Natural Language Processing

Attention

Marco Kuhlmann Department of Computer and Information Science

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.

Lecture 5.3

Recency bias in recurrent neural networks

encoder

decoder

Sutskever et al. (2014)

Recency bias in recurrent neural networks

encoder

decoder

Sutskever et al. (2014)

Recency bias in recurrent neural networks

encoder

decoder

Sutskever et al. (2014)

Attention

- In the context of machine translation, **attention** enables the model to learn 'soft' word alignments.
- Essentially, we compute a set of weights that allow us to score words based on how much the model should 'attend to them'.
- Attention was first proposed in the context of the sequence-to-sequence architecture, but is now used in many architectures. Bahdanau et al. (2015)

drink coffee Just

A more general characterisation of attention

- In general, attention can be described as a mapping from a query \boldsymbol{q} and a set of key–value pairs \boldsymbol{k}_i , \boldsymbol{v}_i to an output.
- The output is the weighted sum of the v_i , where the weight of each v_i is given by the compatibility between q and k_i .
- In the translation architecture, the query *q* corresponds to the hidden state of the decoder; and the keys and values correspond to the hidden states of the encoder, h_i .

Vaswani et al. (2017)

Attention as word alignments

In the context of the encoder-decoder architecture for neural machine translation, attention can be interpreted as word alignments.

Image source: <u>Bahdanau et al. (2015)</u>