Law

Christoph Kessler, IDA,

Linköpings universitet.

Towards More Realistic

Cost Models

Modeling the cost of

communication and data access

49C. Kessler, IDA, Linköpings universitet.

Modeling Communication Cost: Delay Model

50C. Kessler, IDA, Linköpings universitet.

core

Memory Hierarchy
And The Real Cost of Data Access

Processor / CPU cores
each containing few (~32)

general-purpose data registers

and L1 cacheL1

L2 L2 cache (on-chip) - ~1MB

L3 L3 cache (on-chip) – ~64MB

Capacity

[B]

Transfer

Block

Size [B]

Access

Bandwidth

[GB/s]

Primary Storage

(DRAM)

Access

Latency

[ns]

Very

high

Very

fast

(few

cc)

Very

Slow

(ms

…s)

Computer’s main

memory (off-chip)

~64 GB

Secondary Storage

(Hard Disk, SSD)

I/O

Network
(E.g. other nodes

in a cluster;

internet, …)

Cloud storage

Tertiary Storage
(Tapes, …)

High

(TB)

Large

(KB)

Small

(~10..

100B)

Small

(~10KB)

>

100

cc

Mode-

rate

to

low

51C. Kessler, IDA, Linköpings universitet.

Data Locality

Memory hierarchy rationale: Try to amortize the high access cost
of lower levels (DRAM, disk, …) by caching data in higher levels for
faster subsequent accesses

Cache miss – stall the computation. fetch the block of data containing
the accessed address from next lower level, then resume

More reuse of cached data (cache hits) → better performance

Working set = the set of memory addresses accessed together in
a period of computation

Data locality = property of a computation: keeping the working set
small during a computation

Temporal locality – re-access same data element multiple times
within a short time interval

Spatial locality – re-access neighbored memory addresses multiple
times within a short time interval

High latency favors larger transfer block sizes (cache lines, memory
pages, file blocks, messages) for amortization over many
subsequent accesses

52C. Kessler, IDA, Linköpings universitet.

Memory-bound vs. CPU-bound computation

Arithmetic intensity of a computation

= #arithmetic instructions (computational work) executed

per accessed element of data in memory (after cache miss)

A computation is CPU-bound

if its arithmetic intensity is >> 1.

The performance bottleneck is the CPU’s arithmetic throughput

A computation is memory-access bound otherwise.

The performance bottleneck is memory accesses,

CPU is not fully utilized

Examples:

Matrix-matrix-multiply (if properly implemented) is CPU-bound.

Array global sum is memory-bound on most architectures.

Christoph Kessler, IDA,

Linköpings universitet.

Some Parallel Algorithmic

Design Patterns

54C. Kessler, IDA, Linköpings universitet.

Data Parallelism

Given:

One (or several) data containers x , y, … with n elements each,

e.g. array(s) x = (x1,...xn), y = (y1,…,yn), …

An operation f on individual elements of x, y, …

(e.g. incr, sqrt, mult, ...)

Compute: z = f(x) = (f(x1), ..., f(xn)) (similarly for arities > 1)

Parallelizability: Each data element defines a task

Fine grained parallelism

Easily partitioned into independent tasks,

fits very well on all parallel architectures

Notation with higher-order function:

z = Map (f) (x)

Map(f)(a,b):

55C. Kessler, IDA, Linköpings universitet.

Data-parallel Reduction

Given:

A data container x with n elements,

e.g. array x = (x1,...xn)

A binary, associative operation op on individual elements of x

(e.g. add, max, bitwise-or, ...)

Compute: y = OPi=1…n x = x1 op x2 op ... op xn

Parallelizability: Exploit associativity of op

Notation with higher-order function:

y = reduce (op, x)

Idea:

op associative →

(((x1 op x2) op x3) op x4 = (x1 op x2) op (x3 op x4)

op associative:

(x1 op x2) op x3 = x1 op (x2 op x3)

56C. Kessler, IDA, Linköpings universitet.

Data-parallel Reduction

Given:

A data container x with n elements,

e.g. array x = (x1,...xn)

A binary, associative operation op on individual elements of x

(e.g. add, max, bitwise-or, ...)

Compute: y = OPi=1…n x = x1 op x2 op ... op xn

Parallelizability: Exploit associativity of op

Notation with higher-order function:

y = Reduce (op) (x)

57C. Kessler, IDA, Linköpings universitet.

MapReduce (pattern)

A Map operation with operation f

on one or several input data containers x, …,

producing a temporary output data container w,

directly followed by a Reduce with operation g on w

producing result y

y = MapReduce (f, g) (x, …)

Example:

Dot product of two vectors x, z: y = Si xi * zi

f = scalar multiplication,

g = scalar addition

58C. Kessler, IDA, Linköpings universitet.

