01

02

Language Technology (2021)

L2X: Spelling correction

Robin Kurtz, Marco Kuhlmann

Goal Implement a simple spelling corrector based on Levenshtein
distance. Understand a dynamic programming algorithm for
computing the Levenshtein distance between two strings.

Preparations Read Section 2.5 (on minimum edit distance and spelling correc-
tion) in Jurafsky and Martin (2018) and watch the video material
linked on the course website.

Report Submit the requested code.

A spelling corrector is a system that detects and corrects spelling errors that result
in non-words. To detect non-words, the system tries to look up each token in a
dictionary of known words; if this look-up fails, the token is considered a non-word
and marked as an error. To correct an error, the system considers a list of candidate
corrections: known words that are similar to the non-word. From these the system
then picks the most likely candidate, and suggests it as the correction of the non-word.

Your task in this assignment is to implement a simple correction component that
provides the functionality just described. You will select candidate corrections from
the vocabulary of three collections of Sherlock Holmes stories (the same training
data as in lab L2), and measure the similarity between a non-word and a candidate
using Levenshtein distance." Candidate words with some Levenshtein distance d are
considered to be more likely than words with any greater Levenshtein distance d’ > d.
However, several candidates might have the same distance to the non-word, and in
these cases you should use word frequency to break the tie, giving preference to the
candidate word with the higher frequency. If two words have the same Levenshtein
distance and frequency, you should pick the word that comes first according to
alphabetical order.

*In a real spelling corrector, the Damerau-Levenshtein distance would be more appropriate.



03

04

05

06

At the end of this lab you should submit a standalone script spelling. py that
1. reads in Sherlock Holmes novels from one or more files;

2. tokenizes the novels, builds up a vocabulary, and counts word frequencies;
3. reads a list of non-words from the standard input;

4. for each non-word, prints out the most likely candidate word in the novels.
To implement the script, you are given a minimal skeleton file in
/courses/729G17/labs/12x/code/

The file contains a function tokens () that takes care of tokenization and returns an
iterator over the tokens in a file-like data source. The remaining code should be written
by yourself. When implementing the Wagner-Fischer algorithm for computing the
Levenshtein distance between a non-word and the candidate correction, you may
take inspiration from other implementations (available in the course book or on the
internet), but you should still be able to explain every single line of your code. You
are not allowed to use a library.

For testing purposes, you are given the file
/courses/729G17/labs/12x/data/test. txt

This file contains non-words and their intended corrections in a simple two-column
format, with columns separated by tab characters, like so:

intention execution
With this test file, it should be possible to call your script as follows:
python3 spelling.py advs.txt mems.txt retn.txt < test.txt

Thus the names of the files containing the novels should be given to the script as
command line arguments and the candidates should be read from standard input.
The output produced by your script should follow the same format as the test file such
that your script will print out the same pairs that are given in the test file.

When building up the vocabulary and counting the word frequencies you can simplify
your code by using the Counter class from Python’s collections module.



