
CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here in
alphabetical order.

Built-in Functions
abs() dict() help() min() setattr()
all() dir() hex() next() slice()
any() divmod() id() object() sorted()
ascii() enumerate() input() oct() staticmethod()
bin() eval() int() open() str()
bool() exec() isinstance() ord() sum()
bytearray() filter() issubclass() pow() super()
bytes() float() iter() print() tuple()
callable() format() len() property() type()
chr() frozenset() list() range() vars()
classmethod() getattr() locals() repr() zip()
compile() globals() map() reversed() __import__()
complex() hasattr() max() round()
delattr() hash() memoryview() set()

abs(x)
Return the absolute value of a number. The argument may be an integer or a floating point number. If the argument
is a complex number, its magnitude is returned.

all(iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:

if not element:
return False

return True

any(iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:

if element:
return True

return False

5

The Python Library Reference, Release 3.6.12

ascii(object)
As repr(), return a string containing a printable representation of an object, but escape the non-ASCII characters
in the string returned by repr() using \x, \u or \U escapes. This generates a string similar to that returned by
repr() in Python 2.

bin(x)
Convert an integer number to a binary string prefixed with “0b”. The result is a valid Python expression. If x is not
a Python int object, it has to define an __index__() method that returns an integer. Some examples:

>>> bin(3)
'0b11'
>>> bin(-10)
'-0b1010'

If prefix “0b” is desired or not, you can use either of the following ways.

>>> format(14, '#b'), format(14, 'b')
('0b1110', '1110')
>>> f'{14:#b}', f'{14:b}'
('0b1110', '1110')

See also format() for more information.
class bool([x])

Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing procedure. If
x is false or omitted, this returns False; otherwise it returns True. The bool class is a subclass of int (see
Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and True
(see Boolean Values).

class bytearray([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described inMutable Sequence Types, as well as most
methods that the bytes type has, see Bytes and Bytearray Operations.
The optional source parameter can be used to initialize the array in a few different ways:

• If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray() then
converts the string to bytes using str.encode().

• If it is an integer, the array will have that size and will be initialized with null bytes.
• If it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

• If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes([source[, encoding[, errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256. bytes
is an immutable version of bytearray – it has the same non-mutating methods and the same indexing and slicing
behavior.
Accordingly, constructor arguments are interpreted as for bytearray().
Bytes objects can also be created with literals, see strings.
See alsoBinary Sequence Types— bytes, bytearray, memoryview, Bytes Objects, andBytes and Bytearray Operations.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.12

callable(object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible that a
call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class returns a
new instance); instances are callable if their class has a __call__() method.
New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr(i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr(97)
returns the string 'a', while chr(8364) returns the string '€'. This is the inverse of ord().
The valid range for the argument is from 0 through 1,114,111 (0x10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod
Transform a method into a class method.
A class method receives the class as implicit first argument, just like an instance method receives the instance. To
declare a class method, use this idiom:

class C:
@classmethod
def f(cls, arg1, arg2, ...): ...

The @classmethod form is a function decorator – see the description of function definitions in function for
details.
It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is ignored
except for its class. If a class method is called for a derived class, the derived class object is passed as the implied
first argument.
Class methods are different than C++ or Java static methods. If you want those, see staticmethod() in this
section.
For more information on class methods, consult the documentation on the standard type hierarchy in types.

compile(source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec() or eval(). source can
either be a normal string, a byte string, or an AST object. Refer to the astmodule documentation for information
on how to work with AST objects.
The filename argument should give the file from which the code was read; pass some recognizable value if it wasn’t
read from a file ('<string>' is commonly used).
The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will be
printed).
The optional arguments flags and dont_inherit control which future statements affect the compilation of source.
If neither is present (or both are zero) the code is compiled with those future statements that are in effect in the
code that is calling compile(). If the flags argument is given and dont_inherit is not (or is zero) then the future
statements specified by the flags argument are used in addition to those that would be used anyway. If dont_inherit
is a non-zero integer then the flags argument is it – the future statements in effect around the call to compile are
ignored.
Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature
instance in the __future__ module.

7

The Python Library Reference, Release 3.6.12

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the opti-
mization level of the interpreter as given by -O options. Explicit levels are 0 (no optimization; __debug__ is
true), 1 (asserts are removed, __debug__ is false) or 2 (docstrings are removed too).
This function raises SyntaxError if the compiled source is invalid, and ValueError if the source contains
null bytes.
If you want to parse Python code into its AST representation, see ast.parse().

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the code
module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string when compiling
to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does not have
to end in a newline anymore. Added the optimize parameter.
Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

class complex([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without a
second parameter. The second parameter can never be a string. Each argument may be any numeric type (including
complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion like int and
float. If both arguments are omitted, returns 0j.

Note: When converting from a string, the string must not contain whitespace around the central + or - operator.
For example, complex('1+2j') is fine, but complex('1 + 2j') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, 'foobar') is equivalent to del x.foobar.

class dict(**kwarg)
class dict(mapping, **kwarg)
class dict(iterable, **kwarg)

Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.
For other containers see the built-in list, set, and tuple classes, as well as the collections module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.
If the object has amethod named__dir__(), thismethodwill be called andmust return the list of attributes. This
allows objects that implement a custom __getattr__() or __getattribute__() function to customize
the way dir() reports their attributes.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.12

If the object does not provide __dir__(), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and may
be inaccurate when the object has a custom __getattr__().
The default dir() mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

• If the object is a module object, the list contains the names of the module’s attributes.
• If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

• Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir() # show the names in the module namespace
['__builtins__', '__name__', 'struct']
>>> dir(struct) # show the names in the struct module
['Struct', '__all__', '__builtins__', '__cached__', '__doc__', '__file__',
'__initializing__', '__loader__', '__name__', '__package__',
'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
'unpack', 'unpack_from']
>>> class Shape:
... def __dir__(self):
... return ['area', 'perimeter', 'location']
>>> s = Shape()
>>> dir(s)
['area', 'location', 'perimeter']

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when the
argument is a class.

divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators apply.
For integers, the result is the same as (a // b, a % b). For floating point numbers the result is (q, a %
b), where q is usually math.floor(a / b) but may be 1 less than that. In any case q * b + a % b is
very close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a % b) < abs(b).

enumerate(iterable, start=0)
Return an enumerate object. iterablemust be a sequence, an iterator, or some other object which supports iteration.
The __next__() method of the iterator returned by enumerate() returns a tuple containing a count (from
start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']
>>> list(enumerate(seasons))
[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
>>> list(enumerate(seasons, start=1))
[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

9

The Python Library Reference, Release 3.6.12

def enumerate(sequence, start=0):
n = start
for elem in sequence:

yield n, elem
n += 1

eval(expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object.
The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and does
not contain a value for the key __builtins__, a reference to the dictionary of the built-in module builtins
is inserted under that key before expression is parsed. This means that expression normally has full access to the
standard builtins module and restricted environments are propagated. If the locals dictionary is omitted it
defaults to the globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval() is called. The return value is the result of the evaluated expression. Syntax errors are reported as
exceptions. Example:

>>> x = 1
>>> eval('x+1')
2

This function can also be used to execute arbitrary code objects (such as those created bycompile()). In this case
pass a code object instead of a string. If the code object has been compiled with 'exec' as the mode argument,
eval()’s return value will be None.
Hints: dynamic execution of statements is supported by the exec() function. The globals() and locals()
functions returns the current global and local dictionary, respectively, which may be useful to pass around for use
by eval() or exec().
See ast.literal_eval() for a function that can safely evaluate strings with expressions containing only
literals.

exec(object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If it is a
string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error occurs).1
If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be valid as file input
(see the section “File input” in the Reference Manual). Be aware that the return and yield statements may
not be used outside of function definitions even within the context of code passed to the exec() function. The
return value is None.
In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is provided,
it must be a dictionary, which will be used for both the global and the local variables. If globals and locals are
given, they are used for the global and local variables, respectively. If provided, locals can be any mapping object.
Remember that at module level, globals and locals are the same dictionary. If exec gets two separate objects as
globals and locals, the code will be executed as if it were embedded in a class definition.
If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary of the
built-in module builtins is inserted under that key. That way you can control what builtins are available to the
executed code by inserting your own __builtins__ dictionary into globals before passing it to exec().

Note: The built-in functions globals() and locals() return the current global and local dictionary, respec-
tively, which may be useful to pass around for use as the second and third argument to exec().

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline conversion
mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.12

Note: The default locals act as described for function locals() below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on locals
after function exec() returns.

filter(function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be either a
sequence, a container which supports iteration, or an iterator. If function is None, the identity function is assumed,
that is, all elements of iterable that are false are removed.
Note that filter(function, iterable) is equivalent to the generator expression (item for item
in iterable if function(item)) if function is not None and (item for item in iterable
if item) if function is None.
See itertools.filterfalse() for the complementary function that returns elements of iterable for which
function returns false.

class float([x])
Return a floating point number constructed from a number or string x.
If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+' or '-'; a '+' sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or a positive or negative infinity. More
precisely, the input must conform to the following grammar after leading and trailing whitespace characters are
removed:

sign ::= "+" | "-"
infinity ::= "Infinity" | "inf"
nan ::= "nan"
numeric_value ::= floatnumber | infinity | nan
numeric_string ::= [sign] numeric_value

Here floatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.
Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.
For a general Python object x, float(x) delegates to x.__float__().
If no argument is given, 0.0 is returned.
Examples:

>>> float('+1.23')
1.23
>>> float(' -12345\n')
-12345.0
>>> float('1e-003')
0.001
>>> float('+1E6')
1000000.0
>>> float('-Infinity')
-inf

The float type is described in Numeric Types — int, float, complex.

11

The Python Library Reference, Release 3.6.12

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
format(value[, format_spec])

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument, however there is a standard formatting syntax that is used by most
built-in types: Format Specification Mini-Language.
The default format_spec is an empty string which usually gives the same effect as calling str(value).
A call to format(value, format_spec) is translated to type(value).__format__(value,
format_spec) which bypasses the instance dictionary when searching for the value’s __format__()
method. A TypeError exception is raised if the method search reaches object and the format_spec is non-
empty, or if either the format_spec or the return value are not strings.
Changed in version 3.4: object().__format__(format_spec) raises TypeError if format_spec is
not an empty string.

class frozenset([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in class.
See frozenset and Set Types — set, frozenset for documentation about this class.
For other containers see the built-in set, list, tuple, and dict classes, as well as the collections
module.

getattr(object, name[, default])
Return the value of the named attribute of object. namemust be a string. If the string is the name of one of the ob-
ject’s attributes, the result is the value of that attribute. For example, getattr(x, 'foobar') is equivalent to
x.foobar. If the named attribute does not exist, default is returned if provided, otherwise AttributeError
is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current module
(inside a function or method, this is the module where it is defined, not the module from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr(object, name) and seeing whether it
raises an AttributeError or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even if
they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom __hash__() methods, note that hash() truncates the return value based on
the bit width of the host machine. See __hash__() for details.

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the inter-
active help system starts on the interpreter console. If the argument is a string, then the string is looked up as the
name of a module, function, class, method, keyword, or documentation topic, and a help page is printed on the
console. If the argument is any other kind of object, a help page on the object is generated.
This function is added to the built-in namespace by the site module.
Changed in version 3.4: Changes to pydoc and inspectmean that the reported signatures for callables are now
more comprehensive and consistent.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.12

hex(x)
Convert an integer number to a lowercase hexadecimal string prefixed with “0x”. If x is not a Python int object,
it has to define an __index__() method that returns an integer. Some examples:

>>> hex(255)
'0xff'
>>> hex(-42)
'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you can
use either of the following ways:

>>> '%#x' % 255, '%x' % 255, '%X' % 255
('0xff', 'ff', 'FF')
>>> format(255, '#x'), format(255, 'x'), format(255, 'X')
('0xff', 'ff', 'FF')
>>> f'{255:#x}', f'{255:x}', f'{255:X}'
('0xff', 'ff', 'FF')

See also format() for more information.
See also int() for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the float.hex() method.

id(object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. Two objects with non-overlapping lifetimes may have the same id() value.
CPython implementation detail: This is the address of the object in memory.

input([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = input('--> ')
--> Monty Python's Flying Circus
>>> s
"Monty Python's Flying Circus"

If the readline module was loaded, then input() will use it to provide elaborate line editing and history
features.

class int(x=0)
class int(x, base=10)

Return an integer object constructed from a number or string x, or return 0 if no arguments are given. If x defines
__int__(), int(x) returns x.__int__(). If x defines __trunc__(), it returns x.__trunc__().
For floating point numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or - (with no space in between) and
surrounded by whitespace. A base-n literal consists of the digits 0 to n-1, with a to z (or A to Z) having values 10
to 35. The default base is 10. The allowed values are 0 and 2–36. Base-2, -8, and -16 literals can be optionally
prefixed with 0b/0B, 0o/0O, or 0x/0X, as with integer literals in code. Base 0 means to interpret exactly as a code
literal, so that the actual base is 2, 8, 10, or 16, and so that int('010', 0) is not legal, while int('010')
is, as well as int('010', 8).