Task Farming

Independent subcomputations f1, f2, ..., fm
could be done in parallel and/or in arbitrary

order, e.g.

independent loop iterations

independent function calls

Scheduling (mapping) problem

m tasks onto p processors

static (before running) or dynamic

Load balancing is important:

most loaded processor determines

the parallel execution time

Notation with higher-order function:

Farm (f1, ..., fm) (x1,...,xn)

f1

f2

P2

P1

P3

time

dispatcher

f2

collector

f1 fm…

59C. Kessler, IDA, Linköpings universitet.

Task Farming

Independent subcomputations f1, f2, ..., fm
could be done in parallel and/or in arbitrary

order, e.g.

independent loop iterations

independent function calls

Scheduling (mapping) problem

m tasks onto p processors

static (before running) or dynamic

Load balancing is important:

most loaded processor determines

the parallel execution time

Notation with higher-order function:

Farm (f1, ..., fm) (x1,...,xn)

f1

f2

P2

P1

P3

time

dispatcher

f2

collector

f1 fm…

60C. Kessler, IDA, Linköpings universitet.

Parallel Divide-and-Conquer

(Sequential) Divide-and-conquer:

If given problem instance P is trivial, solve it directly. Otherwise:

Divide: Decompose problem instance P in one or several smaller

independent instances of the same problem, P1, ..., Pk

For each i: solve Pi by recursion.

Combine the solutions of the Pi into an overall solution for P

Parallel Divide-and-Conquer:

Recursive calls can be done in parallel.

Parallelize, if possible, also the divide and combine phase.

Switch to sequential divide-and-conquer when enough parallel tasks

have been created.

Notation with higher-order function:

solution = DC (divide, combine, istrivial, solvedirectly) (P, n)

61C. Kessler, IDA, Linköpings universitet.

Example: Parallel Divide-and-Conquer

Example: Parallel Sum over integer-array x

Exploit associativity:

Sum(x1,...,xn) = Sum(x1,...xn/2) + Sum(xn/2+1,...,xn)

Divide: trivial, split array x in place

Combine is just an addition.

y = DC (split, add, nIsSmall, addFewInSeq) (x, n)

→ Data parallel reductions are an important special case of DC.

62C. Kessler, IDA, Linköpings universitet.

Pipelining

applies a sequence of dependent computations/tasks (f1, f2, ..., fk)
elementwise to data sequence x = (x1,x2,x3,...,xn)

For fixed xj, must compute fi(xj) before fi+1(xj)

… and fi(xj) before fi(xj+1) if the tasks fi have a run-time state

Parallelizability: Overlap execution of all fi for k subsequent xj

time=1: compute f1(x1)

time=2: compute f1(x2) and f2(x1)

time=3: compute f1(x3) and f2(x2) and f3(x1)

...

Total time: O ((n+k) maxi (time(fi))) with k processors

Still, requires good mapping of the tasks fi to the processors
for even load balancing – often, static mapping (done before running)

Notation with higher-order function:

(y1,…,yn) = pipe ((f1, ..., fk), (x1,…,xn))

…

x3

x2

x1

f1

f2

fk

stage

task

dependence

graph

pipeline

task instance

dependence

graph

63C. Kessler, IDA, Linköpings universitet.

Pipelining

applies a sequence of dependent computations/tasks (f1, f2, ..., fk)
elementwise to data sequence x = (x1,x2,x3,...,xn)

For fixed xj, must compute fi(xj) before fi+1(xj)

… and fi(xj) before fi(xj+1) if the tasks fi have a run-time state

Parallelizability: Overlap execution of all fi for k subsequent xj

time=1: compute f1(x1)

time=2: compute f1(x2) and f2(x1)

time=3: compute f1(x3) and f2(x2) and f3(x1)

...

Total time: O ((n+k) maxi (time(fi))) with k processors

Still, requires good mapping of the tasks fi to the processors
for even load balancing – often, static mapping (done before running)

Notation with higher-order function:

(y1,…,yn) = pipe (f1, ..., fk) (x1,…,xn)

…

x3

x2

x1

f1

f2

fk

64C. Kessler, IDA, Linköpings universitet.

Streaming

Streaming applies pipelining to processing

of large (possibly, infinite) data streams

from or to memory, network or devices,

usually partitioned in fixed-sized data packets,

in order to overlap the processing of

each packet of data in time with

access of subsequent units of data

and/or processing of preceding packets

of data.

Examples

Video streaming from network to display

Surveillance camera, face recognition

Network data processing e.g. deep packet inspection

…

x3

x2

x1

f1

f2

f3

Read a

packet of

stream data

Process

a packet

Process

it more

fk
Write

result

65C. Kessler, IDA, Linköpings universitet.

