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Newell and Simon (1972) provided a framework for un­
derstanding problem solving that can provide the needed 
bridge between learning and performance. Their analysis 
of means-ends problem solving can be viewed as a general 
characterization of the stmcture of human cognition. 
However. this framework needs to be elaborated with a 
strength concept to account for variability in problem­
solving behavior and improvement in problem-solving skill 
with practice. The ACT* theory (Anderson. 1983) is such 
an elaborated theory that can account for many of the 
results about the acquisition of problem-solving skills. Its 
central concept is the production rule, which plays an 
analogous role to the stimulus-response bond in earlier 
learning theories. The theory has provided a basis for con­
structing intelligent computer-based tutoring systems for 
the instruction of academic problem-solving skills. 

Thorndike's (1898) original learning experiments in­
volved cats learning to solve the problem of getting out 
of a puzzle box. As most introductory psychology texts 
recount, Thorndike concluded that his cats managed to 
get out of the puzzle box by a trial and error process. In 
Thorndike's conception there was really nothing happen­
ing that could be called problem solving. What was hap­
pening was the gradual strengthening of successful re­
sponses. Thorndike's research is often cited as the begin­
ning of the analysis of learning that occupied American 
psychology for much ofthis century. It could also be cited 
as the beginning of the neglect of problem solving as a 
topic worthy of analysis. 

Although Kohler (e.g., 1927) and the other Gestalt 
psychologists used problem-solving tasks to demonstrate 
the inadequacies in the behaviorist conceptions of learn­
ing, they failed to offer an analysis of the problem-solving 
process. Tolman (1932) saw the critical role of goals in 
learning and behavior but failed to put that insight into 
a coherent theory, leaving him vulnerable to Guthrie's 
(1952) famous criticism that he left his rat buried in 
thought and inaction. 

Problem solving finally was given a coherent pro­
gram of analysis by Newell and Simon (1972) in a line 
of research that culminated in their book Human Problem 
Solving. The basic conception of problem solving they 
set forth continues to frame research in the field. Their 
conception had its foundation in artificial intelligence and 
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computer simulation of human thought and was basically 
unconnected to research in animal and human learning. 

Research on human learning and research on prob­
lem solving are finally meeting in the current research 
on the acquisition of cognitive skills (Anderson, 1981; 
Chi, Glaser, & Farr, 1988; Van Lehn, 1989). Given nearly 
a century of mutual neglect, the concepts from the two 
fields are ill prepared to relate to each other. I will argue 
in this article that research on human problem solving 
would have been more profitable had it attempted to in­
corporate ideas from learning theory. Even more so, re­
search on learning would have borne more fruit had 
Thorndike not cast out problem solving. 

This article will review the basic conception of prob­
lem solving that is the legacy of the Newell and Simon 
tradition. It will show how this conception solves the gen­
eral problem of the relationship between learning and 
performance that has haunted learning theory. In partic­
ular, it provides a concrete realization of Tolman's in­
sights. I will also present the case for problem solving as 
the structure that organizes human thought and means­
ends analysis as the principal realization of that structure. 
I will argue, however, that this research has been stunted 
because of its inability to deal with variability and change 
in behavior. 

Then I will turn to the more recent research on ac­
quisition of cognitive skills. I will discuss the critical role 
of the production rule, a computational improvement 
over the stimUlus-response bond, in organizing that re­
search. I will show how the acquisition of complex skills 
can be accounted for by the separate acquisition of these 
rules, thus realizing the goal oflearning theory to account 
for complex learning in terms of the acquisition of simple 
units: I will close by discussing the implications of this 
analysis for education, one of Thorndike's great concerns. 
Here I will describe my own research on intelligent tu­
toring systems, which has been based on the recent in­
sights into problem solving and learning. We have been 
able to greatly accelerate and improve the acquisition of 
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complex skills, such as proof skills in geometry or com­
puter programming skill. This serves to illustrate the 
powerful practical applications that can be achieved if 
only the fields of problem solving and learning listen to 
each other. 

Canonical Conception of Problem 
Solving 

In this section I will try to sketch the canonical conception 
of problem solving that has its origins with the work of 
Newell and Simon. 

Problem Space 

The concept of a problem-solving state is probably the 
most basic term in the Newell and Simon characterization 
of problem solving. A problem solution can be charac­
terized as the solver beginning in some initial state of the 
problem, traversing through some intermediate states, and 
arriving at a state that satisfies the goal. If the problem 
is finding one's way through a maze, the states might be 
the various locations in the maze. If the problem is solving 
the Tower of Hanoi problem (see Figure 1), the states 
would be various configurations of disks and pegs. 1 The 
actual reference of state is ambiguous. It could mean ei­
ther some external state of affairs or some internal coding 
of that state of affairs. Newell and Simon, with their em­
phasis on problem solving by computer, typically took it 
to mean the internal coding. 

