Data Mining: Concepts and Techniques

— Introduction and Data preprocessing —

Jiawei Han and Micheline Kamber
Department of Computer Science
University of Illinois at Urbana-Champaign

www.cs.uiuc.edu/~hanj

©2006 Jiawei Han and Micheline Kamber. All rights reserved.

Slides related to:

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube
 - "We are drowning in data, but starving for knowledge!"
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Ex. 1: Market Analysis and Management

- Where does the data come from?—Credit card transactions, loyalty cards, discount coupons, customer complaint calls, plus (public) lifestyle studies
- Target marketing
 - Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.
 - Determine customer purchasing patterns over time
- Cross-market analysis—Find associations/co-relations between product sales, & predict based on such association
- Customer profiling—What types of customers buy what products (clustering or classification)
- Customer requirement analysis
 - Identify the best products for different groups of customers
 - Predict what factors will attract new customers
- Provision of summary information
 - Multidimensional summary reports
 - Statistical summary information (data central tendency and variation)

Ex. 2: Corporate Analysis & Risk Management

- Finance planning and asset evaluation
 - cash flow analysis and prediction
 - contingent claim analysis to evaluate assets
 - cross-sectional and time series analysis (financial-ratio, trend analysis, etc.)
- Resource planning
 - summarize and compare the resources and spending
 - competition
 - monitor competitors and market directions
 - group customers into classes and a class-based pricing procedure
 - set pricing strategy in a highly competitive market

Ex. 3: Fraud Detection & Mining Unusual Patterns

- Approaches: Clustering & model construction for frauds, outlier analysis
- Applications: Health care, retail, credit card service, telecomm.
 - Auto insurance: ring of collisions
 - Money laundering: suspicious monetary transactions
 - Medical insurance
 - Professional patients, ring of doctors, and ring of references
 - Unnecessary or correlated screening tests
 - Telecommunications: phone-call fraud
 - Phone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm
 - Retail industry
 - Analysts estimate that 38% of retail shrink is due to dishonest employees
 - Anti-terrorism

Evolution of Database Technology

- 1960s:
 - Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- 1980s:
 - Advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, temporal, multimedia, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- 2000s:
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems
What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data
- Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

Knowledge Discovery (KDD) Process

- Data mining—core of knowledge discovery process
- Data Cleaning
- Data Integration
- Data Warehouses
- Task-relevant Data
- Selection and transformation
- Pattern evaluation and presentation

Why Data Preprocessing?

- Data in the real world is dirty
 - Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=""
 - Noisy: containing errors or outliers
 - e.g., Salary="-10"
 - Inconsistent: containing discrepancies in codes or names
 - e.g., Age="42" Birthdate="03/07/1997"
 - e.g., Was rating "1,2,3", now rating "A, B, C"
 - e.g., discrepancy between duplicate records

Why Is Data Dirty?

- Incomplete data may come from
 - "Not applicable" data value when collected
 - Different considerations between the time when the data was collected and when it is analyzed.
 - Human/hardware/software problems
- Noisy data (incorrect values) may come from
 - Faulty data collection instruments
 - Human or computer error at data entry
 - Errors in data transmission
- Inconsistent data may come from
 - Different data sources
 - Functional dependency violation (e.g., modify some linked data)
 - Duplicate records also need data cleaning

Why Is Data Preprocessing Important?

- No quality data, no quality mining results!
 - Quality decisions must be based on quality data
 - e.g., duplicate or missing data may cause incorrect or even misleading statistics.
 - Data warehouse needs consistent integration of quality data
 - Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse

Forms of Data Preprocessing

- Data Cleaning
- Data Integration
- Data Transformation: $A \rightarrow \overrightarrow{AB}$, $A \rightarrow \overrightarrow{A}$
- Data Reduction: $\frac{\sum A}{\sum \overrightarrow{A}}$
Architecture: Typical Data Mining System

Why Not Traditional Data Analysis?
- Tremendous amount of data
 - Algorithms must be highly scalable to handle large amounts of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - New and sophisticated applications

Data Mining: Classification Schemes
- General functionality
 - Descriptive data mining
 - Predictive data mining
- Different views lead to different classifications
 - Data view: Kinds of data to be mined
 - Knowledge view: Kinds of knowledge to be discovered
 - Method view: Kinds of techniques utilized
 - Application view: Kinds of applications adapted

Data Mining: on what kinds of data?
- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Object-relational databases
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Spatial data and spatiotemporal data
 - Text databases and Multimedia databases
- Data streams and sensor data
 - The World-Wide Web
- Heterogeneous databases and legacy databases

