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1 Introduction

Passing plays a critical role in facilitating high-level ice hockey performance.
Effective passing enables teams to transition from defense to offense, evade pres-
sure, and generate scoring opportunities [2,4]. Previous research has largely eval-
uated passes based on discrete rink regions, often characterizing passes solely by
the origin and reception zones [5,3].

This study introduces a machine learning model that characterizes passes
based on a broader set of continuous features, including the precise coordinates
of the pass origin and reception, pass duration, and estimated velocity. Using
these features, the model predicts the expected goals (xG) associated with a shot
taken immediately following the reception [6]. By identifying passing patterns
that historically lead to high-danger opportunities, the model offers a data-driven
tool for optimizing offensive strategy [1].

2 Methodology

2.1 Data Processing

The dataset employed was a proprietary event dataset from Sportlogiq, encom-
passing 156 games from the Swedish Hockey League (SHL). Each successful pass
was assigned a unique ID, with the corresponding reception and subsequent
events by the receiving player sharing this identifier. To construct the training
dataset, the data was filtered to include only sequences where the reception led
directly to a shot attempt.

2.2 Model Development

A supervised learning approach was implemented using a feedforward neural
network developed in R with the keras package. The target variable was the
xG value of a shot immediately following the pass. By restricting the dataset to
plays where a reception was followed by a shot, the model directly linked pass
quality to shot outcome.

The feature set included both continuous and categorical variables. Continu-
ous features comprised the (x, y) coordinates of the pass origin and reception, the
elapsed time between pass and reception, the Euclidean distance of the pass, and
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the estimated velocity. These features were normalized using z-score standard-
ization. Categorical features, including reception type and manpower situation,
were one-hot encoded.

The network architecture consisted of an input normalization layer followed
by dense layers of 32, 16, 8, 4, and 2 units respectively, each using ReLU activa-
tion, and a final sigmoid-activated output layer predicting xG values in the [0, 1]
range. The model was trained using the RMSProp optimizer (learning rate =
0.0005) with mean squared error as the loss function. Training occurred over 32
epochs with a 10% validation split and batch shuffling, promoting generalization
and mitigating overfitting.

This modeling approach allows for a nuanced quantification of pass quality
based on spatial, temporal, and contextual attributes beyond simple zone-based
metrics.

Player-Level Analysis of Passing Expected Goals (PxG)

To evaluate the model’s practical utility, it was applied to a broader dataset of
completed passes (n = 91,558), not restricted to those immediately leading to
a shot. A player-level analysis was conducted to assess the relationship between
PxG and assists per game.

Players who had participated in at least five games were selected. For each
player, the total PxG generated, the total number of assists, and the number of
games played were calculated. PxG per game and assists per game were then
derived, and their relationship was evaluated using a Pearson correlation.

3 Results

3.1 Evaluating Efficacy of PxG

The neural network model for expected goals from passes (PxG) demonstrated
strong convergence during the training process. Figure 1 illustrates the pro-
gression of both MSE and Mean Absolute Error (MAE) metrics over the 32
training epochs for both training and validation datasets. The model achieved
optimal performance in the final epoch with training MSE of 0.002119 and
MAE of 0.02626, while validation metrics showed slightly superior performance
with validation MSE of 0.001713 and validation MAE of 0.02368. This marginal
improvement in validation metrics compared to training metrics suggests the
model generalized effectively to unseen data without overfitting. The training
history visualization reveals a consistent downward trend in both metrics, with
the rate of improvement diminishing after approximately the 16th epoch, in-
dicating the model approached its optimal state. The close tracking between
training and validation curves throughout the training process further confirms
the model’s robust generalization capabilities. The low absolute values of the
final metrics—particularly the MAE of approximately 0.024 for the validation
set—indicate that the model’s predictions deviate minimally from the ground
truth values.
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Fig. 1. Training and validation metrics for the xG prediction model over 32 epochs.
Solid black lines represent training metrics; dashed gray lines represent validation met-
rics. Convergence occurs by approximately 20 epochs.

Spatial Characterization of PxG

Further analysis involved projecting a stratified random sample of 2,000 passes
onto a scaled hockey rink diagram (Figure 2). Higher PxG values were assigned
to passes originating near the perimeter and received near the slot area, cor-
responding to traditional high-danger scoring zones. The model also identified
traditional "cycle" passing patterns around the slot as yielding higher PxG val-
ues.

Fig. 2. Visualization of a random sample of passes. Each vector is colored based on its
PxG value.

Pass characteristic analysis (Figure 3) revealed that pass velocity exhibited
the strongest relationship with PxG (ρ = 0.21), though the association was
modest. Longitudinal movement showed a weak positive correlation (ρ = 0.081),
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lateral movement showed a slight negative correlation (ρ = -0.097), and pass
angle exhibited essentially no correlation with PxG (ρ = -0.013). Although all
relationships were statistically significant, most practical effects were limited.

Fig. 3. Scatter plots showing Spearman correlations between PxG and different pass
characteristics.

Relationship Between PxG and Assists

Analysis of PxG per game and assists per game showed a strong positive correla-
tion, with a linear model explaining 49% of the variance (R² = 0.49). This indi-
cates that PxG successfully captures key aspects of playmaking ability. Players
with higher PxG values per game consistently produced more assists, reinforcing
the utility of PxG for player evaluation and strategic planning. Points in Figure
4 are scaled based on games played, giving more visual weight to larger sample
sizes.

Fig. 4. Relationship between PxG per game and assists per game. Point size reflects
games played; line represents the fitted regression.
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4 Discussion

This study demonstrates the potential of using machine learning to assess the
quality of offensive passes in ice hockey. By considering factors such as pass
location, velocity, and time, along with contextual features like manpower situ-
ation, the model provides a more comprehensive evaluation of passes than tra-
ditional zone-based metrics. The strong correlation between Passing Expected
Goals (PxG) and assists per game suggests that PxG effectively captures the
value of a player’s passing, making it a reliable metric for assessing playmaking
ability and identifying high-danger offensive opportunities.

However, there are several areas for improvement. The current model relies
on event-level data and does not incorporate the dynamic movements of players
during a pass. Including player tracking data would allow for a more granular
understanding of how player positioning affects pass effectiveness, potentially
improving the model’s predictions. Future work could also integrate additional
features such as shot types and angles, or explore more sophisticated models like
recurrent neural networks, to capture temporal patterns in passing sequences.
Overall, while the model provides valuable insights into offensive playmaking,
incorporating richer, real-time data would enhance its accuracy and broaden its
application to various hockey contexts.

5 Code Access Link

Code: github.com/KingKobra7899/KROYE_LINHAC_2025
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