The second key construct is that ofa problem-solving 
operator. An operator is an action that transforms one 
state into another state. In the maze the obvious operators 
are going from one location to another, whereas in Tower 
of Hanoi they are various movements of disks. An op­
erator can be characterized by what must be true for it 
to apply and what change it produces in the state. In the 

. case of the maze, there must be a path between the two 
locations for the move operator, and its effect is to change 
the location of the organism. In the case of Tower of 
Hanoi, the disk to be moved must be on top of the source 
peg and must be smaller than the smallest disk at the 
destination peg. Its effect is to change the location of the 

Figure 1 
Tower o( Hanoi Problem 
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Note. The goal is to move all the disks from the start peg to the finish peg. Only 
one disk may be moved at a time. and one cannot place a larger disk on a smaller 
disk. 
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Figure 2 
Problem Space (or the Three·Disk Tower o( Hanoi Problem 
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disk. Newell and Simon conceived of the problem solver 
as having an internal representation of the operators, their 
preconditions, and their effects. 

Together the concepts of state and operator define 
the concept of a problem space. At any state some number 
of operators apply, each of which will produce a new state, 
from which various operators can apply producing new 
states, and so forth. Figure 2 illustrates the complete 
problem space for the three-disk Tower of Hanoi problem, 
one of the smaller of the problem spaces. As can be seen, 
many problem spaces are closed with only a finite set of 
reachable states and loops among those states. Within the 
problem-space conception, the problem in problem solv­
ing is search. which is to find some sequence of problem­
solving operators that will allow traversal in the problem 
space between the current state and a goal state. 

In contrast to states and operators, Newell and Simon 
did not hold that there is an internal representation of 
an entire problem space. Rather problem solvers can dy­
namically generate paths in this space by applying their 
operators. This generation process can either be done ex­
ternally, in which case direct actions are taken, or inter­
nally, in which case the problem solver imagines some 
sequence of actions to evaluate them. 

Problem-Solving Methods 

Whether one is performing operators externally or imag­
ining them, the critical issue is how to select the next 

I The Tower of Hanoi task is one of a number of "toy" tasks that 
had an important role in the early development of ideas about problem 
solving. Studies of problem solving have now extended to complex and 
important problem-solving tasks. However, the Tower of Hanoi task and 
others like it remain useful both for exposition of the basic concepts and 
as paradigms for studying these concepts in relative isolation. 
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operator. The term problem-solving method refers to the 
principles used for selecting operators. The method cho­
sen can vary from blind search to executing an algorithm 
that is guaranteed to find a minimum-step solution. 
Problem solvers' behavior in a particular situation can 
be understood by knowing which method is being used. 
Artificial intelligence textbooks (e.g., Nilsson, 1971) fre­
quently recount a large array of often exotic methods. 
Anderson (1990b) can be consulted for evidence that hu­
mans at various times use some of the simpler methods. 
For instance, people tend to select operators that create 
states more similar to the goal state (this method is called 
hill climbing). The next subsection discusses in some de­
tail the method of means-ends analysis, which seems to 
be the premier human problem-solving method. 

Although problem solving can be typically under­
stood as some method applying in a fixed problem space, 
occasionally problem solving can progress by changing 
the problem space by re-representing the problem states 
or the operators or by adding new operators. These tend 
to be thought of as the more insightful problem solutions. 
Research on functional fixedness (e.g., Duncker, 1945) 
can be thought of in these terms, as can research on prob­
lem-solving representation (e.g., Kaplan & Simon, 1990). 

Newell and Simon in their 1972 monograph showed 
how to apply their method of analysis to a number of 
problem-solving situations. By characterizing a subject's 
representation of states, his or her operators, and the 
problem-solving method, one is able to simulate the be­
havior of subjects down to the point of predicting every 
(or nearly every) move they make in a complex problem­
solving episode. One can walk away from such an analysis 
with the claim of having understood the episode in a fairly 
rich and detailed way. Although the issue of evaluating 
the fit of such a simulation model to the episode has always 
been a sore point, often the qualitative fit can be quite 
compelling. 

It is of interest to consider the outlines of the appli­
cation of this analysis to some classic learning task.,such 
as an animal learning to run a maze. Under this analysis 
the learning that takes place is effectively operator learn­
ing-learning that moving along a path will get the animal 
from one location to another. The performance that takes 
place would use this operator knowledge through some 
problem-solving method to achieve the goal. Thus, as 
Tolman (1932) insisted, learning is separate from perfor­
mance, and it is goals that trigger the conversion of what 
has been learned into performance. Tolman was criticized 
for not unpacking how that conversion took place. It is 
the problem-solving method that converts what is learned 
into performance in service of a goal. Thus, the rat is no 
longer left lost in thought, and there is nothing nonme­
chanical guiding the animal through the maze. 

