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The simple linear model

Convention:

input vector (1-by-F) Input vectors

are row vectors

tout A .
ale Y = Xw + b ——bias

weight vector (F-by-1)

F = number of features (independent variables)



The general linear model

input vector (1-by-m)

output vector ~ bias vector
(1-by-n) y=xW+b (1-by-n)

weight matrix (m-by-n)

m = number of input features, n = number of output features



Linear classification

o Wethinkof z=xW + b as an n-dimensional vector of scores

that quantify the compatibility of the input x with each class k.

 In linear classification, we predict the input x to belong to the
highest-scoring class k.

» With linear models, we can only solve a rather restricted class of
classification problems (linearly separable).



Graphical notation

red = trainable
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computation graph shorthand notation



Softmax regression (log-linear classification)

»  We convert the scores into a probability distribution P(k | x) over

the classes by feeding them through the softmax function:

exp(z[k])

softmax(z)[k] = Y . exp(z[i])

 Similar to the case of linear classification, we now predict the

input x to belong to the highest-probability class k.



Softmax regression as a neural network

P(class | input)

T
(softmax)
T

Linear

T

X
input (feature vector)

P(k|x) = softmax(xW + b)



Training a softmax regression model

»  We present the model with training samples of the form (x, y)

where x is a feature vector and y is the gold-standard class.

» 'The output of the model is a vector of conditional probabilities

P(k | x) where k ranges over the possible classes.

« We want to train the model so as to maximize the likelihood of
the training data under this probability distribution.



Cross-entropy loss

» Instead of maximizing the likelihood of the training data, we

minimize the model’s cross-entropy loss.

» The cross-entropy loss for a specific sample (x, y) is the negative

log probability of the gold-standard class y,

L(6) = - ) [k = y]logsoftmax(xW + b)[k]
k

1ifk andy are identical,
0 otherwise



Cross-entropy loss

high loss if

gold-standard class
has low probability

low loss if
gold-standard class
has high probability
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G rad | e nt desce nt 'Follow the gradient into the valley of error.

» Step o: Start with random values for the parameters 0.

» Step 1: Compute the gradient of the loss function for the current
parameter settings, VL(0).

» Step 2: Update the parameters 0 as follows: 6:=0 — a VL(0)

The parameter « is the learning rate.

» Repeat step 1—2 until the loss is sufficiently low.



Note on terminology

The softmax function can be
viewed as a generalization

of the standard logistic function
to more than two classes.

What we call ‘softmax regression’

here is sometimes also called

multinomial logistic regression.

or just ‘logistic regression’!
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