13

The Python Library Reference, Release 3.6.12

The integer type is described in Numeric Types — int, float, complex.
Changed in version 3.4: If base is not an instance of int and the base object has a base.__index__ method,
that method is called to obtain an integer for the base. Previous versions used base.__int__ instead of base.
__index__.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

isinstance(object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virtual)
subclass thereof. If object is not an object of the given type, the function always returns false. If classinfo is a tuple
of type objects (or recursively, other such tuples), return true if object is an instance of any of the types. If classinfo
is not a type or tuple of types and such tuples, a TypeError exception is raised.

issubclass(class, classinfo)
Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other case,
a TypeError exception is raised.

iter(object[, sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__() method), or it must support the sequence protocol (the __getitem__() method
with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case will
call object with no arguments for each call to its __next__() method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.
See also Iterator Types.
One useful application of the second form of iter() is to read lines of a file until a certain line is reached. The
following example reads a file until the readline() method returns an empty string:

with open('mydata.txt') as fp:
for line in iter(fp.readline, ''):

process_line(line)

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

class list([iterable])
Rather than being a function, list is actually a mutable sequence type, as documented in Lists and Sequence Types
— list, tuple, range.

locals()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals() when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and free
variables used by the interpreter.

map(function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable arguments
are passed, function must take that many arguments and is applied to the items from all iterables in parallel. With
multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the function inputs are
already arranged into argument tuples, see itertools.starmap().

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.12

max(iterable, *[, key, default])
max(arg1, arg2, *args[, key])

Return the largest item in an iterable or the largest of two or more arguments.
If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If two
or more positional arguments are provided, the largest of the positional arguments is returned.
There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like
that used for list.sort(). The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError is raised.
If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted(iterable, key=keyfunc, reverse=True)[0] and
heapq.nlargest(1, iterable, key=keyfunc).
New in version 3.4: The default keyword-only argument.

memoryview(obj)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min(iterable, *[, key, default])
min(arg1, arg2, *args[, key])

Return the smallest item in an iterable or the smallest of two or more arguments.
If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned. If two
or more positional arguments are provided, the smallest of the positional arguments is returned.
There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like
that used for list.sort(). The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError is raised.
If multiple items are minimal, the function returns the first one encountered. This is consistent with other sort-
stability preserving tools such as sorted(iterable, key=keyfunc)[0] and heapq.nsmallest(1,
iterable, key=keyfunc).
New in version 3.4: The default keyword-only argument.

next(iterator[, default])
Retrieve the next item from the iterator by calling its __next__() method. If default is given, it is returned if
the iterator is exhausted, otherwise StopIteration is raised.

class object
Return a new featureless object. object is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of the object
class.

oct(x)
Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression. If x is not
a Python int object, it has to define an __index__() method that returns an integer. For example:

>>> oct(8)
'0o10'
>>> oct(-56)
'-0o70'

If you want to convert an integer number to octal string either with prefix “0o” or not, you can use either of the
following ways.

15

The Python Library Reference, Release 3.6.12

>>> '%#o' % 10, '%o' % 10
('0o12', '12')
>>> format(10, '#o'), format(10, 'o')
('0o12', '12')
>>> f'{10:#o}', f'{10:o}'
('0o12', '12')

See also format() for more information.

open(file, mode=’r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)
Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised.
file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file to be
opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when the
returned I/O object is closed, unless closefd is set to False.)
mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r' which means
open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already exists),
'x' for exclusive creation and 'a' for appending (which on some Unix systems, means that all writes append to
the end of the file regardless of the current seek position). In text mode, if encoding is not specified the encoding
used is platform dependent: locale.getpreferredencoding(False) is called to get the current locale
encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available
modes are:

Character Meaning
'r' open for reading (default)
'w' open for writing, truncating the file first
'x' open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b' binary mode
't' text mode (default)
'+' open a disk file for updating (reading and writing)
'U' universal newlines mode (deprecated)

The default mode is 'r' (open for reading text, synonym of 'rt'). For binary read-write access, the mode
'w+b' opens and truncates the file to 0 bytes. 'r+b' opens the file without truncation.
As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b' in the mode argument) return contents as bytes objects without any decoding. In text mode (the
default, or when 't' is included in the mode argument), the contents of the file are returned as str, the bytes
having been first decoded using a platform-dependent encoding or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is done
by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in binary
mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size in bytes of a
fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

• Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE. On
many systems, the buffer will typically be 4096 or 8192 bytes long.

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.12

• “Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever locale.getpreferredencoding() returns), but
any text encoding supported by Python can be used. See the codecs module for the list of supported encodings.
errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be used
in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though any error
handling name that has been registered with codecs.register_error() is also valid. The standard names
include:

• 'strict' to raise a ValueError exception if there is an encoding error. The default value of None has
the same effect.

• 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
• 'replace' causes a replacement marker (such as '?') to be inserted where there is malformed data.
• 'surrogateescape' will represent any incorrect bytes as code points in the Unicode Private Use Area
ranging from U+DC80 to U+DCFF. These private code points will then be turned back into the same bytes
when the surrogateescape error handler is used when writing data. This is useful for processing files
in an unknown encoding.

• 'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the en-
coding are replaced with the appropriate XML character reference &#nnn;.

• 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.
• 'namereplace' (also only supported when writing) replaces unsupported characters with \N{...} es-
cape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None, '', '\n',
'\r', and '\r\n'. It works as follows:

• When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in the
input can end in '\n', '\r', or '\r\n', and these are translated into '\n' before being returned to the
caller. If it is '', universal newlines mode is enabled, but line endings are returned to the caller untranslated.
If it has any of the other legal values, input lines are only terminated by the given string, and the line ending
is returned to the caller untranslated.

• When writing output to the stream, if newline is None, any '\n' characters written are translated to the
system default line separator, os.linesep. If newline is '' or '\n', no translation takes place. If newline
is any of the other legal values, any '\n' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be kept
open when the file is closed. If a filename is given closefd must be True (the default) otherwise an error will be
raised.
A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os.open as
opener results in functionality similar to passing None).
The newly created file is non-inheritable.
The following example uses the dir_fd parameter of the os.open() function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener(path, flags):
... return os.open(path, flags, dir_fd=dir_fd)

(continues on next page)

17

The Python Library Reference, Release 3.6.12

(continued from previous page)
...
>>> with open('spamspam.txt', 'w', opener=opener) as f:
... print('This will be written to somedir/spamspam.txt', file=f)
...
>>> os.close(dir_fd) # don't leak a file descriptor

The type of file object returned by the open() function depends on the mode. When open() is used to open a
file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io.TextIOBase (specifically io.
TextIOWrapper). When used to open a file in a binary mode with buffering, the returned class is a subclass of
io.BufferedIOBase. The exact class varies: in read binary mode, it returns an io.BufferedReader; in
write binary and append binary modes, it returns an io.BufferedWriter, and in read/write mode, it returns
an io.BufferedRandom. When buffering is disabled, the raw stream, a subclass of io.RawIOBase, io.
FileIO, is returned.
See also the file handling modules, such as, fileinput, io (where open() is declared), os, os.path,
tempfile, and shutil.

Changed in version 3.3:
• The opener parameter was added.
• The 'x' mode was added.
• IOError used to be raised, it is now an alias of OSError.
• FileExistsError is now raised if the file opened in exclusive creation mode ('x') already
exists.

Changed in version 3.4:
• The file is now non-inheritable.

Deprecated since version 3.4, will be removed in version 4.0: The 'U' mode.
Changed in version 3.5:
• If the system call is interrupted and the signal handler does not raise an exception, the function now
retries the system call instead of raising an InterruptedError exception (see PEP 475 for
the rationale).

• The 'namereplace' error handler was added.

Changed in version 3.6:
• Support added to accept objects implementing os.PathLike.
• OnWindows, opening a console buffer may return a subclass of io.RawIOBase other than io.
FileIO.

ord(c)
Given a string representing one Unicode character, return an integer representing the Unicode code point of that
character. For example, ord('a') returns the integer 97 and ord('€') (Euro sign) returns 8364. This is the
inverse of chr().

pow(x, y[, z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than pow(x,
y) % z). The two-argument form pow(x, y) is equivalent to using the power operator: x**y.
The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the second

18 Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.6.12

argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example,
10**2 returns 100, but 10**-2 returns 0.01. If the second argument is negative, the third argument must be
omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print(*objects, sep=’ ’, end=’\n’, file=sys.stdout, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if present, must
be given as keyword arguments.
All non-keyword arguments are converted to strings like str() does and written to the stream, separated by sep
and followed by end. Both sep and end must be strings; they can also be None, which means to use the default
values. If no objects are given, print() will just write end.
The file argument must be an object with a write(string)method; if it is not present or None, sys.stdout
will be used. Since printed arguments are converted to text strings, print() cannot be used with binary mode
file objects. For these, use file.write(...) instead.
Whether output is buffered is usually determined by file, but if the flush keyword argument is true, the stream is
forcibly flushed.
Changed in version 3.3: Added the flush keyword argument.

class property(fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.
fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function for
deleting an attribute value. And doc creates a docstring for the attribute.
A typical use is to define a managed attribute x:

class C:
def __init__(self):

self._x = None

def getx(self):
return self._x

def setx(self, value):
self._x = value

def delx(self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x the
deleter.
If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s docstring (if it
exists). This makes it possible to create read-only properties easily using property() as a decorator:

class Parrot:
def __init__(self):

self._voltage = 100000

@property
def voltage(self):

"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage()method into a “getter” for a read-only attribute with the same
name, and it sets the docstring for voltage to “Get the current voltage.”

19

The Python Library Reference, Release 3.6.12

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C:
def __init__(self):

self._x = None

@property
def x(self):

"""I'm the 'x' property."""
return self._x

@x.setter
def x(self, value):

self._x = value

@x.deleter
def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as the
original property (x in this case.)
The returned property object also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.
Changed in version 3.5: The docstrings of property objects are now writeable.

range(stop)
range(start, stop[, step])

Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and Se-
quence Types — list, tuple, range.

repr(object)
Return a string containing a printable representation of an object. For many types, this function makes an attempt to
return a string that would yield an object with the same value when passed to eval(), otherwise the representation
is a string enclosed in angle brackets that contains the name of the type of the object together with additional
information often including the name and address of the object. A class can control what this function returns for
its instances by defining a __repr__() method.

reversed(seq)
Return a reverse iterator. seqmust be an object which has a __reversed__()method or supports the sequence
protocol (the __len__() method and the __getitem__() method with integer arguments starting at 0).

round(number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns the
nearest integer to its input.
For the built-in types supporting round(), values are rounded to the closest multiple of 10 to the power mi-
nus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round(0.5) and round(-0.5) are 0, and round(1.5) is 2). Any integer value is valid for ndigits (pos-
itive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise the return value
has the same type as number.
For a general Python object number, round delegates to number.__round__.