Means-Ends Analysis 

Two key features often observed of human problem solv­
ing are difference reduction and subgoaling. Difference 
reduction refers to the tendency of problem solvers to 
select operators that produce states more similar to the 
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goal state. People are very reluctant to pursue paths that 
temporarily take them in the direction of states less similar 
to the goal (see Anderson 1990b). One ofK6hler's (1927) 
interests was to understand the difficulties various species 
of animals have with detour problems that require them 
to take a nondirect path to the goal. So the reliance on 
similarity is hardly unique to humans. Anderson (1990a) 
can be consulted for arguments that this reliance on sim­
ilarity is adaptive in that most problems can be effectively 
solved by moving in the direction of the goal. Of course, 
how one measures similarity can be tricky, and some 
kinds of problem-solving learning take the form of de­
veloping more useful ways of assessing similarity to the 
goal state. This is often characterized as problem solvers 
going beyond the surface features of a problem to its deep 
features (e.g., Chi, Feltovich, & Glaser. 1981). 

Subgoaling can be nicely illustrated in the Tower of 
Hanoi problem. For instance, consider the following pro­
tocol of one of Neves's (1977) subjects who was faced 
with the Tower of Hanoi problem in Figure 3: 

The 4 has to go to the 3, 
But the 3 is in the way. 
So you have to move the 3 to the 2 post. 
The I is in the way there. 
So you move the I to the 3. 

As in this case, subgoaling can involve creating a 
stack of such subgoals. Simon (1975) discussed the dif­
ficulty in remembering these subgoals. Anderson and 
Kushmerick (in press) showed that the time to make a 
move in the Tower of Hanoi task is strongly correlated 
with the number of subgoals that must be set before that 
move. 

Means-ends analysis provides a way of understand­
ing why difference reduction and subgoaling are so per­
vasive in human problem solving and how they relate to 
one another. Figure 4 illustrates the logic of means -ends 
analysis. The basic cycle of the problem solver is to look 
for the biggest difference between the current state and 
the goal state and try to reduce that difference. The prob­
lem solver makes a subgoal of eliminating that difference. 
Thus, if a problem solver correctly perceives the Tower 
of Hanoi problem, he or she would consider the biggest 
difference to be the largest disk out of place, as did Neves's 
(1977) subject. The problem solver searches for some op­
erator relevant to removing that difference. If the operator 
can be applied, it is, and problem solving progresses for-

Figure 3 
State of Tower of Hanoi Problems Facing the Subiect 
Whose Protocol is Reported in the Article 
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Figure 4 
Application of Means-Ends Analysis 

Flowchart I Goal: Transform current state into goal state 
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SUCCESS FAll. 

Flowchart /I Goal: Eliminate the difference FAll. 

SUCCESS , I 
Search for operator Operator Match condition of Difference Subgoal: 
relevant to reducing operator to current Eliminate t--

found detected the difference state to find most the difference 
important difference 

NONE FOUND 
. ~NO DIFFERENCE 

FAll. APPLY OPERATOR 

Nole. Flowchart I breaks a problem down into a set of differences ond tries to eliminate each. Flowchart II searches for an operator relevant to eliminating a difference. 

ward. However, if it cannot (as when a disk blocks the 
move of another disk in Tower of Hanoi), the problem 
solver sets the subgoal of eliminating the blocking con­
dition. Thus, for instance, Neves's subject set the subgoal 
of removing Disk 3, which was blocking the move of Disk 
4. The problem solver no longer is working on the original 
goal but is working on a subgoal, which is only a means 
to the ultimate end. The three key features of means­
ends analysis are the focus on eliminating a single large 
difference, the selection of operators by what differences 
they reduce, and the subgoaling of the preconditiOns of 
the operator if they are not met in the current state. An­
derson (1990a) can be consulted for a general analysis of 
why this problem-solving method can lead to optimal 
problem solving in novel situations. 

