732A54 / TDDE31

 Big Data Analytics

 6hp

http://www.ida.liu.se/~732A54 http://www.ida.liu.se/~TDDE31

Teachers

 Examiner: Olaf Hartig
 Lectures: Patrick Lambrix, Olaf Hartig, Christoph Kessler, Jose Pena

Labs: Huanyu Li / Sebastian Ferrada
 Jose Pena

Director of studies: Patrick Lambrix

Course literature

Articles (on web/handout)Lab descriptions (on web)

Data and Data Storage

Data and Data Storage

Database / Data source

- One (of several) ways to store data in electronic format
- Used in everyday life: bank, hotel reservations, library search, shopping

Databases / Data sourcces

- Database management system (DBMS): a collection of programs to create and maintain a database
- Database system = database + DBMS

Databases / Data sources

What information is stored?

Model the information

- Entity-Relationship model (ER)
- Unified Modeling Language (UML)

What information is stored? - ER

- entities and attributes
- entity types
- key attributes
- relationships
- cardinality constraints

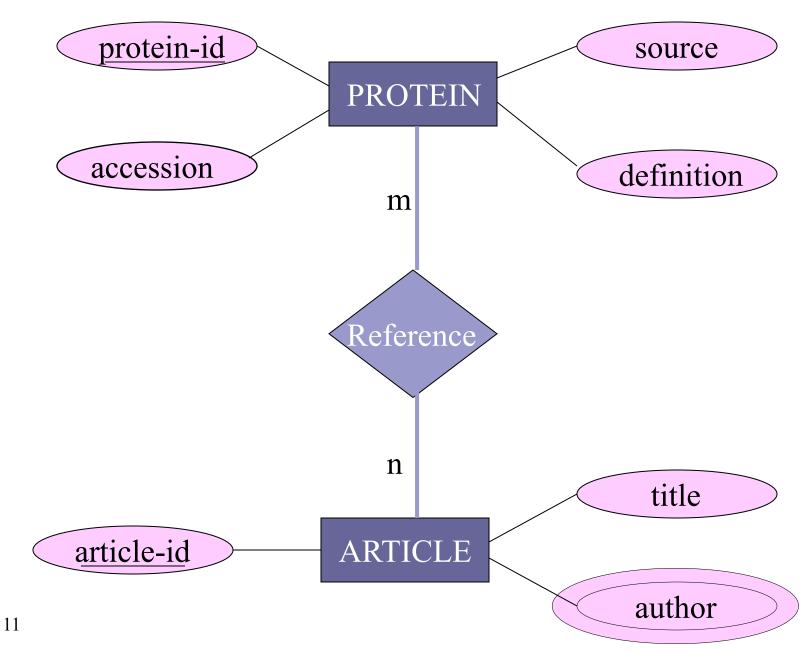
DEFINITION ACCESSION SOURCE ORGANISM human REFERENCE AUTHORS

