Softmax regression

Marco Kuhlmann

Department of Computer and Information Science

Linear regression with one variable

Linear regression with one variable

The simple linear model

F = number of features (independent variables)

The general linear model

output vector $\hat{m{y}} = m{x} m{W} + m{b}$ ——bias vector (1-by-n) weight matrix (m-by-n)

Linear classification

- We think of z = xW + b as an n-dimensional vector of scores that quantify the compatibility of the input x with each class k.
- In **linear classification**, we predict the input x to belong to the highest-scoring class k.
- With linear models, we can only solve a rather restricted class of classification problems (linearly separable).

Graphical notation

computation graph

shorthand notation

Softmax regression (log-linear classification)

• We convert the scores into a probability distribution $P(k \mid x)$ over the classes by feeding them through the **softmax function**:

$$\operatorname{softmax}(\boldsymbol{z})[k] = \frac{\exp(\boldsymbol{z}[k])}{\sum_{i} \exp(\boldsymbol{z}[i])}$$

 Similar to the case of linear classification, we now predict the input x to belong to the highest-probability class k.

Softmax regression as a neural network

$$P(k \mid x) = \operatorname{softmax}(xW + b)$$

Training a softmax regression model

- We present the model with training samples of the form (x, y) where x is a feature vector and y is the gold-standard class.
- The output of the model is a vector of conditional probabilities $P(k \mid x)$ where k ranges over the possible classes.
- We want to train the model so as to maximize the likelihood of the training data under this probability distribution.

Cross-entropy loss

- Instead of maximizing the likelihood of the training data, we minimize the model's cross-entropy loss.
- The cross-entropy loss for a specific sample (x, y) is the negative log probability of the gold-standard class y,

$$L(\boldsymbol{\theta}) = -\sum_{k} [k = y] \log \operatorname{softmax}(\boldsymbol{x}W + \boldsymbol{b})[k]$$
1 if k and y are identical,
0 otherwise

Cross-entropy loss

'Follow the gradient into the valley of error.'

- **Step o:** Start with random values for the parameters θ .
- **Step 1:** Compute the gradient of the loss function for the current parameter settings, $\nabla L(\theta)$.
- **Step 2:** Update the parameters θ as follows: $\theta \coloneqq \theta \alpha \nabla L(\theta)$ The parameter α is the learning rate.
- Repeat step 1–2 until the loss is sufficiently low.

Note on terminology

- The softmax function can be viewed as a generalization of the standard logistic function to more than two classes.
- What we call 'softmax regression'
 here is sometimes also called
 multinomial logistic regression.

or just 'logistic regression'!

$$y = \frac{1}{1 + \exp(-z)}$$