Means-ends analysis does not just apply to exotic 
laboratory puzzles. Newell and Simon (1972) emphasized 
that it is found in all aspects oflife. Consider, for instance, 
their following example: 

I want to take my son to nursery school. What's the difference 
between what I have and what I want? One of distance. What 
changes distance? My automobile. My automobile won't work. 
What is needed to make it work? A new battery. What has new 
batteries? An auto repair shop. I want the repair shop to put in 
a new battery: but the shop doesn't know I need one. What is 
the difficulty? One of communication. What allows communi­
cation? A telephone ... and so on. (p. 416) 

Whereas it would be incorrect to assert that all hu­
man problem solving is organized by means-ends anal­
ysis, this problem-solving method has played the largest 
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role in accounting for behavior in puzzles like Tower of 
Hanoi, academic problem solving (Larkin, McDermott, 
Simon, & Simon, 1980), and everyday problem solving 
(Klahr, 1978). Often because of the structure of the prob­
lem, all the aspects of the underlying means-ends method 
do not manifest themselves. Thus, problem solving on 
certain puzzles may look like hill climbing (e.g., Jeffries, 
Polson, Razran, & Atwood, 1977) because the operators 
for the problem do not have the kind of prerequisite 
structure that leads to subgoaling, and so we only see 
difference reduction. Conversely, a problem may look like 
pure subgoal decomposition (Anderson, Farrell, & Sauers, 
1984) because there is no similarity structure to guide 
the choice of subgoals. 

It is of interest to speculate how far means-ends 
analysis is found down the phylogenic scale and devel­
opmental scales. Klahr (1978) has argued that children 
are quite capable of means-ends analysis. Their problem 
solving is often ineffective because of inadequate repre­
sentation of the problem, and they become more effective 
means-ends problem solvers when their representations 
of the problem and the operators become sophisticated 
enough to enable means-ends problem solving to apply. 
Kohler's (1927) characterization of chimpanzee problem 
solving would seem to imply a means-ends capacity for 
them, even as his more dismal characterization of lower 
organisms would imply they do not have a means-ends 
capacity. There should be a very strong connection be­
tween tool manufacture and use and means-ends problem 
solving. A tool is a concrete means to an end. My own 
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belief is that the means-ends problem-solving method is 
an innate part of the cognitive machinery of humans and 
other primates. 

Central Role of Problem Solving in Cognition 

The remark above about the possible innate status of the 
means-ends method raises the issue of how to conceive 
of the place of problem solving in cognition generally. 
There is a tendency of some psychologists to view research 
on problem solving as a narrow domain approximately 
equivalent to research on mathematical behavior. That 
is, it is an intellectual activity that we may engage in a 
few times a day and that can be understood in terms of 
principles of cognition more general than problem solv­
ing. This is far from how some researchers on problem 
solving (e.g., Newell, 1980) have viewed the matter. For 
them, all higher level cognition is problem solving. This 
is an implication of the proposal made above for how 
problem solving provides the bridge between learning and 
performance. The problem-solving methods provide the 
mechanisms for converting knowledge into behavior, in­
cluding cognitive behavior. They provide this bridge 
everywhere and not just with esoteric puzzles. 

One problem with the claim for the central role of 
problem solving is that much of human cognition does 
not feel like problem solving. Some activities, like solving 
a Tower of Hanoi problem or solving a new kind of physics 
problem, feel like problem solving, whereas other more 
routine activities, such as using a familiar computer ap­
plication or adding up a restaurant bill, do not. This re­
flects the difference between the reference of problem 
solving in everyday speech and its use by researchers. In 
everyday speech the term problem solving refers to activ­
ities that are novel and effortful. The theorist's claim is 
that the underlying organization of these activities is no 
different from the underlying organization of the more 
routine. 

Newell (1980) argued that the dimension of differ­
ence between routine problem solving and real prOblem 
solving is the amount of search involved. When we be­
come familiar with a problem domain, we learn which 
operators apply without having to search among them. 
The experience of effort is correlated with the amount of 
problem-solving search. Newell argued that we are always 
in a search space, as witnessed by what happens when 
we hit on some novel problem state in an otherwise rou­
tine problem space. Newell claimed that we transit 
smoothly into problem-solving search and indeed that 
much of human cognition is a mixture of routine problem 
solving and problem solving that involves search. This 
claim is realized in his Soar model of cognition (Newell, 
1990). 

Complications With the Canonical 
Conception 

In this section, I consider problems with the canonical 
conception of problem solving that arise because of its 
failure to incorporate the perspective of a learning theory. 
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Variability in Problem Solving 

One of the things that is apparent when human problem 
solving is considered is that the solutions produced vary 
across replications of the problem with different individ­
uals or indeed for the same individual on different oc­
casions. This variability shows up in subjects taking dif­
ferent paths of solutions to solve a problem and in terms 
of their making occasional errors in their problem solving. 
It is not much noted, but if one looks at the latencies one 
sees considerable variability in the times required to per­
form the same step of a solution (Anderson, Kushmerick, 
& Lebiere, in press). Such variability has been observed 
by many researchers in human problem solving but is 
perhaps best documented in our research on LISP pro­
gramming where we observed more than 100 students 
solving more than 100 LISP programming problems 
(Anderson, Conrad, & Corbett, 1989). The canonical 
problem-solving framework with its emphasis on deter­
ministic behavior is not well prepared to handle this vari­
ability. 