TITLE

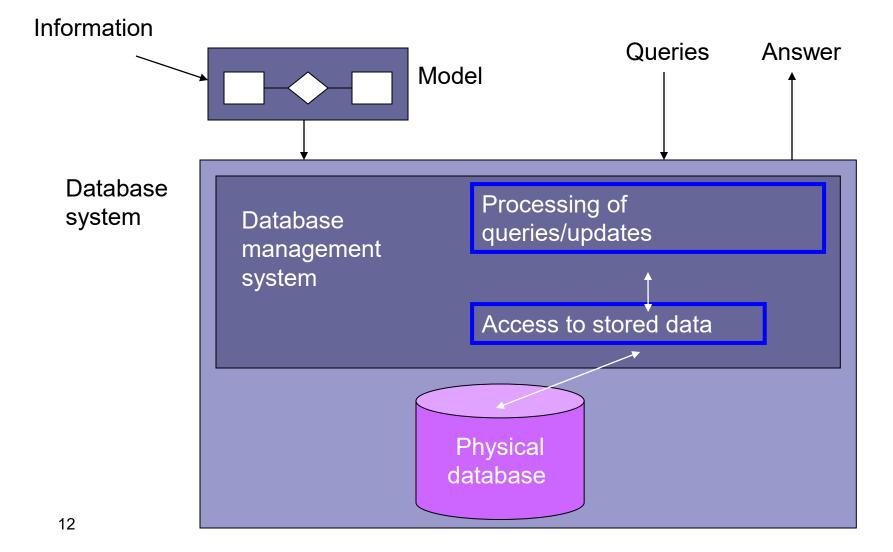
REFERENCE AUTHORS TITLE

Homo sapiens adrenergic, beta-1-, receptor NM_000684

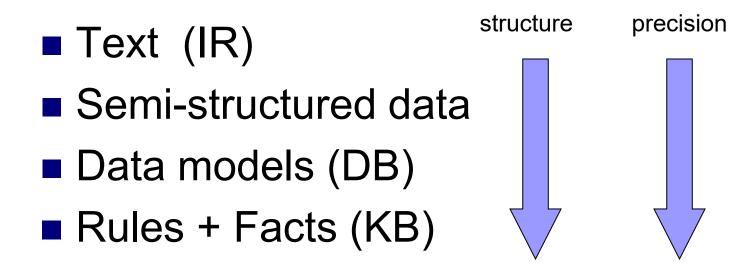
1


Frielle, Collins, Daniel, Caron, Lefkowitz, Kobilka

Cloning of the cDNA for the human beta 1-adrenergic receptor


2

Frielle, Kobilka, Lefkowitz, Caron Human beta 1- and beta 2-adrenergic receptors: structurally and functionally related receptors derived from distinct genes

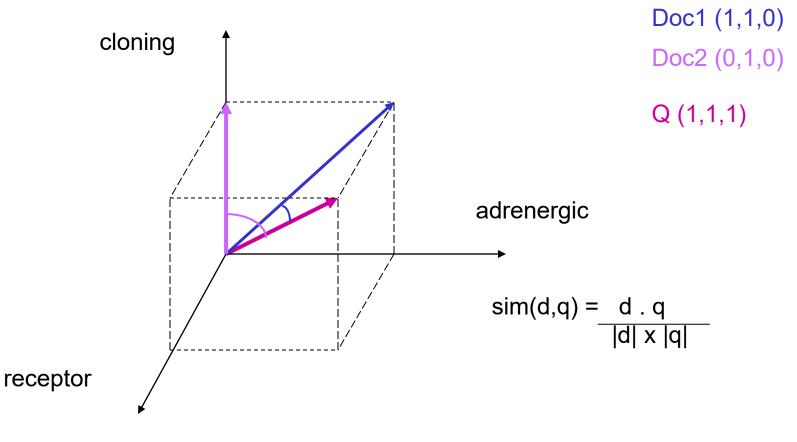

Entity-relationship

Databases / Data sources

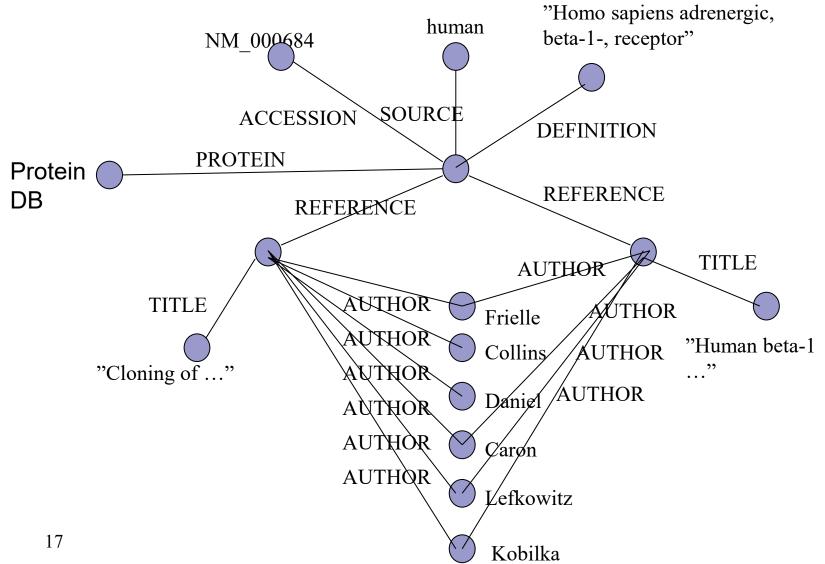
How is the information stored? (high level) How is the information accessed? (user level)