Stream Farming

Independent streaming

subcomputations f1, f2, ..., fm

on each data packet

Speed up the pipeline

by parallel processing of

subsequent data packets

In most cases, the original order of packets

must be kept after processing

dispatcher

f2

collector

f1 fm…

…

x3

x2

x1

…

Combining streaming and task farming patterns

66C. Kessler, IDA, Linköpings universitet.

(Algorithmic) Skeletons

Skeletons are reusable, parameterizable SW components with well defined
semantics for which efficient parallel implementations may be available.

Inspired by higher-order functions in functional programming

One or very few skeletons per parallel algorithmic paradigm

map, farm, DC, reduce, pipe, scan ...

Parameterised in user code

Customization by instantiating a skeleton template
in a user-provided function

Composition of skeleton instances in program code
normally by sequencing+data flow

e.g. squaresum(x) can be defined by
{

tmp = map(sqr)(x);
return reduce(add)(tmp);

}

{

mapreduce(sqr, add)(x)

}

For frequent combinations, may

define advanced skeletons, e.g.:

Image source:

A. Ernstsson, 2016

67C. Kessler, IDA, Linköpings universitet.

SkePU https://skepu.github.io

Skeleton programming library for heterogeneous multicore systems,
based on C++

Example: Vector addition in SkePU-2 [Ernstsson 2016]

Add

Add

Image source:

A. Ernstsson, 2016

add

add

68C. Kessler, IDA, Linköpings universitet.

SkePU [Enmyren, K. 2010]

Skeleton programming library for heterogeneous multicore systems,
based on C++

Example: Vector sum in SkePU-2 [Ernstsson 2016]

Add

Add

Image source:

A. Ernstsson, 2016

Reduce Red.

69C. Kessler, IDA, Linköpings universitet.

High-Level Parallel Programming

with Skeletons

Skeletons (constructs) implement (parallel) algorithmic design patterns

☺ Abstraction, hiding complexity (parallelism and low-level programming)

 Enforces structuring, restricted set of constructs

☺ Parallelization for free

☺ Easier to analyze and transform

 Requires complete understanding and rewriting of a computation

 Available skeleton set does not always fit

 May lose some efficiency compared to manual parallelization

Idea developed in HPC (mostly in Europe) since the late 1980s.

Many (esp., academic) frameworks exist, mostly as libraries

Industry (also beyond HPC domain) has adopted skeletons

map, reduce, scan in many modern parallel programming APIs

e.g., Intel Threading Building Blocks (TBB): par. for, par. reduce, pipe

NVIDIA Thrust

Google/Hadoop MapReduce (for distributed data mining applications)

70C. Kessler, IDA, Linköpings universitet.

Further Reading

On PRAM model and Design and Analysis of Parallel Algorithms

J. Keller, C. Kessler, J. Träff: Practical PRAM Programming. Wiley
Interscience, New York, 2001.

J. JaJa: An introduction to parallel algorithms. Addison-Wesley, 1992.

D. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, Chapter 30.
MIT press, 1989, or a later edition.

H. Jordan, G. Alaghband: Fundamentals of Parallel Processing. Prentice
Hall, 2003.

A. Grama, G. Karypis, V. Kumar, A. Gupta: Introduction to Parallel
Computing, 2nd Edition. Addison-Wesley, 2003.

On skeleton programming, see e.g. our publications on SkePU:

https://skepu.github.io

C. Kessler: Design and Analysis of Parallel Algorithms – An Introduction.
Compendium for TDDC78 and TDDD56, Edition Spring 2020. PDF, 149 pages.

http://www.ida.liu.se/~TDDC78/handouts (login: parallel, password see whiteboard)

• Chapter 2 on analysis of parallel algorithms as background reading

71C. Kessler, IDA, Linköpings universitet.

Questions for Reflection

Model the overall cost of a streaming computation with a very large number N
of input data elements on a single processor
(a) if implemented as a loop over the data elements

running on an ordinary memory hierarchy
with hardware caches (see above)

(b) if overlapping computation for a data packet
with transfer/access of the next data packet
(b1) if the computation is CPU-bound
(b2) if the computation is memory-bound

Which property of streaming computations makes it possible to overlap
computation with data transfer?

Can each dataparallel computation be streamed?

What are the performance advantages and disadvantages of large vs. small
packet sizes in streaming?

Why should servers in datacenters running I/O-intensive tasks (such as
disk/DB accesses) get many more tasks to run than they have cores?

How would you extend the skeleton programming approach for computations
that operate on secondary storage (file/DB accesses)?