Note: The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives 2.67
instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.12

represented exactly as a float. See tut-fp-issues for more information.

class set([iterable])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and Set
Types — set, frozenset for documentation about this class.
For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module.

setattr(object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr(x, 'foobar', 123) is equivalent to x.foobar = 123.

class slice(stop)
class slice(start, stop[, step])

Return a slice object representing the set of indices specified by range(start, stop, step). The start and
step arguments default toNone. Slice objects have read-only data attributesstart, stop andstepwhichmerely
return the argument values (or their default). They have no other explicit functionality; however they are used by
Numerical Python and other third party extensions. Slice objects are also generated when extended indexing syntax
is used. For example: a[start:stop:step] or a[start:stop, i]. See itertools.islice() for
an alternate version that returns an iterator.

sorted(iterable, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.
Has two optional arguments which must be specified as keyword arguments.
key specifies a function of one argument that is used to extract a comparison key from each element in iterable (for
example, key=str.lower). The default value is None (compare the elements directly).
reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key() to convert an old-style cmp function to a key function.
The built-in sorted() function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).
For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod
Transform a method into a static method.
A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(arg1, arg2, ...): ...

The @staticmethod form is a function decorator – see the description of function definitions in function for
details.
It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is ignored
except for its class.
Static methods in Python are similar to those found in Java or C++. Also see classmethod() for a variant that
is useful for creating alternate class constructors.
Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want to

21

The Python Library Reference, Release 3.6.12

avoid the automatic transformation to instance method. For these cases, use this idiom:

class C:
builtin_open = staticmethod(open)

For more information on static methods, consult the documentation on the standard type hierarchy in types.
class str(object=”)
class str(object=b”, encoding=’utf-8’, errors=’strict’)

Return a str version of object. See str() for details.
str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum(iterable[, start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iterable’s
items are normally numbers, and the start value is not allowed to be a string.
For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a sequence of
strings is by calling ''.join(sequence). To add floating point values with extended precision, see math.
fsum(). To concatenate a series of iterables, consider using itertools.chain().

super([type[, object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr()
except that the type itself is skipped.
The __mro__ attribute of the type lists the method resolution search order used by both getattr() and
super(). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.
If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance(obj, type)must be true. If the second argument is a type, issubclass(type2, type)
must be true (this is useful for classmethods).
There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer to
parent classes without naming them explicitly, thus making the code more maintainable. This use closely parallels
the use of super in other programming languages.
The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement the
same method. Good design dictates that this method have the same calling signature in every case (because the
order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and because
that order can include sibling classes that are unknown prior to runtime).
For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):

super().method(arg) # This does the same thing as:
super(C, self).method(arg)

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups such as
super().__getitem__(name). It does so by implementing its own __getattribute__() method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly, super()
is undefined for implicit lookups using statements or operators such as super()[name].
Also note that, aside from the zero argument form, super() is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class being
defined, as well as accessing the current instance for ordinary methods.

22 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.6.12

For practical suggestions on how to design cooperative classes using super(), see guide to using super().
tuple([iterable])

Rather than being a function, tuple is actually an immutable sequence type, as documented inTuples and Sequence
Types — list, tuple, range.

class type(object)
class type(name, bases, dict)

With one argument, return the type of an object. The return value is a type object and generally the same object as
returned by object.__class__.
Theisinstance() built-in function is recommended for testing the type of an object, because it takes subclasses
into account.
With three arguments, return a new type object. This is essentially a dynamic form of the class statement. The
name string is the class name and becomes the __name__ attribute; the bases tuple itemizes the base classes
and becomes the __bases__ attribute; and the dict dictionary is the namespace containing definitions for class
body and is copied to a standard dictionary to become the __dict__ attribute. For example, the following two
statements create identical type objects:

>>> class X:
... a = 1
...
>>> X = type('X', (object,), dict(a=1))

See also Type Objects.
Changed in version 3.6: Subclasses of type which don’t override type.__new__ may no longer use the one-
argument form to get the type of an object.

vars([object])
Return the __dict__ attribute for a module, class, instance, or any other object with a __dict__ attribute.
Objects such as modules and instances have an updateable __dict__ attribute; however, other objects may have
write restrictions on their __dict__ attributes (for example, classes use a types.MappingProxyType to
prevent direct dictionary updates).
Without an argument, vars() acts like locals(). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

zip(*iterables)
Make an iterator that aggregates elements from each of the iterables.
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument, it
returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(*iterables):
zip('ABCD', 'xy') --> Ax By
sentinel = object()
iterators = [iter(it) for it in iterables]
while iterators:

result = []
for it in iterators:

elem = next(it, sentinel)
if elem is sentinel:

return
result.append(elem)

yield tuple(result)

23

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.6.12

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data
series into n-length groups using zip(*[iter(s)]*n). This repeats the same iterator n times so that each
output tuple has the result of n calls to the iterator. This has the effect of dividing the input into n-length chunks.
zip() should only be used with unequal length inputs when you don’t care about trailing, unmatched values from
the longer iterables. If those values are important, use itertools.zip_longest() instead.
zip() in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, y)
>>> list(zipped)
[(1, 4), (2, 5), (3, 6)]
>>> x2, y2 = zip(*zip(x, y))
>>> x == list(x2) and y == list(y2)
True

__import__(name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike importlib.
import_module().

This function is invoked by the import statement. It can be replaced (by importing the builtins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but doing
so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same goals
and does not cause issues with code which assumes the default import implementation is in use. Direct use of
__import__() is also discouraged in favor of importlib.import_module().
The function imports the module name, potentially using the given globals and locals to determine how to interpret
the name in a package context. The fromlist gives the names of objects or submodules that should be imported
from the module given by name. The standard implementation does not use its locals argument at all, and uses its
globals only to determine the package context of the import statement.
level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the module
calling __import__() (see PEP 328 for the details).
When the name variable is of the form package.module, normally, the top-level package (the name up till the
first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is given, the
module named by name is returned.
For example, the statement import spam results in bytecode resembling the following code:

spam = __import__('spam', globals(), locals(), [], 0)

The statement import spam.ham results in this call:

spam = __import__('spam.ham', globals(), locals(), [], 0)

Note how __import__() returns the toplevel module here because this is the object that is bound to a name by
the import statement.
On the other hand, the statement from spam.ham import eggs, sausage as saus results in

24 Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.6.12

_temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from __import__(). From this object, the names to import are
retrieved and assigned to their respective names.
If you simply want to import a module (potentially within a package) by name, use importlib.
import_module().
Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value to
0).

25

The Python Library Reference, Release 3.6.12

26 Chapter 2. Built-in Functions

CHAPTER

FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.
Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.
Some operations are supported by several object types; in particular, practically all objects can be compared, tested for
truth value, and converted to a string (with the repr() function or the slightly different str() function). The latter
function is implicitly used when an object is written by the print() function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean operations
below.
By default, an object is considered true unless its class defines either a __bool__() method that returns False or a
__len__() method that returns zero, when called with the object.1 Here are most of the built-in objects considered
false:

• constants defined to be false: None and False.
• zero of any numeric type: 0, 0.0, 0j, Decimal(0), Fraction(0, 1)

• empty sequences and collections: '', (), [], {}, set(), range(0)
Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for true,
unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
x or y if x is false, then y, else x (1)
x and y if x is false, then x, else y (2)
not x if x is false, then True, else False (3)

1 Additional information on these special methods may be found in the Python Reference Manual (customization).

29

The Python Library Reference, Release 3.6.12

Notes:
(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.
(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.
(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b), and

a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the Boolean
operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y and y <=
z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).
This table summarizes the comparison operations:

Operation Meaning
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
!= not equal
is object identity
is not negated object identity

Objects of different types, except different numeric types, never compare equal. Furthermore, some types (for example,
function objects) support only a degenerate notion of comparison where any two objects of that type are unequal. The
<, <=, > and >= operators will raise a TypeError exception when comparing a complex number with another built-in
numeric type, when the objects are of different types that cannot be compared, or in other cases where there is no defined
ordering.
Non-identical instances of a class normally compare as non-equal unless the class defines the __eq__() method.
Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless the
class defines enough of the methods __lt__(), __le__(), __gt__(), and __ge__() (in general, __lt__()
and __eq__() are sufficient, if you want the conventional meanings of the comparison operators).
The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects and
never raise an exception.
Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__() method.

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition, Booleans are a
subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using double
in C; information about the precision and internal representation of floating point numbers for the machine on which
your program is running is available in sys.float_info. Complex numbers have a real and imaginary part, which
are each a floating point number. To extract these parts from a complex number z, use z.real and z.imag. (The
standard library includes additional numeric types, fractions that hold rationals, and decimal that hold floating-
point numbers with user-definable precision.)
Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appending 'j' or 'J' to a numeric literal yields an imaginary number (a complex number
with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary parts.
Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types, the
operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point, which
is narrower than complex. Comparisons between numbers of mixed type use the same rule.2 The constructors int(),
float(), and complex() can be used to produce numbers of a specific type.
All numeric types (except complex) support the following operations, sorted by ascending priority (all numeric operations
have a higher priority than comparison operations):

Operation Result Notes Full documenta-
tion

x + y sum of x and y
x - y difference of x and y
x * y product of x and y
x / y quotient of x and y
x // y floored quotient of x and y (1)
x % y remainder of x / y (2)
-x x negated
+x x unchanged
abs(x) absolute value or magnitude of x abs()
int(x) x converted to integer (3)(6) int()
float(x) x converted to floating point (4)(6) float()
complex(re,
im)

a complex number with real part re, imaginary part im. im de-
faults to zero.

(6) complex()

c.
conjugate()

conjugate of the complex number c

divmod(x, y) the pair (x // y, x % y) (2) divmod()
pow(x, y) x to the power y (5) pow()
x ** y x to the power y (5)

Notes:
(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily

int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2 is -1, 1//(-2) is -1, and
(-1)//(-2) is 0.

(2) Not for complex numbers. Instead convert to floats using abs() if appropriate.
(3) Conversion from floating point to integer may round or truncate as in C; see functions math.floor() and

math.ceil() for well-defined conversions.
2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 31

The Python Library Reference, Release 3.6.12

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and positive
or negative infinity.

(5) Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.
(6) The numeric literals accepted include the digits0 to9 or anyUnicode equivalent (code points with theNd property).

See http://www.unicode.org/Public/9.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and float) also include the following operations:

Operation Result
math.trunc(x) x truncated to Integral
round(x[, n]) x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor(x) the greatest Integral <= x
math.ceil(x) the least Integral >= x

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out in
two’s complement with an infinite number of sign bits.
The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the comparisons;
the unary operation ~ has the same priority as the other unary numeric operations (+ and -).
This table lists the bitwise operations sorted in ascending priority:

Operation Result Notes
x | y bitwise or of x and y (4)
x ^ y bitwise exclusive or of x and y (4)
x & y bitwise and of x and y (4)
x << n x shifted left by n bits (1)(2)
x >> n x shifted right by n bits (1)(3)
~x the bits of x inverted

Notes:
(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.
(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.
(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representation

(a working bit-width of 1 + max(x.bit_length(), y.bit_length()) or more) is sufficient to get the
same result as if there were an infinite number of sign bits.

32 Chapter 4. Built-in Types

http://www.unicode.org/Public/9.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.6.12

4.4.2 Additional Methods on Integer Types

The int type implements the numbers.Integral abstract base class. In addition, it provides a few more methods:
int.bit_length()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6

More precisely, if x is nonzero, then x.bit_length() is the unique positive integer k such that 2**(k-1)
<= abs(x) < 2**k. Equivalently, when abs(x) is small enough to have a correctly rounded logarithm, then
k = 1 + int(log(abs(x), 2)). If x is zero, then x.bit_length() returns 0.
Equivalent to:

def bit_length(self):
s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') --> 6

New in version 3.1.
int.to_bytes(length, byteorder, *, signed=False)

Return an array of bytes representing an integer.

>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'

The integer is represented using length bytes. An OverflowError is raised if the integer is not representable
with the given number of bytes.
The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "little", the most significant byte is at the
end of the byte array. To request the native byte order of the host system, use sys.byteorder as the byte order
value.
The signed argument determines whether two’s complement is used to represent the integer. If signed is False
and a negative integer is given, an OverflowError is raised. The default value for signed is False.
New in version 3.2.

classmethod int.from_bytes(bytes, byteorder, *, signed=False)
Return the integer represented by the given array of bytes.

>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096

(continues on next page)

4.4. Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.6.12

(continued from previous page)
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.
The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the most
significant byte is at the beginning of the byte array. If byteorder is "little", the most significant byte is at the
end of the byte array. To request the native byte order of the host system, use sys.byteorder as the byte order
value.
The signed argument indicates whether two’s complement is used to represent the integer.
New in version 3.2.