IR - formal characterization

Information retrieval model: (D,Q,F,R)


- D is a set of document representations
- Q is a set of queries
- F is a framework for modeling document representations, queries and their relationships
- R associates a real number to documentquery-pairs (ranking)

IR - Boolean model


	adrenergic	cloning	receptor	•	
Doc1	yes	yes	no	>	(1 1 0)
Doc2	no	yes	no	>	(0 1 0)

Q1: cloning and (adrenergic or receptor) --> (1 1 0) or (1 1 1) or (0 1 1) Result: Doc1 Q2: cloning and not adrenergic --> (0 1 0) or (0 1 1) Result: Doc2

IR - Vector model (simplified)

Semi-structured data

Semi-structured data - Queries

select source
from PROTEINDB.protein P
where P.accession = "NM 000684";

Relational databases

PROTEIN				REFERENCE	
PROTEIN-ID	ACCESSION	DEFINITION	SOURCE	PROTEIN-ID	ARTICLE-ID
1	NM_000684	Homo sapiens adrenergic, beta-1-, receptor	human	1 1	1 2

ARTICLE-AUTHOR		ARTICLE-TITLE	
ARTICLE-ID	AUTHOR	ARTICLE-ID	TITLE
1 1 1 1 1 1 1 2 2 2 2 2 2	Frielle Collins Daniel Caron Lefkowitz Kobilka Frielle Kobilka Lefkowitz Caron	1 2	Cloning of the cDNA for the human beta 1-adrenergic receptor Human beta 1- and beta 2- adrenergic receptors: structurally and functionally related receptors derived from distinct genes

Relational databases - SQL

select source
from protein
where accession = NM_000684;

PROTEIN

PROTEIN-ID	ACCESSION	DEFINITION	SOURCE
1	NM_000684	Homo sapiens adrenergic, beta-1-, receptor	human

Evolution of Database Technology

- 1960s:
 - Data collection, database creation, IMS and network DBMS
- 1970s:
 - □ Relational data model, relational DBMS implementation
- 1980s:
 - □ Advanced data models (extended-relational, OO, deductive, etc.)
 - □ Application-oriented DBMS (spatial, temporal, multimedia, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases

Evolution of Database Technology

2000s

- □ Stream data management and mining
- Data mining and its applications
- □ Web technology (XML, data integration) and global information systems
- NoSQL databases
- 2010s
 - Big data
 - NoSQL databases, graph databases
 - Knowledge graphs

Knowledge bases

(F) source(NM_000684, Human)
(R) source(P?,Human) => source(P?,Mammal)
(R) source(P?,Mammal) => source(P?,Vertebrate)

- Q: ?- source(NM_000684, Vertebrate) A: yes
- Q: ?- source(x?, Mammal) A: x? = NM_000684

Interested in more?

 732A57/TDDD12/TDDD37/TDDD46/ TDDD81/ Database Technology (relational databases)
 TDDD43 Advanced data models and databases

(IR, semi-structured data, DB, KB)