There are two basic ways that such variability has 
been approached within the canonical framework. One 
is to attribute the differences to differences among the 
cognitive models of different people (and sometimes 
among the cognitive models ofthe same person at different 
times). In the standard framework, this comes down to 
differences in problem-solving representations, operators, 
and methods. This leads to a style of theorizing in which 
separate models are proposed for each subject, which cre­
ates a frustrating problem of generality in the claims that 
can be made. 

Perhaps the most hopeful effort of this sort has been 
the attempt to account for errors in problem solving in 
terms of bugs or misconceptions about the problem do­
main (e.g., Brown & Van Lehn, 1980). In one notable 
effort, Burton (1982) accounted for a large fraction of 
subtraction errors by assuming over 100 different bugs. 
The term bugs comes from analogy to programming 
where a program can have an error that leads to a sys­
tematic mistake. It was hoped that we could come up 
with a theory of the origins of these bugs in terms of the 
learning history of the students (e.g .. Van Lehn, 1989). 
A learning account of variability would be a way to 
achieve generality. Unfortunately, subsequent research has 
cast doubt on the systematicity of these errors (Anderson 
& Jefferies, 1985; Anderson & Reder. 1992; Katz & An­
derson, 1988; Payne & Squibb, 1990). Often students are 
best characterized as doing the right thing most of the 
time and, when they make errors, being unsystematic in 
the errors they make. 

The second approach is simply to assume a certain 
randomness in which alternative operators (perhaps some 
buggy) are indiscriminately chosen among. This has not 
been a popular move but can be found in some attempts 
to deal with the statistical distribution of solutions across 
subjects (e.g., Atwood & Polson, 1976; Jeffries et al., 
1977). This approach certainly has a grain of truth to it, 
but it fails to reflect the systematicity that does exist in 
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the choices that are made. Anderson et al. (in press) were 
able to show that the distribution of choices among op­
erators was strongly correlated with the optimality of the 
operators. Also, the frequencies of erroneous choices de­
crease gradually (within a single subject) with experience. 

Variability in behavior and the gradual improvement 
of the distribution of responses with experience are, of 
course, the bread and butter of typical learning theories. 
This suggests that problem-solving approaches would do 
well to incorporate into their analyses some of the stan­
dard ideas from learning theory. The trick is to do this 
and maintain the computational power of existing ap­
proaches that is clearly needed to deal with the complex, 
coordinated structure of a problem-solving sequence. 

learning in Knowledge-Rich Domains 

In the last decades, there has been a surge of research on 
how the transition is made from novel to routine problem 
solving as one gathers experience with a problem domain. 
This reflects a shift in research interest both toward 
learning and toward knowledge-rich, real problem-solving 
domains, such as physics, and away from knowledge-lean 
toy tasks like the Tower of Hanoi. This effort has identified 
both strengths and weaknesses in the canonical theory. 

A great deal of this research has taken the form of 
comparing subjects who are relative experts at a problem­
solving task with subjects who are relative novices at the 
task. Inferences are made about learning on the basis of 
the comparisons. Perhaps the most significant single ob­
servationis that no one achieves a high level of perfor­
mance in any domain without a great investment of time. 
Hayes (1985) estimated that it takes 10 years to achieve 
master's levels of performance in most professional do­
mains. This indicates that problem-solving expertise does 
not come from superior problem-solving ability but rather 
from domain learning. 

Not surprisingly, there are great differences between 
problem-solving experts and novices as a function of the 
extensive learning experiences of the experts. These dif­
ferences are reviewed in Anderson (1990b) and Van Lehn 
( 1989). 

Some of these differences appear to be nicely cap­
tured within the canonical model. For instance, there are 
changes in how experts go about solving problems. It is 
possible to separate these changes into what has been 
called tactical learning and strategic learning. Tactical 
learning refers to the acquisition of new, often more com­
plex problem-solving operators. So, for instance, with 
practice geometry students learn to recognize vertical an­
gle configurations involving triangles they are trying to 
prove congruent (e.g., Anderson, 1990b). Strategic learn­
ing refers to wholesale changes in the methods students 
use to organize their problem solving. So, novice problem 
solvers in physics work backwards from what they are 
trying to find to the givens of the problem, whereas experts 
work in the opposite direction (e.g., Larkin et al., 1980). 
In programming, more expert students will use top-down, 
breadth-first progressive refinement, whereas novices will 
not (Jeffries, Turner, Polson, & Atwood, 1981). In all 
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cases, the expert is adopting approaches that are effective 
for that problem domain. In the case of programming, 
the strategy is explicitly taught as the structured pro­
gramming methodology in programming courses; in the 
case of physics, it appears to be .induced. 