4.4.3 Additional Methods on Float

The float type implements the numbers.Real abstract base class. float also has the following additional methods.
float.as_integer_ratio()

Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs.

float.is_integer()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as binary
numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal
strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in
numerical work.
float.hex()

Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers, this
representation will always include a leading 0x and a trailing p and exponent.

classmethod float.fromhex(s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace.

Note that float.hex() is an instance method, while float.fromhex() is a class method.
A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2 of
the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float.hex() is usable

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s %a format character
or Java’s Double.toHexString are accepted by float.fromhex().
Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply
the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3 + 10./16
+ 7./16**2) * 2.0**10, or 3740.0:

>>> float.fromhex('0x3.a7p10')
3740.0

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
'0x1.d380000000000p+11'

4.4.4 Hashing of numeric types

For numbers x and y, possibly of different types, it’s a requirement that hash(x) == hash(y) whenever x ==
y (see the __hash__() method documentation for more details). For ease of implementation and efficiency across a
variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction) Python’s hash
for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies
to all instances of int and fractions.Fraction, and all finite instances of float and decimal.Decimal.
Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P is made available to Python
as the modulus attribute of sys.hash_info.
CPython implementation detail: Currently, the prime used is P = 2**31 - 1 on machines with 32-bit C longs and
P = 2**61 - 1 on machines with 64-bit C longs.
Here are the rules in detail:

• If x = m / n is a nonnegative rational number and n is not divisible by P, define hash(x) as m *
invmod(n, P) % P, where invmod(n, P) gives the inverse of n modulo P.

• If x = m / n is a nonnegative rational number and n is divisible by P (but m is not) then n has no inverse modulo
P and the rule above doesn’t apply; in this case define hash(x) to be the constant value sys.hash_info.inf.

• If x = m / n is a negative rational number define hash(x) as -hash(-x). If the resulting hash is -1,
replace it with -2.

• The particular values sys.hash_info.inf, -sys.hash_info.inf and sys.hash_info.nan are
used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have the same
hash value.)

• For a complex number z, the hash values of the real and imaginary parts are combined by com-
puting hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.
hash_info.width so that it lies in range(-2**(sys.hash_info.width - 1), 2**(sys.
hash_info.width - 1)). Again, if the result is -1, it’s replaced with -2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash of a
rational number, float, or complex:

import sys, math

def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

(continues on next page)

4.4. Numeric Types — int, float, complex 35

The Python Library Reference, Release 3.6.12

(continued from previous page)

"""
P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m % P == n % P == 0:

m, n = m // P, n // P

if n % P == 0:
hash_value = sys.hash_info.inf

else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.
hash_value = (abs(m) % P) * pow(n, P - 2, P) % P

if m < 0:
hash_value = -hash_value

if hash_value == -1:
hash_value = -2

return hash_value

def hash_float(x):
"""Compute the hash of a float x."""

if math.isnan(x):
return sys.hash_info.nan

elif math.isinf(x):
return sys.hash_info.inf if x > 0 else -sys.hash_info.inf

else:
return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""

hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float(z.imag)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)
hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:

hash_value = -2
return hash_value

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are used
to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the iteration
methods.
One method needs to be defined for container objects to provide iteration support:
container.__iter__()

Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C API.

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:
iterator.__iter__()

Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in the
Python/C API.

iterator.__next__()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries, and other
more specialized forms. The specific types are not important beyond their implementation of the iterator protocol.
Once an iterator’s __next__() method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter__() and __next__() methods. More information about generators can be found in the
documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.SequenceABC is provided tomake it easier to correctly implement these operations on custom
sequence types.
This table lists the sequence operations sorted in ascending priority. In the table, s and t are sequences of the same type,
n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.
The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and *
(repetition) operations have the same priority as the corresponding numeric operations.3

3 They must have since the parser can’t tell the type of the operands.

4.6. Sequence Types — list, tuple, range 37

The Python Library Reference, Release 3.6.12

Operation Result Notes
x in s True if an item of s is equal to x, else False (1)
x not in s False if an item of s is equal to x, else True (1)
s + t the concatenation of s and t (6)(7)
s * n or n * s equivalent to adding s to itself n times (2)(7)
s[i] ith item of s, origin 0 (3)
s[i:j] slice of s from i to j (3)(4)
s[i:j:k] slice of s from i to j with step k (3)(5)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s
s.index(x[, i[,
j]])

index of the first occurrence of x in s (at or after index i and before index
j)

(8)

s.count(x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically by
comparing corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see comparisons in the language reference.)
Notes:
(1) While the in and not in operations are used only for simple containment testing in the general case, some

specialised sequences (such as str, bytes and bytearray) also use them for subsequence testing:

>>> "gg" in "eggs"
True

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that items
in the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]] *
3 are references to this single empty list. Modifying any of the elements of lists modifies this single list. You
can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]

Further explanation is available in the FAQ entry faq-multidimensional-list.
(3) If i or j is negative, the index is relative to the end of sequence s: len(s) + i or len(s) + j is substituted.

But note that -0 is still 0.
(4) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. If i or j is

greater than len(s), use len(s). If i is omitted or None, use 0. If j is omitted or None, use len(s). If i is
greater than or equal to j, the slice is empty.

38 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

(5) The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such that 0 <=
n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when j is reached
(but never including j). When k is positive, i and j are reduced to len(s) if they are greater. When k is negative,
i and j are reduced to len(s) - 1 if they are greater. If i or j are omitted or None, they become “end” values
(which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated like 1.

(6) Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime cost,
you must switch to one of the alternatives below:

• if concatenating str objects, you can build a list and use str.join() at the end or else write to an io.
StringIO instance and retrieve its value when complete

• if concatenating bytes objects, you can similarly use bytes.join() or io.BytesIO, or you can do
in-place concatenation with a bytearray object. bytearray objects are mutable and have an efficient
overallocation mechanism

• if concatenating tuple objects, extend a list instead
• for other types, investigate the relevant class documentation

(7) Some sequence types (such as range) only support item sequences that follow specific patterns, and hence don’t
support sequence concatenation or repetition.

(8) index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra ar-
guments is roughly equivalent to using s[i:j].index(x), only without copying any data and with the returned
index being relative to the start of the sequence rather than the start of the slice.

4.6.2 Immutable Sequence Types

The only operation that immutable sequence types generally implement that is not also implemented by mutable sequence
types is support for the hash() built-in.
This support allows immutable sequences, such as tuple instances, to be used as dict keys and stored in set and
frozenset instances.
Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom sequence
types.
In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets any
type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value restriction
0 <= x <= 255).

4.6. Sequence Types — list, tuple, range 39

The Python Library Reference, Release 3.6.12

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:j] = t slice of s from i to j is replaced by the contents of the iterable t
del s[i:j] same as s[i:j] = []
s[i:j:k] = t the elements of s[i:j:k] are replaced by those of t (1)
del s[i:j:k] removes the elements of s[i:j:k] from the list
s.append(x) appends x to the end of the sequence (same as s[len(s):len(s)] = [x])
s.clear() removes all items from s (same as del s[:]) (5)
s.copy() creates a shallow copy of s (same as s[:]) (5)
s.extend(t) or s
+= t

extends s with the contents of t (for the most part the same as
s[len(s):len(s)] = t)

s *= n updates s with its contents repeated n times (6)
s.insert(i, x) inserts x into s at the index given by i (same as s[i:i] = [x])
s.pop([i]) retrieves the item at i and also removes it from s (2)
s.remove(x) remove the first item from s where s[i] == x (3)
s.reverse() reverses the items of s in place (4)

Notes:
(1) t must have the same length as the slice it is replacing.
(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.
(3) remove raises ValueError when x is not found in s.
(4) The reverse() method modifies the sequence in place for economy of space when reversing a large sequence.

To remind users that it operates by side effect, it does not return the reversed sequence.
(5) clear() and copy() are included for consistency with the interfaces of mutable containers that don’t support

slicing operations (such as dict and set)
New in version 3.3: clear() and copy() methods.

(6) The value n is an integer, or an object implementing __index__(). Zero and negative values of n clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n under
Common Sequence Operations.

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of sim-
ilarity will vary by application).
class list([iterable])

Lists may be constructed in several ways:
• Using a pair of square brackets to denote the empty list: []
• Using square brackets, separating items with commas: [a], [a, b, c]

• Using a list comprehension: [x for x in iterable]

• Using the type constructor: list() or list(iterable)
The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similar to iterable[:]. For example, list('abc') returns ['a', 'b', 'c']
and list((1, 2, 3)) returns [1, 2, 3]. If no argument is given, the constructor creates a new empty
list, [].

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

Many other operations also produce lists, including the sorted() built-in.
Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:
sort(*, key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items. Exceptions are not suppressed -
if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially
modified state).
sort() accepts two arguments that can only be passed by keyword (keyword-only arguments):
key specifies a function of one argument that is used to extract a comparison key from each list element (for
example, key=str.lower). The key corresponding to each item in the list is calculated once and then used
for the entire sorting process. The default value of None means that list items are sorted directly without
calculating a separate key value.
The functools.cmp_to_key() utility is available to convert a 2.x style cmp function to a key function.
reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.
This method modifies the sequence in place for economy of space when sorting a large sequence. To remind
users that it operates by side effect, it does not return the sorted sequence (use sorted() to explicitly request
a new sorted list instance).
The sort() method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).
CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration,
and raises ValueError if it can detect that the list has been mutated during a sort.

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples produced
by the enumerate() built-in). Tuples are also used for cases where an immutable sequence of homogeneous data is
needed (such as allowing storage in a set or dict instance).
class tuple([iterable])

Tuples may be constructed in a number of ways:
• Using a pair of parentheses to denote the empty tuple: ()
• Using a trailing comma for a singleton tuple: a, or (a,)
• Separating items with commas: a, b, c or (a, b, c)

• Using the tuple() built-in: tuple() or tuple(iterable)
The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is
returned unchanged. For example, tuple('abc') returns ('a', 'b', 'c') and tuple([1, 2, 3]
) returns (1, 2, 3). If no argument is given, the constructor creates a new empty tuple, ().
Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except
in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, f(a, b, c) is a
function call with three arguments, while f((a, b, c)) is a function call with a 3-tuple as the sole argument.
Tuples implement all of the common sequence operations.

4.6. Sequence Types — list, tuple, range 41

The Python Library Reference, Release 3.6.12

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple() may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number of
times in for loops.
class range(stop)
class range(start, stop[, step])

The arguments to the range constructor must be integers (either built-in int or any object that implements the
__index__ special method). If the step argument is omitted, it defaults to 1. If the start argument is omitted, it
defaults to 0. If step is zero, ValueError is raised.
For a positive step, the contents of a range r are determined by the formula r[i] = start + step*i where
i >= 0 and r[i] < stop.
For a negative step, the contents of the range are still determined by the formula r[i] = start + step*i,
but the constraints are i >= 0 and r[i] > stop.
A range object will be empty if r[0] does not meet the value constraint. Ranges do support negative indices, but
these are interpreted as indexing from the end of the sequence determined by the positive indices.
Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as len())
may raise OverflowError.
Range examples:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(range(0, 30, 5))
[0, 5, 10, 15, 20, 25]
>>> list(range(0, 10, 3))
[0, 3, 6, 9]
>>> list(range(0, -10, -1))
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list(range(0))
[]
>>> list(range(1, 0))
[]

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact that
range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually
violate that pattern).
start

The value of the start parameter (or 0 if the parameter was not supplied)
stop

The value of the stop parameter
step

The value of the step parameter (or 1 if the parameter was not supplied)
The advantage of the range type over a regular list or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step
values, calculating individual items and subranges as needed).