Analytics

Analytics

Discovery, interpretation and communication of meaningful patterns in data

Analytics - IBM

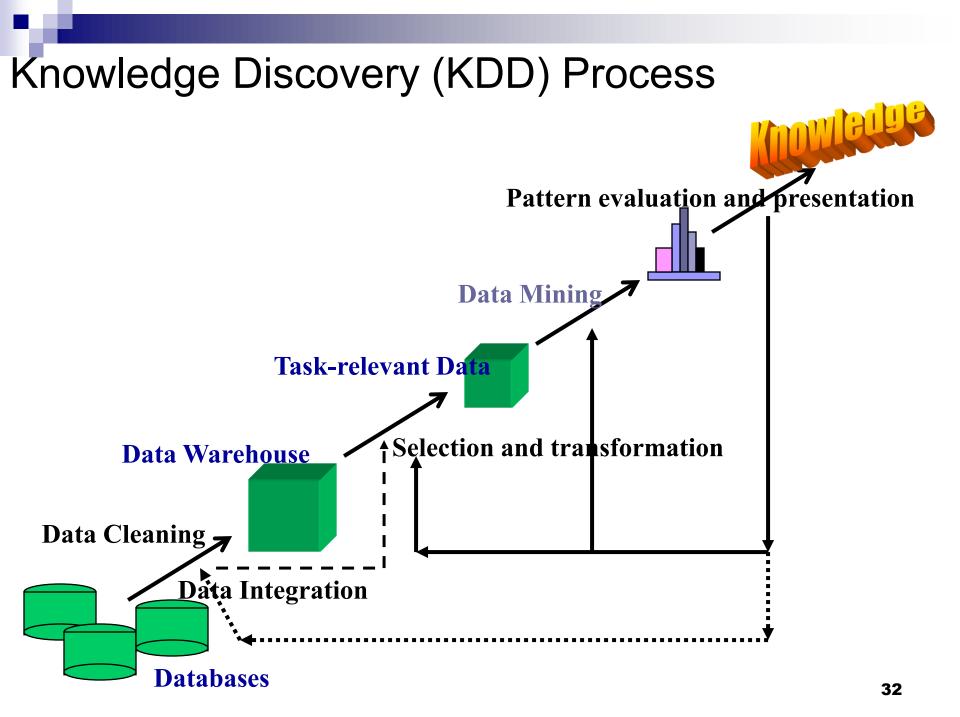
What is happening? Descriptive **Discovery and explanation** Why did it happen? Diagnostic Reporting, analysis, content analytics What could happen? Predictive Predictive analytics and modeling What action should I take? Prescriptive Decision management What did I learn, what is best? Cognitive

Analytics - Oracle

- Classification
- Regression
- Clustering
- Attribute importance
- Anomaly detection
- Feature extraction and creation
- Market basket analysis

Why Analytics?

. . .


- The Explosive Growth of Data
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - □ Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation,
 - Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!

Ex. 1: Market Analysis and Management

- Where does the data come from?—Credit card transactions, loyalty cards, discount coupons, customer complaint calls, plus (public) lifestyle studies
- Target marketing
 - □ Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.
 - Determine customer purchasing patterns over time
- Customer profiling
 - □ What types of customers buy what products (clustering or classification)
- Cross-market analysis
 - Find associations/co-relations between product sales
 - Predict based on such associations
- Customer requirement analysis
 - Identify the best products for different groups of customers
 - Predict what factors will attract new customers

Ex. 2: Fraud Detection & Mining Unusual Patterns

- Approaches: Clustering & model construction for frauds, outlier analysis
- Applications:
 - □ <u>Auto insurance</u>: ring of collisions
 - □ <u>Money laundering</u>: suspicious monetary transactions
 - Medical insurance
 - Professional patients, ring of doctors, and ring of references
 - Unnecessary or correlated screening tests

- Concept/class description:
 - Characterization: summarizing the data of the class under study in general terms
 - E.g. Characteristics of customers spending more than 10000 sek per year
 - Discrimination: comparing target class with other (contrasting) classes
 - E.g. Compare the characteristics of products that had a sales increase to products that had a sales decrease last year

- Frequent patterns, association, correlations
 - □ Frequent itemset
 - Frequent sequential pattern
 - Frequent structured pattern
 - □ E.g. buy(X, "Diaper") → buy(X, "Beer") [support=0.5%, confidence=75%]
 confidence: if X buys a diaper, then there is 75% chance that X buys beer
 support: of all transactions under consideration 0.5% showed that diaper and
 beer were bought together
 - □ E.g. Age(X, "20..29") and income(X, "20k..29k") → buys(X, "cd-player") [support=2%, confidence=60%]

- Classification and prediction
 - Construct models (functions) that describe and distinguish classes or concepts for future prediction.
 - The derived model is based on analyzing training data
 - data whose class labels are known.
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - Predict some unknown or missing numerical values

Cluster analysis

Class label is unknown: Group data to form new classes, e.g., cluster customers to find target groups for marketing

- □ Maximizing intra-class similarity & minimizing interclass similarity
- Outlier analysis
 - Outlier: Data object that does not comply with the general behavior of the data
 - □ Noise or exception? Useful in fraud detection, rare events analysis
- Trend and evolution analysis
 - Trend and deviation

Interested in more?