Experts also appear to use better problem represen­
tations. In particular, experts appear to represent prob­
lems in terms of deeper features, which are connected to 
problem-solving success, rather than superficial features. 
For instance, Chi et al. (1981) found that novices sorted 
problems on superficial features, such as whether they 
involved inclined planes, whereas experts sorted them 
according to Newton's laws. 

Increased Problem-Solving Capacity 

In contrast to these improvements that seem to be cap­
tured by changes in the problem space, other changes 
seem to reflect a fundamental increase in capacity for 
solving problems within a fixed problem space. For in­
stance, there is evidence for improved memory for prob­
lem states. This was first well documented with respect 
to chess, where it was shown that chess experts were able 
to reproduce much more of a chessboard given a brief 
exposure than were chess novices (Chase & Simon, 1973). 
The same phenomenon has been shown subsequently in 
a large number of domains. It was first thought that this 
could be accounted for by the fact that experts had learned 
a great many complex problem patterns and so could 
store in a single chunk information that novices required 
many chunks to store. That is, it was thought it could be 
accounted for by changes in problem-solving represen­
tations. However, newer evidence and analysis now in­
dicate that experts can store more information (more 
chunks) in long-term memory (Charness, 1976; Van 
Lehn, 1989). This increased long-term memory capacity 
is something outside the canonical theory. It does not 
contradict the canonical theory, but the canonical theory 
does not provide the terms to explain it. 

One of the most straightforward effects of increased 
practice of a particular skill is that it is performed more 
quickly and more accurately. The form of the reduction 
of time or errors with practice can be shown (Newell & 
Rosenbloom, 1981) to be a power function of the form 

P = AN-b, 

where P is the performance measure (time or errors), A 
is a scaling constant, N is the number of trials of practice, 
and b is a constant usually less than one that reflects 
learning rate. The fact that learning satisfies this func­
tional form is not altogether trivial. The typical learning 
function that has been proposed in most learning theories 
is exponential: 

P = AbN, 

where b is again less than one. The exponential learning 
function has the intuitively appealing property that for 
each unit of practice, performance improves by a constant 
fraction b. This predicts much more rapid learning than 
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what is observed. The fact that power-law learning is 
ubiquitous creates an interesting connection between 
learning theory and problem solving because the power 
law also describes simple learning situations, such as 
learning paired associates, as well as extremely complex 
problem solving, such as learning to do proofs in ge­
ometry. Newell and Rosenbloom (1981) developed a the­
ory of power-law learning that holds this result derives 
from learning more and more complex operators. How­
ever, this explanation applies only in the case of combi­
natorially complex tasks, and it does not seem to apply 
to simple tasks like paired-associate learning. Rather, this 
learning appears to reflect general associative strength­
ening mechanisms. Anderson (1982) argued that it is a 
simple strengthening process that accounts for all power­
law learning including that which is occurring in com­
binatorially complex problem-solving tasks. 

The ACT* Theory of the Acquisition of 
Problem-Solving Skills 

The list of changes that occur with experience (only par­
tially reviewed above) is probably too challenging to ac­
count for with a single theoretical proposal. Certainly, no 
one-factor theory has been forthcoming. I describe here 
my ACT* theory (Anderson, 1982, 1987, 1989) of the 
learning process, which captures some of the major em­
pirical trends and offe~s some straightforward connections 
to more traditional research on human learning. This 
section concludes with a description of the application of 
this theory to the development of intelligent tutors. 

Basic Concepts in the ACT* Theory 

The ACT* theory of cognition (Anderson, 1983) makes 
a distinction between declarative knowledge, which en­
codes our factual knowledge, and procedural knowledge, 
which encodes much of cognitive skill including problem­
solving skill. The theory assumes that problem solving 
takes place basically within a means-ends problem"solv­
ing structure. ACT* is a theory of the origin and nature 
of the problem-solving operators that feed the means­
ends engine. It assumes that when a problem solver 
reaches a state for which there are no adequate problem­
solving operators, the problem solver will search for an 
example of a similar problem-solving state and try to 
solve the problem by analogy to that example. There is 
substantial evidence that a subject's early problem solving 
is strongly influenced by analogy to similar examples (e.g., 
Pirolli, 1985; Ross, 1984). Anderson and Thompson 
(1989) have developed a simulation model of this analogy 
process. 