42 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment tests,
element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range(0, 20, 2)
>>> r
range(0, 20, 2)
>>> 11 in r
False
>>> 10 in r
True
>>> r.index(10)
5
>>> r[5]
10
>>> r[:5]
range(0, 10, 2)
>>> r[-1]
18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are considered
equal if they represent the same sequence of values. (Note that two range objects that compare equal might have different
start, stop and step attributes, for example range(0) == range(2, 1, 3) or range(0, 3, 2) ==
range(0, 4, 2).)
Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.
Changed in version 3.3: Define ‘==’ and ‘!=’ to compare range objects based on the sequence of values they define (instead
of comparing based on object identity).
New in version 3.3: The start, stop and step attributes.
See also:

• The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

4.7 Text Sequence Type — str

Textual data in Python is handled with str objects, or strings. Strings are immutable sequences of Unicode code points.
String literals are written in a variety of ways:

• Single quotes: 'allows embedded "double" quotes'

• Double quotes: "allows embedded 'single' quotes".
• Triple quoted: '''Three single quotes''', """Three double quotes"""

Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.
String literals that are part of a single expression and have only whitespace between them will be implicitly converted to
a single string literal. That is, ("spam " "eggs") == "spam eggs".
See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”)
prefix that disables most escape sequence processing.
Strings may also be created from other objects using the str constructor.
Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string
s, s[0] == s[0:1].

4.7. Text Sequence Type — str 43

http://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.6.12

There is also no mutable string type, but str.join() or io.StringIO can be used to efficiently construct strings
from multiple fragments.
Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted on
string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.
class str(object=”)
class str(object=b”, encoding=’utf-8’, errors=’strict’)

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of
str() depends on whether encoding or errors is given, as follows.
If neither encoding nor errors is given, str(object) returns object.__str__(), which is the “informal”
or nicely printable string representation of object. For string objects, this is the string itself. If object does not have
a __str__() method, then str() falls back to returning repr(object).
If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or bytearray). In
this case, if object is a bytes (or bytearray) object, then str(bytes, encoding, errors) is equiv-
alent to bytes.decode(encoding, errors). Otherwise, the bytes object underlying the buffer object
is obtained before calling bytes.decode(). See Binary Sequence Types — bytes, bytearray, memoryview and
bufferobjects for information on buffer objects.
Passing a bytes object to str() without the encoding or errors arguments falls under the first case of returning
the informal string representation (see also the -b command-line option to Python). For example:

>>> str(b'Zoot!')
"b'Zoot!'"

For more information on the str class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition, see the
Text Processing Services section.

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.
Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see str.
format(), Format String Syntax and Custom String Formatting) and the other based on C printf style formatting that
handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle
(printf-style String Formatting).
The Text Processing Services section of the standard library covers a number of other modules that provide various text
related utilities (including regular expression support in the re module).
str.capitalize()

Return a copy of the string with its first character capitalized and the rest lowercased.
str.casefold()

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.
Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in
a string. For example, the German lowercase letter 'ß' is equivalent to "ss". Since it is already lowercase,
lower() would do nothing to 'ß'; casefold() converts it to "ss".
The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str.center(width[, fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII space).
The original string is returned if width is less than or equal to len(s).

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

str.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

str.encode(encoding=”utf-8”, errors=”strict”)
Return an encoded version of the string as a bytes object. Default encoding is 'utf-8'. errors may be given
to set a different error handling scheme. The default for errors is 'strict', meaning that encoding errors
raise a UnicodeError. Other possible values are 'ignore', 'replace', 'xmlcharrefreplace',
'backslashreplace' and any other name registered via codecs.register_error(), see section Er-
ror Handlers. For a list of possible encodings, see section Standard Encodings.
Changed in version 3.1: Support for keyword arguments added.

str.endswith(suffix[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that
position.

str.expandtabs(tabsize=8)
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab positions at
columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string is examined
character by character. If the character is a tab (\t), one or more space characters are inserted in the result until the
current column is equal to the next tab position. (The tab character itself is not copied.) If the character is a newline
(\n) or return (\r), it is copied and the current column is reset to zero. Any other character is copied unchanged
and the current column is incremented by one regardless of how the character is represented when printed.

>>> '01\t012\t0123\t01234'.expandtabs()
'01 012 0123 01234'
>>> '01\t012\t0123\t01234'.expandtabs(4)
'01 012 0123 01234'

str.find(sub[, start[, end]])
Return the lowest index in the string where substring sub is found within the slice s[start:end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

Note: The find() method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format(*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or re-
placement fields delimited by braces {}. Each replacement field contains either the numeric index of a positional
argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced
with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format(1+2)
'The sum of 1 + 2 is 3'

See Format String Syntax for a description of the various formatting options that can be specified in format strings.

Note: When formatting a number (int, float, complex, decimal.Decimal and subclasses) with the n
type (ex: '{:n}'.format(1234)), the function temporarily sets the LC_CTYPE locale to the LC_NUMERIC

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.6.12

locale to decode decimal_point and thousands_sep fields of localeconv() if they are non-ASCII or
longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE locale. This temporary change
affects other threads.

Changed in version 3.6.5: When formatting a number with the n type, the function sets temporarily the LC_CTYPE
locale to the LC_NUMERIC locale in some cases.

str.format_map(mapping)
Similar to str.format(**mapping), except that mapping is used directly and not copied to a dict. This
is useful if for example mapping is a dict subclass:

>>> class Default(dict):
... def __missing__(self, key):
... return key
...
>>> '{name} was born in {country}'.format_map(Default(name='Guido'))
'Guido was born in country'

New in version 3.2.
str.index(sub[, start[, end]])

Like find(), but raise ValueError when the substring is not found.
str.isalnum()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
A character c is alphanumeric if one of the following returns True: c.isalpha(), c.isdecimal(), c.
isdigit(), or c.isnumeric().

str.isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise. Alpha-
betic characters are those characters defined in the Unicode character database as “Letter”, i.e., those with general
category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note that this is different from the “Alphabetic”
property defined in the Unicode Standard.

str.isdecimal()
Return true if all characters in the string are decimal characters and there is at least one character, false otherwise.
Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-INDIC DIGIT
ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.

str.isdigit()
Return true if all characters in the string are digits and there is at least one character, false otherwise. Digits include
decimal characters and digits that need special handling, such as the compatibility superscript digits. This covers
digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a character
that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

str.isidentifier()
Return true if the string is a valid identifier according to the language definition, section identifiers.
Use keyword.iskeyword() to test for reserved identifiers such as def and class.

str.islower()
Return true if all cased characters4 in the string are lowercase and there is at least one cased character, false
otherwise.

str.isnumeric()
Return true if all characters in the string are numeric characters, and there is at least one character, false otherwise.
Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e.g.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “Ll” (Letter, lowercase), or “Lt” (Letter, titlecase).

46 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value
Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

str.isprintable()
Return true if all characters in the string are printable or the string is empty, false otherwise. Nonprintable characters
are those characters defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space
(0x20) which is considered printable. (Note that printable characters in this context are those which should not be
escaped when repr() is invoked on a string. It has no bearing on the handling of strings written to sys.stdout
or sys.stderr.)

str.isspace()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.
Whitespace characters are those characters defined in the Unicode character database as “Other” or “Separator”
and those with bidirectional property being one of “WS”, “B”, or “S”.

str.istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

str.isupper()
Return true if all cased characters4 in the string are uppercase and there is at least one cased character, false
otherwise.

str.join(iterable)
Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if there are any
non-string values in iterable, including bytes objects. The separator between elements is the string providing this
method.

str.ljust(width[, fillchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is an
ASCII space). The original string is returned if width is less than or equal to len(s).

str.lower()
Return a copy of the string with all the cased characters4 converted to lowercase.
The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.lstrip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> ' spacious '.lstrip()
'spacious '
>>> 'www.example.com'.lstrip('cmowz.')
'example.com'

static str.maketrans(x[, y[, z]])
This static method returns a translation table usable for str.translate().
If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted to
ordinals.
If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in
x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose
characters will be mapped to None in the result.

str.partition(sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the

4.7. Text Sequence Type — str 47

The Python Library Reference, Release 3.6.12

separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string
itself, followed by two empty strings.

str.replace(old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

str.rfind(sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

str.rindex(sub[, start[, end]])
Like rfind() but raises ValueError when the substring sub is not found.

str.rjust(width[, fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default is
an ASCII space). The original string is returned if width is less than or equal to len(s).

str.rpartition(sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

str.rsplit(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except for
splitting from the right, rsplit() behaves like split() which is described in detail below.

str.rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> ' spacious '.rstrip()
' spacious'
>>> 'mississippi'.rstrip('ipz')
'mississ'

str.split(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits
are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1, then there is
no limit on the number of splits (all possible splits are made).
If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for exam-
ple, '1,,2'.split(',') returns ['1', '', '2']). The sep argument may consist of multiple charac-
ters (for example, '1<>2<>3'.split('<>') returns ['1', '2', '3']). Splitting an empty string with
a specified separator returns [''].
For example:

>>> '1,2,3'.split(',')
['1', '2', '3']
>>> '1,2,3'.split(',', maxsplit=1)
['1', '2,3']
>>> '1,2,,3,'.split(',')
['1', '2', '', '3', '']

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has

48 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with
a None separator returns [].
For example:

>>> '1 2 3'.split()
['1', '2', '3']
>>> '1 2 3'.split(maxsplit=1)
['1', '2 3']
>>> ' 1 2 3 '.split()
['1', '2', '3']

str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list
unless keepends is given and true.
This method splits on the following line boundaries. In particular, the boundaries are a superset of universal new-
lines.

Representation Description
\n Line Feed
\r Carriage Return
\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation
\f or \x0c Form Feed
\x1c File Separator
\x1d Group Separator
\x1e Record Separator
\x85 Next Line (C1 Control Code)
\u2028 Line Separator
\u2029 Paragraph Separator

Changed in version 3.2: \v and \f added to list of line boundaries.
For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()
['ab c', '', 'de fg', 'kl']
>>> 'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split() when a delimiter string sep is given, this method returns an empty list for the empty string, and
a terminal line break does not result in an extra line:

>>> "".splitlines()
[]
>>> "One line\n".splitlines()
['One line']

For comparison, split('\n') gives:

>>> ''.split('\n')
['']
>>> 'Two lines\n'.split('\n')
['Two lines', '']

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.6.12

str.startswith(prefix[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to look
for. With optional start, test string beginning at that position. With optional end, stop comparing string at that
position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ' spacious '.strip()
'spacious'
>>> 'www.example.com'.strip('cmowz.')
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string = '#....... Section 3.2.1 Issue #32'
>>> comment_string.strip('.#! ')
'Section 3.2.1 Issue #32'

str.swapcase()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s.swapcase().swapcase() == s.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining characters
are lowercase.
For example:

>>> 'Hello world'.title()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The defi-
nition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries,
which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
... return re.sub(r"[A-Za-z]+('[A-Za-z]+)?",
... lambda mo: mo.group(0)[0].upper() +
... mo.group(0)[1:].lower(),
... s)
...
>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate(table)
Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via __getitem__(), typically a mapping or sequence. When

50 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode ordinal or
a string, to map the character to one or more other characters; return None, to delete the character from the return
string; or raise a LookupError exception, to map the character to itself.
You can use str.maketrans() to create a translation map from character-to-character mappings in different
formats.
See also the codecs module for a more flexible approach to custom character mappings.

str.upper()
Return a copy of the string with all the cased characters4 converted to uppercase. Note that s.upper().
isupper() might be False if s contains uncased characters or if the Unicode category of the resulting char-
acter(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).
The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.zfill(width)
Return a copy of the string left filled with ASCII '0' digits to make a string of length width. A leading sign prefix
('+'/'-') is handled by inserting the padding after the sign character rather than before. The original string is
returned if width is less than or equal to len(s).
For example:

>>> "42".zfill(5)
'00042'
>>> "-42".zfill(5)
'-0042'

4.7.2 printf-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). Using the newer formatted string literals or the str.format()
interface helps avoid these errors. These alternatives also provide more powerful, flexible and extensible approaches to
formatting text.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % values (where format is a string), % conversion specifications in format
are replaced with zero or more elements of values. The effect is similar to using the sprintf() in the C language.
If format requires a single argument, values may be a single non-tuple object.5 Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).
A conversion specifier contains two or more characters and has the following components, which must occur in this order:

1. The '%' character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the next element

of the tuple in values, and the object to convert comes after the minimum field width and optional precision.
5. Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk), the actual

precision is read from the next element of the tuple in values, and the value to convert comes after the precision.
6. Length modifier (optional).
5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 51

The Python Library Reference, Release 3.6.12

7. Conversion type.
When the right argument is a dictionary (or othermapping type), then the formats in the stringmust include a parenthesised
mapping key into that dictionary inserted immediately after the '%' character. The mapping key selects the value to be
formatted from the mapping. For example:

>>> print('%(language)s has %(number)03d quote types.' %
... {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).
The conversion flag characters are:

Flag Meaning
'#' The value conversion will use the “alternate form” (where defined below).
'0' The conversion will be zero padded for numeric values.
'-' The converted value is left adjusted (overrides the '0' conversion if both are given).
' ' (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
'+' A sign character ('+' or '-') will precede the conversion (overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld is identical
to %d.
The conversion types are:

Conver-
sion

Meaning Notes

'd' Signed integer decimal.
'i' Signed integer decimal.
'o' Signed octal value. (1)
'u' Obsolete type – it is identical to 'd'. (6)
'x' Signed hexadecimal (lowercase). (2)
'X' Signed hexadecimal (uppercase). (2)
'e' Floating point exponential format (lowercase). (3)
'E' Floating point exponential format (uppercase). (3)
'f' Floating point decimal format. (3)
'F' Floating point decimal format. (3)
'g' Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less

than precision, decimal format otherwise.
(4)

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less
than precision, decimal format otherwise.