- 732A95/TDDE01 Introduction to machine learning
- 732A75/TDDD41 Advanced data mining / Data mining – clustering and association analysis

Big Data

Big Data

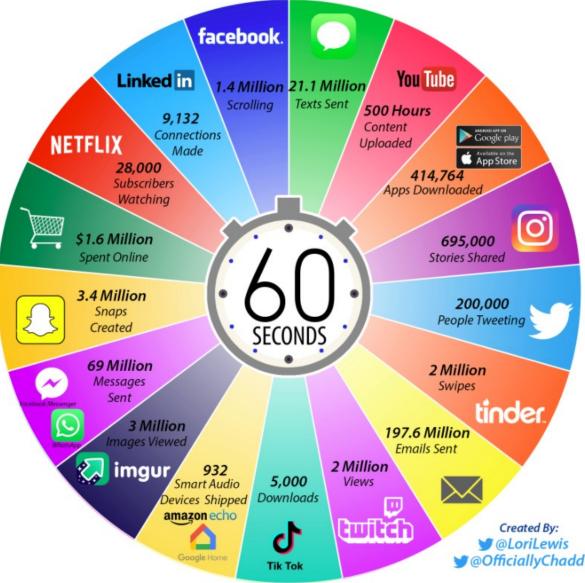
So large data that it becomes difficult to process it using a 'traditional' system