This initial stage of problem solving is called the 
interpretative stage. It often requires recalling specific 
problem-solving examples and interpreting them. The 
memories retrieved are declarative memories. However, 
there is no necessary long-term memory involvement. 
For instance, students use examples in a mathematics 
section to guide solution to a problem given at the end 
of the section without ever committing the examples to 
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memory. It is interesting in this regard to consider how 
amnesia patients who suffer serious deficits to long-term 
declarative memory might acquire a problem-solving 
skill. Phelps (1989) has argued that this can happen only 
when the examples from which they work are present in 
the environment and do not have to be recalled from 
long-term memory. 

The interpretive stage can involve substantial ver­
balization as the learner rehearses the critical aspects of 
the example from which the analogy derives. There is a 
dropout of verbalization that is associated with the tran­
sition from this interpretive stage to a stage where the 
skill is encoded procedurally. Knowledge compilation is 
the term given to the process of transiting from the in­
terpretive stage to the procedural stage. 

Procedural knowledge is encoded in terms of pro­
duction rules that are condition-action pairs, such as the 
following two from geometry: 

IF the goal is to prove two triangles congruent, 
THEN try to prove corresponding parts are congruent. 

IF segment AB is congruent to segment DE, and segment BC 
is congruent to segment EF, and segment AC is congruent 
to segment DF. 

THEN conclude triangle ABC is congruent to triangle DEF 
because of the side-side-side postulate. 

These rules are basically encodings of the problem­
solving operators in an abstract form that can apply across 
a range of situations. The Anderson and Thompson (1989) 
model shows how one can extract such problem-solving 
operators in the process of doing problem solving by 
analogy. Knowledge, once in production form, will apply 
much more rapidly and reliably. 

Strength of Knowledge Encoding 

According to the ACT* theory, a critical factor that de­
termines both the accessibility of declarative knowledge 
and the performance of procedural knowledge is the 
strength of encoding of this knowledge, which basically 
reflects amount of practice. According to the ACT* the­
ory, this strength grows as a power function of practice. 
(For an in-depth analysis of why it is a power function, 
see Anderson & Schooler, 1991.) It is this growth of 
strength that controls the power-function improvements 
occurring in skill learning. Anderson (1982) showed that, 
although other learning processes such as knowledge 
compilation are at work, the factor that controls rate of 
learning is strength. For instance, to compile a production 
rule from an example, the example has to be retrieved 
and maintained in working memory, which will depend 
on its strength of encoding. Thus, according to ACT* the 
ubiquitous power law of learning reflects the ubiquitous 
growth of strength oflnowledge with practice. It is curious 
to note that the growth of strength in ACT* is just a 
particular instantiation of Thorndike's law of exercise, 
which he later rejected. However, there is good evidence 
for a law of exercise with respect to dependent measures 
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like speed of performance ofa problem-solving skill (even 
in the absence of external feedback). 

The concept of strength in ACT* is much like other 
strength concepts that have appeared in other theories of 
learning and memory over this century. In particular, the 
probability of a particular production rule applying is a 
function of its strength. This probabilistic manifestation 
of strength accounts for the gradual disappearance of er­
rors and for the variation in how people solve problems. 
There can be multiple productions (some correct, some 
not) that might apply at a particular time, and the prob­
ability of each will reflect their strength. Thus, the ACT* 
theory has no problem dealing with the phenomenon of 
variability in problem-solving behavior. More recently, 
Anderson et al. (in press) reported considerable success 
applying the theory to the specific distribution of problem 
choices. 

Intelligent Tutoring Research 

I conclude with a discussion of the work we (Anderson, 
Boyle, Corbett, & Lewis, 1990) are doing on intelligent 
tutoring, both as an indication of the application of this 
approach and as a source of further evidence for the theory 
of problem-solving skill outlined above. Work on intel­
ligent tutoring (for a review see Polson & Richardson, 
1988) refers to efforts to create computer-based systems 
for instruction using artificial intelligence approaches. The 
approach to development of intelligent tutors that we take 
is called the model-tracing approach. It involves devel­
oping a cognitive model of the skill that should be learned 
(e.g., doing proofs in geometry or writing computer pro­
grams in the language LISP). This model takes the form 
of a set of production rules that can solve the class of 
problems the student is being asked to solve in the same 
way that the student should solve the problems. Our ap­
proach is relatively unique in the field in terms of the 
strong emphasis it places on use of a real-time cognitive 
model in instruction. 