(4)

'c' Single character (accepts integer or single character string).
'r' String (converts any Python object using repr()). (5)
's' String (converts any Python object using str()). (5)
'a' String (converts any Python object using ascii()). (5)
'%' No argument is converted, results in a '%' character in the result.

Notes:
(1) The alternate form causes a leading octal specifier ('0o') to be inserted before the first digit.
(2) The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was used) to

be inserted before the first digit.

52 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they
would otherwise be.
The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.
(6) See PEP 237.

Since Python strings have an explicit length, %s conversions do not assume that '\0' is the end of the string.
Changed in version 3.1: %f conversions for numbers whose absolute value is over 1e50 are no longer replaced by %g
conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by memoryview
which uses the buffer protocol to access the memory of other binary objects without needing to make a copy.
The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text
encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely
related to string objects in a variety of other ways.
class bytes([source[, encoding[, errors]]])

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:
• Single quotes: b'still allows embedded "double" quotes'

• Double quotes: b"still allows embedded 'single' quotes".
• Triple quoted: b'''3 single quotes''', b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary
values over 127 must be entered into bytes literals using the appropriate escape sequence.
As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See strings
for more about the various forms of bytes literal, including supported escape sequences.
While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary formats
include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not
generally the case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that
are not ASCII compatible will usually lead to data corruption).
In addition to the literal forms, bytes objects can be created in a number of other ways:

• A zero-filled bytes object of a specified length: bytes(10)
• From an iterable of integers: bytes(range(20))
• Copying existing binary data via the buffer protocol: bytes(obj)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.6.12

Also see the bytes built-in.
Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format:
classmethod fromhex(string)

This bytes class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex('2Ef0 F1f2 ')
b'.\xf0\xf1\xf2'

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.
hex()

Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\xf0\xf1\xf2'.hex()
'f0f1f2'

New in version 3.5.
Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b[0]will be an integer, while b[0:1]
will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string
of length 1)
The representation of bytes objects uses the literal format (b'...') since it is often more useful than e.g. bytes([46,
46, 46]). You can always convert a bytes object into a list of integers using list(b).

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit strings (the closest
thing 2.x offers to a built-in binary data type) and Unicode strings were permitted. This was a backwards compatibility
workaround to account for the fact that Python originally only supported 8-bit text, and Unicode text was a later addition.
In Python 3.x, those implicit conversions are gone - conversions between 8-bit binary data and Unicode text must be
explicit, and bytes and string objects will always compare unequal.

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to bytes objects.
class bytearray([source[, encoding[, errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor:
• Creating an empty instance: bytearray()
• Creating a zero-filled instance with a given length: bytearray(10)
• From an iterable of integers: bytearray(range(20))
• Copying existing binary data via the buffer protocol: bytearray(b'Hi!')

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common bytes
and bytearray operations described in Bytes and Bytearray Operations.
Also see the bytearray built-in.
Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format
for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that
format:

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

classmethod fromhex(string)
This bytearray class method returns bytearray object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex('2Ef0 F1f2 ')
bytearray(b'.\xf0\xf1\xf2')

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.
hex()

Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray(b'\xf0\xf1\xf2').hex()
'f0f1f2'

New in version 3.5.
Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b[0] will be an integer, while
b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)
The representation of bytearray objects uses the bytes literal format (bytearray(b'...')) since it is often more
useful than e.g. bytearray([46, 46, 46]). You can always convert a bytearray object into a list of integers
using list(b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands of
the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without causing
errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings
don’t accept bytes as their arguments. For example, you have to write:

a = "abc"
b = a.replace("a", "f")

and:

a = b"abc"
b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided
when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may
lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.
bytes.count(sub[, start[, end]])
bytearray.count(sub[, start[, end]])

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 55

The Python Library Reference, Release 3.6.12

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.decode(encoding=”utf-8”, errors=”strict”)
bytearray.decode(encoding=”utf-8”, errors=”strict”)

Return a string decoded from the given bytes. Default encoding is 'utf-8'. errors may be given to set
a different error handling scheme. The default for errors is 'strict', meaning that encoding errors raise
a UnicodeError. Other possible values are 'ignore', 'replace' and any other name registered via
codecs.register_error(), see section Error Handlers. For a list of possible encodings, see section Stan-
dard Encodings.

Note: Passing the encoding argument to str allows decoding any bytes-like object directly, without needing to
make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.
bytes.endswith(suffix[, start[, end]])
bytearray.endswith(suffix[, start[, end]])

Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.
The suffix(es) to search for may be any bytes-like object.

bytes.find(sub[, start[, end]])
bytearray.find(sub[, start[, end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.
The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note: The find() method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> b'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.
bytes.index(sub[, start[, end]])
bytearray.index(sub[, start[, end]])

Like find(), but raise ValueError when the subsequence is not found.
The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.join(iterable)
bytearray.join(iterable)

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A
TypeError will be raised if there are any values in iterable that are not bytes-like objects, including str ob-
jects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans(from, to)

56 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

static bytearray.maketrans(from, to)
This static method returns a translation table usable for bytes.translate() that will map each character in
from into the character at the same position in to; from and to must both be bytes-like objects and have the same
length.
New in version 3.1.

bytes.partition(sep)
bytearray.partition(sep)

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple
containing a copy of the original sequence, followed by two empty bytes or bytearray objects.
The separator to search for may be any bytes-like object.

bytes.replace(old, new[, count])
bytearray.replace(old, new[, count])

Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.
The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rfind(sub[, start[, end]])
bytearray.rfind(sub[, start[, end]])

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.
The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex(sub[, start[, end]])
bytearray.rindex(sub[, start[, end]])

Like rfind() but raises ValueError when the subsequence sub is not found.
The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rpartition(sep)
bytearray.rpartition(sep)

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple
containing a copy of the original sequence, followed by two empty bytes or bytearray objects.
The separator to search for may be any bytes-like object.

bytes.startswith(prefix[, start[, end]])
bytearray.startswith(prefix[, start[, end]])

Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be a tuple
of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.
The prefix(es) to search for may be any bytes-like object.

bytes.translate(table, delete=b”)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.6.12

bytearray.translate(table, delete=b”)
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed,
and the remaining bytes have been mapped through the given translation table, which must be a bytes object of
length 256.
You can use the bytes.maketrans() method to create a translation table.
Set the table argument to None for translations that only delete characters:

>>> b'read this short text'.translate(None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.
The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible
binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of the
bytearray methods in this section do not operate in place, and instead produce new objects.
bytes.center(width[, fillbyte])
bytearray.center(width[, fillbyte])

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.ljust(width[, fillbyte])
bytearray.ljust(width[, fillbyte])

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.lstrip([chars])
bytearray.lstrip([chars])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII
characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars argument
is not a prefix; rather, all combinations of its values are stripped:

>>> b' spacious '.lstrip()
b'spacious '
>>> b'www.example.com'.lstrip(b'cmowz.')
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rjust(width[, fillbyte])

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

bytearray.rjust(width[, fillbyte])
Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal to
len(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.rsplit(sep=None, maxsplit=-1)
bytearray.rsplit(sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given,
at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence consisting
solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit() behaves like split()
which is described in detail below.

bytes.rstrip([chars])
bytearray.rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII
characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars argument
is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.rstrip()
b' spacious'
>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.split(sep=None, maxsplit=-1)
bytearray.split(sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given
and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1 elements). If
maxsplit is not specified or is -1, then there is no limit on the number of splits (all possible splits are made).
If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example, b'1,,2'.split(b',') returns [b'1', b'', b'2']). The sep argument may consist of a
multibyte sequence (for example, b'1<>2<>3'.split(b'<>') returns [b'1', b'2', b'3']). Split-
ting an empty sequence with a specified separator returns [b''] or [bytearray(b'')] depending on the
type of object being split. The sep argument may be any bytes-like object.
For example:

>>> b'1,2,3'.split(b',')
[b'1', b'2', b'3']
>>> b'1,2,3'.split(b',', maxsplit=1)
[b'1', b'2,3']
>>> b'1,2,,3,'.split(b',')
[b'1', b'2', b'', b'3', b'']

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence has

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.6.12

leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely of ASCII
whitespace without a specified separator returns [].
For example:

>>> b'1 2 3'.split()
[b'1', b'2', b'3']
>>> b'1 2 3'.split(maxsplit=1)
[b'1', b'2 3']
>>> b' 1 2 3 '.split()
[b'1', b'2', b'3']

bytes.strip([chars])
bytearray.strip([chars])

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used
with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.strip()
b'spacious'
>>> b'www.example.com'.strip(b'cmowz.')
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place, and
instead produce new objects.
bytes.capitalize()
bytearray.capitalize()

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized and
the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.expandtabs(tabsize=8)
bytearray.expandtabs(tabsize=8)

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces, depending
on the current column and the given tab size. Tab positions occur every tabsize bytes (default is 8, giving tab positions
at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to zero and the sequence is
examined byte by byte. If the byte is an ASCII tab character (b'\t'), one or more space characters are inserted
in the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the current byte is an ASCII newline (b'\n') or carriage return (b'\r'), it is copied and the current column is
reset to zero. Any other byte value is copied unchanged and the current column is incremented by one regardless
of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234'.expandtabs()
b'01 012 0123 01234'

(continues on next page)

60 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

(continued from previous page)
>>> b'01\t012\t0123\t01234'.expandtabs(4)
b'01 012 0123 01234'

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.isalnum()
bytearray.isalnum()

Return true if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, false otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal dig-
its are those byte values in the sequence b'0123456789'.
For example:

>>> b'ABCabc1'.isalnum()
True
>>> b'ABC abc1'.isalnum()
False

bytes.isalpha()
bytearray.isalpha()

Return true if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, false otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
For example:

>>> b'ABCabc'.isalpha()
True
>>> b'ABCabc1'.isalpha()
False

bytes.isdigit()
bytearray.isdigit()

Return true if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, false otherwise.
ASCII decimal digits are those byte values in the sequence b'0123456789'.
For example:

>>> b'1234'.isdigit()
True
>>> b'1.23'.isdigit()
False

bytes.islower()
bytearray.islower()

Return true if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
false otherwise.
For example:

>>> b'hello world'.islower()
True

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.6.12

(continued from previous page)
>>> b'Hello world'.islower()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.isspace()
bytearray.isspace()

Return true if all bytes in the sequence are ASCII whitespace and the sequence is not empty, false otherwise. ASCII
whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f' (space, tab, newline, carriage
return, vertical tab, form feed).

bytes.istitle()
bytearray.istitle()

Return true if the sequence is ASCII titlecase and the sequence is not empty, false otherwise. See bytes.
title() for more details on the definition of “titlecase”.
For example:

>>> b'Hello World'.istitle()
True
>>> b'Hello world'.istitle()
False

bytes.isupper()
bytearray.isupper()

Return true if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII
characters, false otherwise.
For example:

>>> b'HELLO WORLD'.isupper()
True
>>> b'Hello world'.isupper()
False

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

bytes.lower()
bytearray.lower()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase
counterpart.
For example:

>>> b'Hello World'.lower()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.splitlines(keepends=False)

62 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

bytearray.splitlines(keepends=False)
Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the universal
newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and
true.
For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines()
[b'ab c', b'', b'de fg', b'kl']
>>> b'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split() when a delimiter string sep is given, this method returns an empty list for the empty string, and
a terminal line break does not result in an extra line:

>>> b"".split(b'\n'), b"Two lines\n".split(b'\n')
([b''], [b'Two lines', b''])
>>> b"".splitlines(), b"One line\n".splitlines()
([], [b'One line'])

bytes.swapcase()
bytearray.swapcase()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase
counterpart and vice-versa.
For example:

>>> b'Hello World'.swapcase()
b'hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
Unlike str.swapcase(), it is always the case that bin.swapcase().swapcase() == bin for the
binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary
Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.title()
bytearray.title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the
remaining characters are lowercase. Uncased byte values are left unmodified.
For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
All other byte values are uncased.
The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The defi-
nition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries,
which may not be the desired result:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.6.12

>>> b"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
... return re.sub(rb"[A-Za-z]+('[A-Za-z]+)?",
... lambda mo: mo.group(0)[0:1].upper() +
... mo.group(0)[1:].lower(),
... s)
...
>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.upper()
bytearray.upper()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase
counterpart.
For example:

>>> b'Hello World'.upper()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence b'abcdefghijklmnopqrstuvwxyz'.
Uppercase ASCII characters are those byte values in the sequence b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

bytes.zfill(width)
bytearray.zfill(width)

Return a copy of the sequence left filled with ASCII b'0' digits to make a sequence of lengthwidth. A leading sign
prefix (b'+'/ b'-') is handled by inserting the padding after the sign character rather than before. For bytes
objects, the original sequence is returned if width is less than or equal to len(seq).
For example:

>>> b"42".zfill(5)
b'00042'
>>> b"-42".zfill(5)
b'-0042'

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if
no changes were made.