Big Data – 3Vs

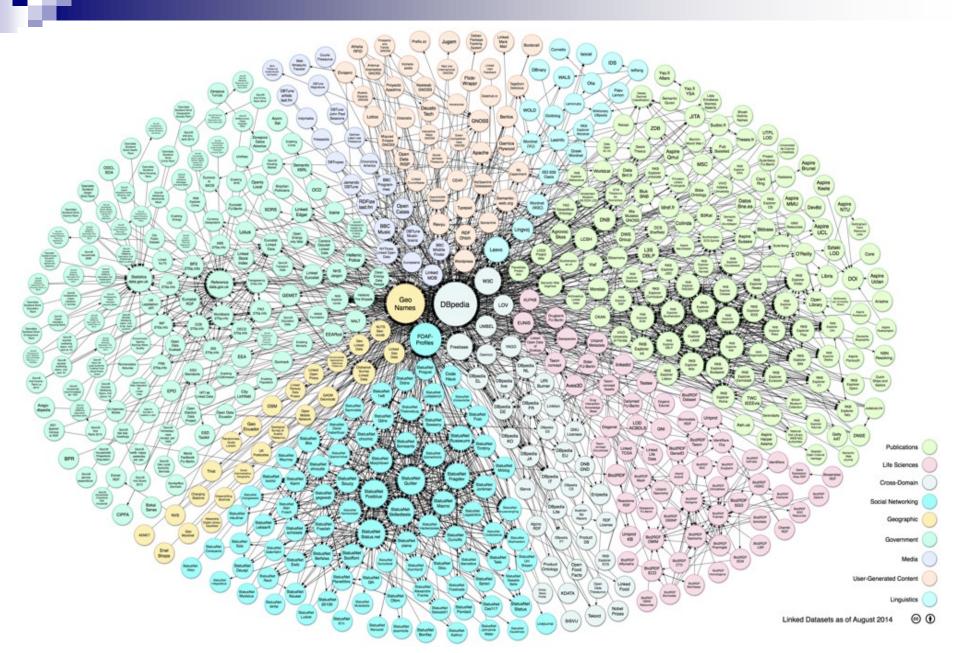
Volume size of the data

Volume - examples

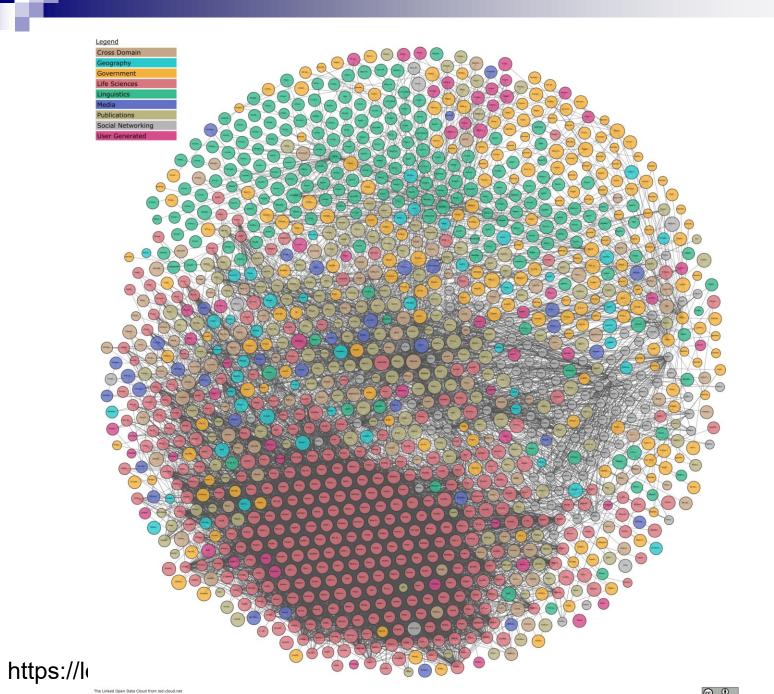
- Facebook processes 500 TB per day
- Walmart handles 1 million customer transactions per hour
- Airbus generates 640 TB in one fligth (10 TB per 30 minutes)
- 500 hours of video uploaded to youtube every minute
- SMS, e-mail, internet, social media


What Happens in an Internet Minute?

https://y2socialcomputing.files.wordpress.com/2012/06/


social-media-visual-last-blog-post-what-happens-in-an-internet-minute-infographic.jpg

2021 This Is What Happens In An Internet Minute



Big Data – 3Vs

- Volume
 - size of the data
- Variety
 - □ type and nature of the data
 - text, semi-structured data, databases, knowledge bases

Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

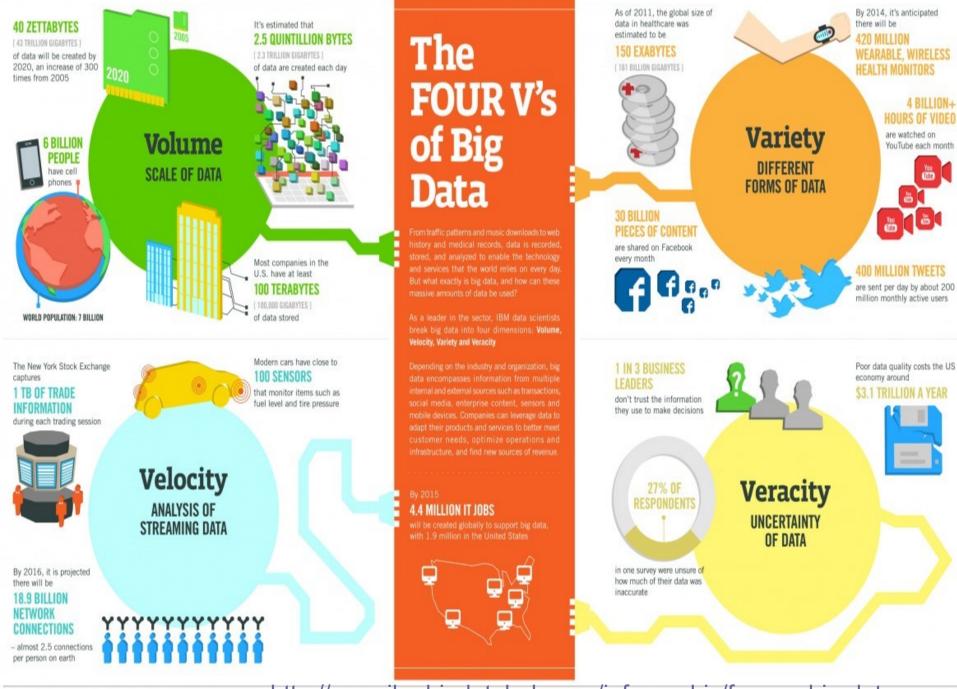
Linked open data of US government

Format (# Datasets)

http://catalog.data.gov/

- HTML (198881)
- XML (108279)
- PDF (65851)
- TIFF (43290)
- **TEXT** (32071)
- ZIP (29848)
- XYZ (27982)

- CSV (27325)
- **JSON** (15840)


JPEG (15126)

Big Data – 3Vs

- Volume
 - size of the data
- Variety
 - type and nature of the data
- Velocity
 - □ speed of generation and processing of data