Data Mining – what kinds of patterns?
- Concept/class description:
 - Characterization: summarizing the data of the class under study in general terms
 - E.g. Characteristics of customers spending more than 10000 sek per year
 - Discrimination: comparing target class with other (contrasting) classes
 - E.g. Compare the characteristics of products that had a sales increase to products that had a sales decrease last year

Data Mining – what kinds of patterns?
- Frequent patterns, association, correlations
 - Frequent itemset
 - Frequent sequential pattern
 - Frequent structured pattern
 - E.g. buy(X, "Diaper") \(\rightarrow\) buy(X, "Beer") [support=0.5%, confidence=75%] confidence: if X buys a diaper, then there is 75% chance that X buys beer support: of all transactions under consideration 0.5% showed that diaper and beer were bought together
 - E.g. Age(X, "20..29") and income(X, "20k..29k") \(\rightarrow\) buy(X, "cd-player") [support=4%, confidence=60%]
Data Mining – what kinds of patterns?

- Classification and prediction
 - Construct models (functions) that describe and distinguish classes or concepts for future prediction.
 - The derived model is based on analyzing training data – data whose class labels are known.
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
- Predict some unknown or missing numerical values

Data Mining – what kinds of patterns?

- Cluster analysis
 - Class label is unknown: Group data to form new classes, e.g., cluster customers to find target groups for marketing
 - Maximizing intra-class similarity & minimizing interclass similarity
- Outlier analysis
 - Outlier: Data object that does not comply with the general behavior of the data
 - Noise or exception? Useful in fraud detection, rare events analysis
- Trend and evolution analysis
 - Trend and deviation

Are All the “Discovered” Patterns Interesting?

- Data mining may generate thousands of patterns: Not all of them are interesting
 - Suggested approach: Human-centered, query-based, focused mining
- Interestingness measures
 - A pattern is interesting if it is easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm
- Objective vs. subjective interestingness measures
 - Objective: based on statistics and structures of patterns, e.g., support, confidence, etc.
 - Subjective: based on user’s belief in the data, e.g., unexpectedness, novelty, actionability, etc.

Find All and Only Interesting Patterns?

- Find all the interesting patterns: Completeness
 - Can a data mining system find all the interesting patterns? Do we need to find all of the interesting patterns?
 - Heuristic vs. exhaustive search
 - Association vs. classification vs. clustering
- Search for only interesting patterns: An optimization problem
 - Can a data mining system find only the interesting patterns?
 - Approaches
 - First generate all the patterns and then filter out the uninteresting ones
 - Generate only the interesting patterns—mining query optimization

Top-10 Most Popular DM Algorithms: 18 Identified Candidates (I)

- Classification
- Statistical Learning
 - #8: FP-Tree: Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In SIGMOD '00.

Data Mining – what techniques used?

- Database Technology
- Statistics
- Machine Learning
- Visualization
- Pattern Recognition
- Algorithm
- Other Disciplines

Data Mining: Concepts and Techniques
Data Mining: Concepts and Techniques 25

The 18 Identified Candidates (II)

- Link Mining
- Clustering
- Bagging and Boosting

Data Mining: Concepts and Techniques 26

The 18 Identified Candidates (III)

- Sequential Patterns
 - #15. PrefixSpan: J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In ICDE ’01.
- Integrated Mining
 - #16. CRA: Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and association rule mining. KDD-98.
- Rough Sets
- Graph Mining
 - #18. gSpan: Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern Mining. In ICDM ’02.

Top-10 Algorithm Finally Selected at ICDM’06

- #1: C4.5 (61 votes)
- #2: K-Means (60 votes)
- #3: SVM (58 votes)
- #4: Apriori (52 votes)
- #5: EM (48 votes)
- #6: PageRank (46 votes)
- #7: AdaBoost (45 votes)
- #7: kNN (45 votes)
- #7: Naive Bayes (45 votes)
- #10: CART (34 votes)

A Brief History of Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and Y. Shavlik, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD’95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD conferences since 1998 and SIGKDD Explorations
 - More conferences on data mining
 - ACM Transactions on KDD starting in 2007

Conferences and Journals on Data Mining

- KDD Conferences
 - ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
 - SIAM Data Mining Conf. (SDM)
 - (IEEE) Int. Conf. on Data Mining (ICDM)
 - Conf. on Principles and Practices of Knowledge Discovery and Data Mining (PKDD)
 - Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)
- Other related conferences
 - ACM SIGMOD
 - VLDB
 - (IEEE) ICDE
 - WWW, SIGIR
 - ICML, CVPR, NIPS
- Journals
 - Data Mining and Knowledge Discovery (DAMI or DMKD)
 - IEEE Trans. On Knowledge and Data Eng. (TKDE)
 - KDD Explorations
 - ACM Trans. on KDD