64 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

4.8.4 printf-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such
as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary, wrap it in a
tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also known as
the bytes formatting or interpolation operator. Givenformat % values (where format is a bytes object), % conversion
specifications in format are replaced with zero or more elements of values. The effect is similar to using the sprintf()
in the C language.
If format requires a single argument, values may be a single non-tuple object.5 Otherwise, values must be a tuple with
exactly the number of items specified by the format bytes object, or a single mapping object (for example, a dictionary).
A conversion specifier contains two or more characters and has the following components, which must occur in this order:

1. The '%' character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the next element

of the tuple in values, and the object to convert comes after the minimum field width and optional precision.
5. Precision (optional), given as a '.' (dot) followed by the precision. If specified as '*' (an asterisk), the actual

precision is read from the next element of the tuple in values, and the value to convert comes after the precision.
6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include a
parenthesised mapping key into that dictionary inserted immediately after the '%' character. The mapping key selects
the value to be formatted from the mapping. For example:

>>> print(b'%(language)s has %(number)03d quote types.' %
... {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).
The conversion flag characters are:

Flag Meaning
'#' The value conversion will use the “alternate form” (where defined below).
'0' The conversion will be zero padded for numeric values.
'-' The converted value is left adjusted (overrides the '0' conversion if both are given).
' ' (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
'+' A sign character ('+' or '-') will precede the conversion (overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld is identical
to %d.
The conversion types are:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.6.12

Conver-
sion

Meaning Notes

'd' Signed integer decimal.
'i' Signed integer decimal.
'o' Signed octal value. (1)
'u' Obsolete type – it is identical to 'd'. (8)
'x' Signed hexadecimal (lowercase). (2)
'X' Signed hexadecimal (uppercase). (2)
'e' Floating point exponential format (lowercase). (3)
'E' Floating point exponential format (uppercase). (3)
'f' Floating point decimal format. (3)
'F' Floating point decimal format. (3)
'g' Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less

than precision, decimal format otherwise.
(4)

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less
than precision, decimal format otherwise.

(4)

'c' Single byte (accepts integer or single byte objects).
'b' Bytes (any object that follows the buffer protocol or has __bytes__()). (5)
's' 's' is an alias for 'b' and should only be used for Python2/3 code bases. (6)
'a' Bytes (converts any Python object using repr(obj).encode('ascii',

'backslashreplace)).
(5)

'r' 'r' is an alias for 'a' and should only be used for Python2/3 code bases. (7)
'%' No argument is converted, results in a '%' character in the result.

Notes:
(1) The alternate form causes a leading octal specifier ('0o') to be inserted before the first digit.
(2) The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was used) to

be inserted before the first digit.
(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.
(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they

would otherwise be.
The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.
(6) b'%s' is deprecated, but will not be removed during the 3.x series.
(7) b'%r' is deprecated, but will not be removed during the 3.x series.
(8) See PEP 237.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

See also:
PEP 461 - Adding % formatting to bytes and bytearray
New in version 3.5.

66 Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0237
https://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.6.12

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol without
copying.
class memoryview(obj)

Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that support the
buffer protocol include bytes and bytearray.
A memoryview has the notion of an element, which is the atomic memory unit handled by the originating object
obj. For many simple types such as bytes and bytearray, an element is a single byte, but other types such as
array.array may have bigger elements.
len(view) is equal to the length of tolist. If view.ndim = 0, the length is 1. If view.ndim = 1,
the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length
of the nested list representation of the view. The itemsize attribute will give you the number of bytes in a single
element.
A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview:

>>> v = memoryview(b'abcefg')
>>> v[1]
98
>>> v[-1]
103
>>> v[1:4]
<memory at 0x7f3ddc9f4350>
>>> bytes(v[1:4])
b'bce'

If format is one of the native format specifiers from the struct module, indexing with an integer or a tuple of
integers is also supported and returns a single element with the correct type. One-dimensional memoryviews can
be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with tuples of
exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed
with the empty tuple.
Here is an example with a non-byte format:

>>> import array
>>> a = array.array('l', [-11111111, 22222222, -33333333, 44444444])
>>> m = memoryview(a)
>>> m[0]
-11111111
>>> m[-1]
44444444
>>> m[::2].tolist()
[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is not
allowed:

>>> data = bytearray(b'abcefg')
>>> v = memoryview(data)
>>> v.readonly
False
>>> v[0] = ord(b'z')
>>> data
bytearray(b'zbcefg')

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67

The Python Library Reference, Release 3.6.12

(continued from previous page)
>>> v[1:4] = b'123'
>>> data
bytearray(b'z123fg')
>>> v[2:3] = b'spam'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview assignment: lvalue and rvalue have different structures
>>> v[2:6] = b'spam'
>>> data
bytearray(b'z1spam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash
is defined as hash(m) == hash(m.tobytes()):

>>> v = memoryview(b'abcefg')
>>> hash(v) == hash(b'abcefg')
True
>>> hash(v[2:4]) == hash(b'ce')
True
>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with
formats ‘B’, ‘b’ or ‘c’ are now hashable.
Changed in version 3.4: memoryview is now registered automatically with collections.abc.Sequence
Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:
__eq__(exporter)

A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using struct syntax.
For the subset of struct format strings currently supported by tolist(), v and w are equal if v.
tolist() == w.tolist():

>>> import array
>>> a = array.array('I', [1, 2, 3, 4, 5])
>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> c = array.array('b', [5, 3, 1])
>>> x = memoryview(a)
>>> y = memoryview(b)
>>> x == a == y == b
True
>>> x.tolist() == a.tolist() == y.tolist() == b.tolist()
True
>>> z = y[::-2]
>>> z == c
True
>>> z.tolist() == c.tolist()
True

If either format string is not supported by the struct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

68 Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.6.12

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint(BigEndianStructure):
... _fields_ = [("x", c_long), ("y", c_long)]
...
>>> point = BEPoint(100, 200)
>>> a = memoryview(point)
>>> b = memoryview(point)
>>> a == point
False
>>> a == b
False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.
Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and the
logical array structure.

tobytes()
Return the data in the buffer as a bytestring. This is equivalent to calling the bytes constructor on the
memoryview.

>>> m = memoryview(b"abc")
>>> m.tobytes()
b'abc'
>>> bytes(m)
b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to
bytes. tobytes() supports all format strings, including those that are not in struct module syntax.

hex()
Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview(b"abc")
>>> m.hex()
'616263'

New in version 3.5.
tolist()

Return the data in the buffer as a list of elements.

>>> memoryview(b'abc').tolist()
[97, 98, 99]
>>> import array
>>> a = array.array('d', [1.1, 2.2, 3.3])
>>> m = memoryview(a)
>>> m.tolist()
[1.1, 2.2, 3.3]

Changed in version 3.3: tolist() now supports all single character native formats in struct module
syntax as well as multi-dimensional representations.

release()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
a view is held on them (for example, a bytearray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 69

The Python Library Reference, Release 3.6.12

After this method has been called, any further operation on the view raises a ValueError (except
release() itself which can be called multiple times):

>>> m = memoryview(b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview(b'abc') as m:
... m[0]
...
97
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operation forbidden on released memoryview object

New in version 3.2.
cast(format[, shape])

Cast a memoryview to a new format or shape. shape defaults to [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview, but the
buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.
The destination format is restricted to a single element native format in struct syntax. One of the formats
must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the original length.
Cast 1D/long to 1D/unsigned bytes:

>>> import array
>>> a = array.array('l', [1,2,3])
>>> x = memoryview(a)
>>> x.format
'l'
>>> x.itemsize
8
>>> len(x)
3
>>> x.nbytes
24
>>> y = x.cast('B')
>>> y.format
'B'
>>> y.itemsize
1
>>> len(y)
24
>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz')
>>> x = memoryview(b)
>>> x[0] = b'a'

(continues on next page)

70 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

(continued from previous page)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: memoryview: invalid value for format "B"
>>> y = x.cast('c')
>>> y[0] = b'a'
>>> b
bytearray(b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct
>>> buf = struct.pack("i"*12, *list(range(12)))
>>> x = memoryview(buf)
>>> y = x.cast('i', shape=[2,2,3])
>>> y.tolist()
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]
>>> y.format
'i'
>>> y.itemsize
4
>>> len(y)
2
>>> y.nbytes
48
>>> z = y.cast('b')
>>> z.format
'b'
>>> z.itemsize
1
>>> len(z)
48
>>> z.nbytes
48

Cast 1D/unsigned char to 2D/unsigned long:

>>> buf = struct.pack("L"*6, *list(range(6)))
>>> x = memoryview(buf)
>>> y = x.cast('L', shape=[2,3])
>>> len(y)
2
>>> y.nbytes
48
>>> y.tolist()
[[0, 1, 2], [3, 4, 5]]

New in version 3.3.
Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:
obj

The underlying object of the memoryview:

>>> b = bytearray(b'xyz')
>>> m = memoryview(b)

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71

The Python Library Reference, Release 3.6.12

(continued from previous page)
>>> m.obj is b
True

New in version 3.3.
nbytes

nbytes == product(shape) * itemsize == len(m.tobytes()). This is the amount of
space in bytes that the array would use in a contiguous representation. It is not necessarily equal to len(m):

>>> import array
>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)
>>> len(m)
5
>>> m.nbytes
20
>>> y = m[::2]
>>> len(y)
3
>>> y.nbytes
12
>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct
>>> buf = struct.pack("d"*12, *[1.5*x for x in range(12)])
>>> x = memoryview(buf)
>>> y = x.cast('d', shape=[3,4])
>>> y.tolist()
[[0.0, 1.5, 3.0, 4.5], [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)
3
>>> y.nbytes
96

New in version 3.3.
readonly

A bool indicating whether the memory is read only.
format

A string containing the format (in struct module style) for each element in the view. A memoryview can
be created from exporters with arbitrary format strings, but some methods (e.g. tolist()) are restricted
to native single element formats.
Changed in version 3.3: format 'B' is now handled according to the struct module syntax. This means that
memoryview(b'abc')[0] == b'abc'[0] == 97.

itemsize
The size in bytes of each element of the memoryview:

>>> import array, struct
>>> m = memoryview(array.array('H', [32000, 32001, 32002]))
>>> m.itemsize
2
>>> m[0]

(continues on next page)

72 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

(continued from previous page)
32000
>>> struct.calcsize('H') == m.itemsize
True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.
Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension of
the array.
Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.
New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.
New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.
New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, removing
duplicates from a sequence, and computingmathematical operations such as intersection, union, difference, and symmetric
difference. (For other containers see the built-in dict, list, and tuple classes, and the collections module.)
Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.
There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add() and remove(). Since it is mutable, it has no hash value and cannot be used as
either a dictionary key or as an element of another set. The frozenset type is immutable and hashable— its contents
cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set.
Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for example:
{'jack', 'sjoerd'}, in addition to the set constructor.
The constructors for both classes work the same:
class set([iterable])

4.9. Set Types — set, frozenset 73

The Python Library Reference, Release 3.6.12

class frozenset([iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be hashable.
To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a new empty set
is returned.
Instances of set and frozenset provide the following operations:
len(s)

Return the number of elements in set s (cardinality of s).
x in s

Test x for membership in s.
x not in s

Test x for non-membership in s.
isdisjoint(other)

Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersection
is the empty set.

issubset(other)
set <= other

Test whether every element in the set is in other.
set < other

Test whether the set is a proper subset of other, that is, set <= other and set != other.
issuperset(other)
set >= other

Test whether every element in other is in the set.
set > other

Test whether the set is a proper superset of other, that is, set >= other and set != other.
union(*others)
set | other | ...