Our tutors interact with the students while tl)ey try 
to solve a problem on the computer. It is assumed that 
the student is taking an overall means-ends approach 
and that learning involves acquiring production rules that 
encode operators to use within this problem-solving or­
ganization. The tutor tries to interpret the student's prob­
lem solving in terms of the firing of a set of production 
rules in its cognitive model. The instruction and help it 
delivers to the student is determined by its interpretation 
of the student's problem-solving state; furthermore, its 
choice of subsequent problems to present to the student 
is determined by its interpretation of which rules the stu­
dent has not mastered. One of the major technical ac­
complishments of our work has been the development of 
a set of methods for actually diagnosing the student's be­
havior and attributing segments of the problem-solving 
behavior to the operation of specific production rules. 
The various evaluations of the tutor have been generally 
positive, and we attribute our success at instruction to 
our success at interpreting the student's behavior. Typical 
evaluations have students performing approximately one 
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standard deviation better than control classrooms (if given 
same amount of time on task) or taking one half to one 
third the time to reach the same achievement levels as 
control students. Currently we are working with the Pitts­
burgh Public Schools (Anderson, 1992) to revolutionize 
and greatly accelerate their high school mathematics cur­
riculum on the basis of our model-tracing approach. 

The ability to attribute segments of the student's 
problem-solving behavior to specific production rules has 
also enabled us to monitor the performance of these rules. 
We can measure how many errors students make on spe­
cific rules and how that error rate decreases with practice 
on that specific rule. Figure 5 shows some data on this 
issue from the LISP tutor (Anderson et aI., 1989). That 
figure displays mean number of errors (where the maxi­
mum possible is three). We can also see, when students 
make no errors on a specific rule, how their time to per­
form the rule decreases with practice. This is displayed 
in Figure 6 for the LISP tutor. Both figures display average 
data and data from specific lessons to give a sense ofvari­
ability. The dependent measure, opportunities, in these 
figures refers to the number of times that rule has been 
used in solving problems within that lesson. We look only 
at production rules new to that lesson. 

These learning curves have a number of interesting 
features. First, they are plotted on log-log coordinates so 
that a power function should appear as a linear relation­
ship. There appears to be a dramatic improvement in 
performance from the first use of a production rule to 
the second. After that, improvement is quite slow and 
apparently satisfies a power-law function. Similar data 
have been obtained with the geometry tutor. This dra­
matic first-trial improvement may reflect the compilation 

Figure 5 
Errors per Production Mode by Students as a Function of 
Amount of Practice in Lesson in Which Productions Were 
Introduced 
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Figure 6 
Time for Correct Coding per Production as a Function of 
Amount of Practice of Production in Lesson in Which 
Production Was Introduced 
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of domain-specific production rules. There are problems 
with advancing this interpretation too forcefully because 
it rests on the exact way the data are averaged and on 
relatively strong assumptions about scale. So, a first trial 
discontinuity remains as an intriguing possibility awaiting 
further research and analysis. 

There are a number of additional points to make 
about the learning curves found in Figures 5 and 6. If 
one analyzes the data on the basis of surface-level catc­
gories of behavior such as writing variables, the improve­
ment in performance does not seem orderly. Systematic 
learning functions show up only when defined in terms 
of production rules. A second point is that these ~ules 
appear to be learned independently. We do not find evi­
dence that similar types of rules tend to be learned at the 
same rate as would be shown by intercorrelations in the 
learning rates of thematically related productions. Thus, 
the production rule does appear to be the right unit of 
analysis. 

We have been able to identify some general factors 
that determine how well subjects perform within the tutor: 
In the case of LISP, these factors turn out to be (a) the 
speed with which subjects acquire new rules and (b) the 
degree to which they retain old rules. In the case of ge­
ometry these factors turn out to be (a) the success students 
have with algebraic rules and (b) the success they have 
with rules that involve spatial relations (see Anderson, in 
press, for a review). However, with remedial practice, stu­
dents of differing abilities can be brought to equivalent 
levels of performance on these rules. Students brought to 
equivalent levels perform equally well on various non tutor 
posttests of ability. Thus, it would appear that acquiring 
a skill is basically learning each of the individual rules. 
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The number of such rules can be large. For a modest 
semester's course in LISP, we estimate that approximately 
500 separate production rules must be acquired. 

Thus, the production rule is serving much of the 
same function that had been assigned to the stimulus­
response bond in past theories. The skill appears to be 
nothing more than the sum of these rules. Each rule is 
learned independently, and individual differences are re­
flected in the learning of these rules and not the perfor­
mance of these rules once acquired. Complex cogniti\'e 
skill reflects the accretion of many specific pieces of 
knowledge. 

Cooclusion 

I think we are beginning to see rapid and important prog­
ress being made with respect to understanding bow com­
plex problem-solving skills are learned. This progress bas 
depended on bringing together ideas from problem-solv­
ing theory and learning theory. We can understand ac­
quisition of complex problem-solving skills only when 
we recognize the problem-solving structure that organizes 
their performance while recognizing the rather simple 
learning that governs the acquisition and strengthening 
of the individual problem-solving operators. 
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