Velocity - examples

- Traffic data
- Financial market
- Social networks

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

Big Data – other Vs

Variability

inconsistency of the data

Veracity

quality of the data

Value

_ _ _

useful analysis results

BDA system architecture

Specialized services for domain A Specialized services for domain B

Big Data Services Layer

Knowledge Management Layer

Data Storage and Management Layer

BDA system architecture

- □ Large amounts of data, distributed environment
- Unstructured and semi-structured data
- Not necessarily a schema
- Heterogeneous
- Streams
- Varying quality

Data Storage and Management Layer

Data Storage and management – this course

Data storage: □ NoSQL databases □ OLTP vs OLAP Horizontal scalability Consistency, availability, partition tolerance Data management □Hadoop

Data management systems

BDA system architecture

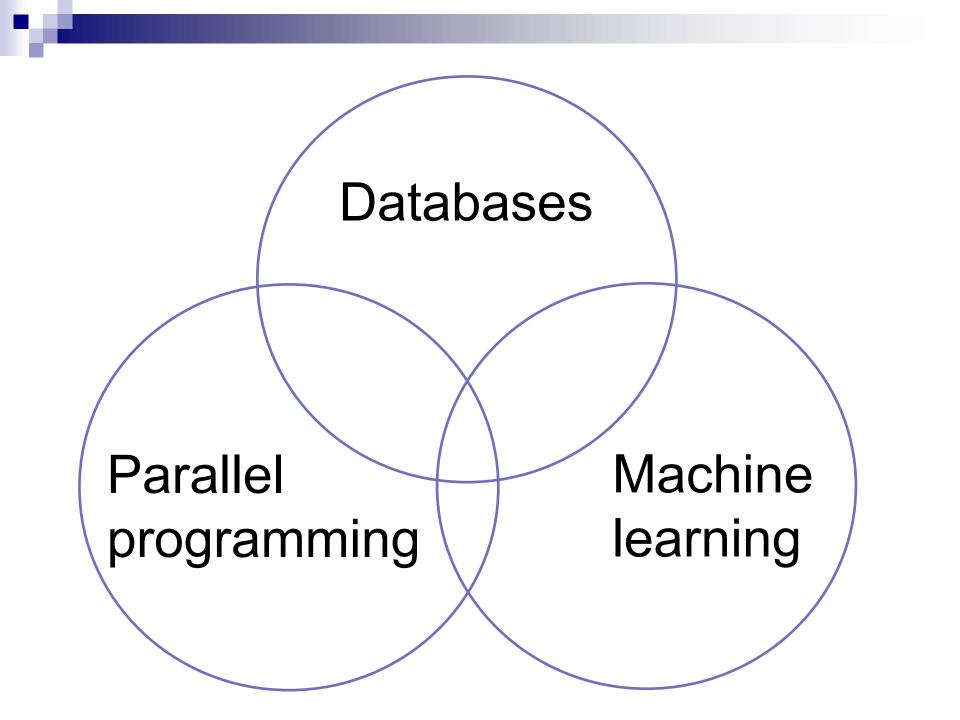
Semantic technologies

- □ Integration
- □ Knowledge acquisition

Knowledge Management Layer

Knowledge management – this course

- Not a focus topic in this course
- For semantic and integration approaches see TDDD43


BDA system architecture

Analytics services for Big Data

Big Data Services Layer

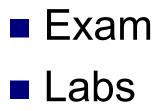
Big Data Services – this course

Big data versions of analytics/data mining algorithms

Course overview

- Databases for Big Data (lectures + lab)
- Parallel algorithms for processing Big Data (lectures + lab + exercise session)
- Machine Learning for Big Data (lectures + lab)
- Visit to National Supercomputer Centre organization ongoing

Info


- Results reported in connection to exams
 Info about handing in labs on web; strong recommendation to hand in as soon as possible
- Sign up for labs via web (in pairs)

Info

- BDA labs require special access to NSC resources
 - \rightarrow fill out forms

(Resources only guaranteed during course.)

Examination

Changes w.r.t. last year

No major changes this year (except mainly campus).

Recent changes:

- Extra exercise session
- Extra lecture for parallel programming (same content)

https://www.youtube.com/watch?v=LrNIZ7-SMPk