Return a new set with elements from the set and all others.
intersection(*others)
set & other & ...

Return a new set with elements common to the set and all others.
difference(*others)
set - other - ...

Return a new set with elements in the set that are not in the others.
symmetric_difference(other)
set ^ other

Return a new set with elements in either the set or other but not both.
copy()

Return a new set with a shallow copy of s.
Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference(), issubset(), and issuperset() methods will accept any iterable
as an argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set('abc') & 'cbs' in favor of the more readable set('abc').
intersection('cbs').
Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if
the first set is a proper superset of the second set (is a superset, but is not equal).
Instances ofset are compared to instances offrozenset based on their members. For example, set('abc')
== frozenset('abc') returns True and so does set('abc') in set([frozenset('abc')]).
The subset and equality comparisons do not generalize to a total ordering function. For example, any two nonempty
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b, or
a>b.
Since sets only define partial ordering (subset relationships), the output of the list.sort()method is undefined
for lists of sets.
Set elements, like dictionary keys, must be hashable.
Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset('ab') | set('bc') returns an instance of frozenset.
The following table lists operations available for set that do not apply to immutable instances of frozenset:
update(*others)
set |= other | ...

Update the set, adding elements from all others.
intersection_update(*others)
set &= other & ...

Update the set, keeping only elements found in it and all others.
difference_update(*others)
set -= other | ...

Update the set, removing elements found in others.
symmetric_difference_update(other)
set ^= other

Update the set, keeping only elements found in either set, but not in both.
add(elem)

Add element elem to the set.
remove(elem)

Remove element elem from the set. Raises KeyError if elem is not contained in the set.
discard(elem)

Remove element elem from the set if it is present.
pop()

Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.
clear()

Remove all elements from the set.
Note, the non-operator versions of the update(), intersection_update(),
difference_update(), and symmetric_difference_update() methods will accept any it-
erable as an argument.
Note, the elem argument to the __contains__(), remove(), and discard() methods may be a set. To
support searching for an equivalent frozenset, a temporary one is created from elem.

4.9. Set Types — set, frozenset 75

The Python Library Reference, Release 3.6.12

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one
standard mapping type, the dictionary. (For other containers see the built-in list, set, and tuple classes, and the
collections module.)
A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such as 1 and 1.0)
then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)
Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{'jack': 4098, 'sjoerd': 4127} or {4098: 'jack', 4127: 'sjoerd'}, or by the dict con-
structor.
class dict(**kwarg)
class dict(mapping, **kwarg)
class dict(iterable, **kwarg)

Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.
If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the
positional argument must be an iterable object. Each item in the iterable must itself be an iterable with exactly two
objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding
value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new
dictionary.
If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from
the positional argument. If a key being added is already present, the value from the keyword argument replaces the
value from the positional argument.
To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2, "three":
3}:

>>> a = dict(one=1, two=2, three=3)
>>> b = {'one': 1, 'two': 2, 'three': 3}
>>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))
>>> d = dict([('two', 2), ('one', 1), ('three', 3)])
>>> e = dict({'three': 3, 'one': 1, 'two': 2})
>>> a == b == c == d == e
True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers. Otherwise,
any valid keys can be used.
These are the operations that dictionaries support (and therefore, custom mapping types should support too):
len(d)

Return the number of items in the dictionary d.
d[key]

Return the item of d with key key. Raises a KeyError if key is not in the map.
If a subclass of dict defines a method __missing__() and key is not present, the d[key] operation calls
that method with the key key as argument. The d[key] operation then returns or raises whatever is returned
or raised by the __missing__(key) call. No other operations or methods invoke __missing__().

76 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

If __missing__() is not defined, KeyError is raised. __missing__()must be a method; it cannot
be an instance variable:

>>> class Counter(dict):
... def __missing__(self, key):
... return 0
>>> c = Counter()
>>> c['red']
0
>>> c['red'] += 1
>>> c['red']
1

The example above shows part of the implementation of collections.Counter. A different
__missing__ method is used by collections.defaultdict.

d[key] = value
Set d[key] to value.

del d[key]
Remove d[key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter(d.keys()).

clear()
Remove all items from the dictionary.

copy()
Return a shallow copy of the dictionary.

classmethod fromkeys(seq[, value])
Create a new dictionary with keys from seq and values set to value.
fromkeys() is a class method that returns a new dictionary. value defaults to None.

get(key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None, so
that this method never raises a KeyError.

items()
Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view objects.

keys()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop(key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key is
not in the dictionary, a KeyError is raised.

popitem()
Remove and return an arbitrary (key, value) pair from the dictionary.
popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictio-
nary is empty, calling popitem() raises a KeyError.

4.10. Mapping Types — dict 77

The Python Library Reference, Release 3.6.12

setdefault(key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default
defaults to None.

update([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.
update() accepts either another dictionary object or an iterable of key/value pairs (as tuples or other iter-
ables of length two). If keyword arguments are specified, the dictionary is then updated with those key/value
pairs: d.update(red=1, blue=2).

values()
Return a new view of the dictionary’s values. See the documentation of view objects.

Dictionaries compare equal if and only if they have the same (key, value) pairs. Order comparisons (‘<’,
‘<=’, ‘>=’, ‘>’) raise TypeError.

See also:
types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict.keys(), dict.values() and dict.items() are view objects. They provide a
dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes.
Dictionary views can be iterated over to yield their respective data, and support membership tests:
len(dictview)

Return the number of entries in the dictionary.
iter(dictview)

Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.
Keys and values are iterated over in an arbitrary order which is non-random, varies across Python implementations,
and depends on the dictionary’s history of insertions and deletions. If keys, values and items views are iterated over
with no intervening modifications to the dictionary, the order of items will directly correspond. This allows the
creation of (value, key) pairs using zip(): pairs = zip(d.values(), d.keys()). Another
way to create the same list is pairs = [(v, k) for (k, v) in d.items()].
Iterating views while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate
over all entries.

x in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since the entries
are generally not unique.) For set-like views, all of the operations defined for the abstract base class collections.
abc.Set are available (for example, ==, <, or ^).
An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys()
>>> values = dishes.values()

>>> # iteration
>>> n = 0

(continues on next page)

78 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

(continued from previous page)
>>> for val in values:
... n += val
>>> print(n)
504

>>> # keys and values are iterated over in the same order
>>> list(keys)
['eggs', 'bacon', 'sausage', 'spam']
>>> list(values)
[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']
>>> del dishes['sausage']
>>> list(keys)
['spam', 'bacon']

>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}
>>> keys ^ {'sausage', 'juice'}
{'juice', 'sausage', 'bacon', 'spam'}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is implemented
using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement
body is executed and exited when the statement ends:
contextmanager.__enter__()

Enter the runtime context and return either this object or another object related to the runtime context. The value
returned by this method is bound to the identifier in the as clause of with statements using this context manager.
An example of a context manager that returns itself is a file object. File objects return themselves from __enter__()
to allow open() to be used as the context expression in a with statement.
An example of a context manager that returns a related object is the one returned by decimal.
localcontext(). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the with
statement without affecting code outside the with statement.

contextmanager.__exit__(exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.
Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues prop-
agating after this method has finished executing. Exceptions that occur during execution of this method will replace
any exception that occurred in the body of the with statement.
The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code to easily detect whether or not an __exit__() method has actually failed.

4.11. Context Manager Types 79

The Python Library Reference, Release 3.6.12

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other objects,
and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially beyond
their implementation of the context management protocol. See the contextlib module for some examples.
Python’s generators and thecontextlib.contextmanager decorator provide a convenient way to implement these
protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will return
a context manager implementing the necessary __enter__() and __exit__() methods, rather than the iterator
produced by an undecorated generator function.
Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API.
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

4.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather it
requires an (external) definition for a module named foo somewhere.)
A special attribute of everymodule is__dict__. This is the dictionary containing themodule’s symbol table. Modifying
this dictionary will actually change the module’s symbol table, but direct assignment to the __dict__ attribute is not
possible (you can write m.__dict__['a'] = 1, which defines m.a to be 1, but you can’t write m.__dict__ =
{}). Modifying __dict__ directly is not recommended.
Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file, they
are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.12.2 Classes and Class Instances

See objects and class for these.

4.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list).
There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.
See function for more information.

80 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

4.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.
If you access a method (a function defined in a class namespace) through an instance, you get a special object: a bound
method (also called instance method) object. When called, it will add the self argument to the argument list. Bound
methods have two special read-only attributes: m.__self__ is the object on which the method operates, and m.
__func__ is the function implementing the method. Calling m(arg-1, arg-2, ..., arg-n) is completely
equivalent to calling m.__func__(m.__self__, arg-1, arg-2, ..., arg-n).
Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__func__), setting method attributes on bound methods is
disallowed. Attempting to set an attribute on a method results in an AttributeError being raised. In order to set a
method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
... def method(self):
... pass
...
>>> c = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method.__func__.whoami = 'my name is method'
>>> c.method.whoami
'my name is method'

See types for more information.

4.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a function
body. They differ from function objects because they don’t contain a reference to their global execution environment.
Code objects are returned by the built-in compile() function and can be extracted from function objects through their
__code__ attribute. See also the code module.
A code object can be executed or evaluated by passing it (instead of a source string) to the exec() or eval() built-in
functions.
See types for more information.

4.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type(). There are
no special operations on types. The standard module types defines names for all standard built-in types.
Types are written like this: <class 'int'>.

4.12. Other Built-in Types 81

The Python Library Reference, Release 3.6.12

4.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is exactly
one null object, named None (a built-in name). type(None)() produces the same singleton.
It is written as None.

4.12.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named Ellipsis (a built-in name). type(Ellipsis)() produces the Ellipsis singleton.
It is written as Ellipsis or

4.12.9 The NotImplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they
don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type(NotImplemented)() produces the singleton instance.
It is written as NotImplemented.

4.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although other
values can also be considered false or true). In numeric contexts (for example when used as the argument to an arithmetic
operator), they behave like the integers 0 and 1, respectively. The built-in function bool() can be used to convert any
value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).
They are written as False and True, respectively.

4.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of these
are not reported by the dir() built-in function.
object.__dict__

A dictionary or other mapping object used to store an object’s (writable) attributes.
instance.__class__

The class to which a class instance belongs.
class.__bases__

The tuple of base classes of a class object.
definition.__name__

The name of the class, function, method, descriptor, or generator instance.

82 Chapter 4. Built-in Types

The Python Library Reference, Release 3.6.12

definition.__qualname__
The qualified name of the class, function, method, descriptor, or generator instance.
New in version 3.3.

class.__mro__
This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is called
at class instantiation, and its result is stored in __mro__.

class.__subclasses__()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. Example:

>>> int.__subclasses__()
[<class 'bool'>]

4.13. Special Attributes 83

The Python Library Reference, Release 3.6.12

84 Chapter 4. Built-in Types

	Built-in Functions
	Built-in Types
	Truth Value Testing
	Boolean Operations — and, or, not
	Comparisons
	Numeric Types — int, float, complex
	Iterator Types
	Sequence Types — list, tuple, range
	Text Sequence Type — str
	Binary Sequence Types — bytes, bytearray, memoryview
	Set Types — set, frozenset
	Mapping Types — dict
	Context Manager Types
	Other Built-in Types
	Special Attributes

