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Abstract: We present a unified, data-driven framework for quantifying and enhancing offensive momentum and scoring 

likelihood (expected goals, xG) in professional hockey. Leveraging a Sportlogiq dataset of 541,000 NHL event records, our 

end-to-end pipeline comprises five stages: (1) interpretable momentum weighting of micro-events via logistic regression; (2) 

nonlinear xG estimation using gradient-boosted decision trees; (3) temporal sequence modeling with Long Short-Term Memory 

(LSTM) networks; and (4) spatial formation discovery through principal component analysis (PCA) followed by K-Means 

clustering on standardized player coordinates. By combining each model’s outputs into a composite momentum + xG metric, we 

then employ an (5) X-Learner causal-inference estimator to quantify the average treatment effect (ATE) of adopting the 

identified “optimal” event sequences and formations. We observe an ATE of 0.12 (95 % CI: 0.05–0.17, p < 1 × 10⁻⁵⁰), 

corresponding to a 15 % relative gain in scoring potential. These results demonstrate that strategically structured sequences and 

compact formations causally elevate offensive performance. Our framework delivers real-time, actionable insights for coaches 

and analysts, advancing hockey analytics toward principled, causally grounded tactical optimization. 

Keywords: Hockey Analytics, Momentum, Long-Short Term Memory Neural Networks (LSTM), Causal Inference (X-Learner), 

Logistic Regression, Gradient Boosting, Clustering, Principal Component Analysis (PCA).  

1. Introduction Despite the proliferation of expected-goals (xG) models that relate shot characteristics, such as 

distance, angle, and rebound state to scoring probability [1], these frameworks treat each attempt independently and 

therefore fail to capture how preceding “micro-events” (e.g., passes, puck recoveries, faceoffs) build offensive 

momentum. Continuous-time Markov-chain and sequence-mining approaches have been applied to model temporal 

dependencies among in-game events [2], but they generally omit both predictive scoring estimates and spatial 

context. Unsupervised clustering methods, widely used in soccer to reveal tactical formations from player 

trajectories, have only recently begun to appear in hockey, and when they are employed, they do not assess whether 

adopting those spatial archetypes causally improves scoring outcomes [3]. To address these gaps, we introduce an 

end-to-end, prescriptive analytics pipeline that first derives interpretable momentum weights via logistic regression, 

then models nonlinear xG interactions with gradient-boosted decision trees, next learns full sequences of up to 20 

events through a Long Short-Term Memory (LSTM) network, and subsequently uncovers formation archetypes by 

applying principal component analysis (PCA) followed by K-Means clustering on standardized five-player 

positional embeddings. Finally, to determine whether following the identified “optimal” sequences and formations 

causes improved performance, we employ the X-Learner meta-algorithm to estimate the average treatment effect 

(ATE) on our composite momentum + xG metric [5]. This integrated framework yields actionable, causally 

grounded tactical insights for coaches and analysts, advancing hockey analytics beyond purely descriptive or 

correlational studies.  

1.1 Data and Pre-Processing We leverage a Sportlogiq dataset comprising 541,000 NHL event records. To ensure 

analytical consistency, we removed shootout and non-regulation events and standardized all spatial coordinates to a 

common attack frame (right side in visuals) accounting for period and rink-side changes. We then aggregated events 

into overlapping 30-second windows (median shift length is 28 s) to capture momentum shifts at fine temporal 

resolution, while extracting and normalizing the average rink coordinates of three forwards and two defenders for 

each window. Prior to causal modeling, we conducted multicollinearity diagnostics (all variance inflation factors 

< 5). This rigorous preprocessing underpins the robust deployment of our multi-stage modeling approach detailed in 

Section 2 



2. Methodology 

2.1 Building the Momentum Model We begin by quantifying how individual micro-events contribute to offensive 

momentum and goal probability. Let 𝑦𝑖  be an indicator for whether at least one goal occurs in the  𝑖th 30-second 

window, and let 𝑥𝑖,𝑒 denote the count of event e (e.g. passes, 

shots, faceoffs, icing) in that window. The model takes the form: 
      Pr( 𝑦𝑖 = 1 ∣∣ 𝑥𝑖 ) = 𝜎(𝛽0 + ∑ 𝛽𝑒𝑥𝑖,𝑒𝑒 )   (1) 

where 𝜎(𝑧) =
1

1+𝑒−𝑧 is the logistic function, β0  is the intercept, 

and each coefficient βe  measures the log-odds impact of a single 

occurrence of event e on the probability of a goal [7]. Because 

each βe is directly interpretable on the log-odds scale, we define 

the momentum score 𝑀𝑖 for window 𝑖 as the linear predictor 

(excluding the intercept):      

 𝑀𝑖 = 𝑒∑ 𝛽𝑒𝑥𝑖,𝑒   (2)                 
Next, to predict scoring likelihood (“xG”) within the same 

windows, we trained a gradient-boosted decision-tree model using 

XGBoost [8]. Inputs to this xG model included the raw micro-event counts 𝑥𝑖,𝑒 the momentum score 𝑀𝑖 and spatial 

aggregates of the five on-ice roles’ rink coordinates. We configured XGBoost with a binary logistic objective, 

maximum tree depth of 6, 200 boosting rounds, a learning rate of 0.05, 80 % row subsampling, and 

inverse-frequency class weights to counter the approximately 2 % goal base rate. Hyperparameters were selected via 

grid search on the validation set, and we enabled early stopping after 25 rounds without improvement in validation 

loss. We partitioned our data into 70 % training, 15 % validation, and 15 % test sets. On held-out data, the xG model 

achieved 73.4 % training accuracy and 71.2 % test accuracy, with an AUC of 0.85 and goal precision/recall of 

0.36/0.42—demonstrating strong discrimination despite pronounced class imbalance. Finally, we combine each 

window’s predicted xG probability, denoted {𝑝}𝑖
̂ , with its momentum score 𝑀𝑖 to form a unified composite metric

 𝐶𝑖 =  𝑀𝑖 + {𝑝}𝑖
̂    (3)             

which simultaneously captures instantaneous offensive pressure and scoring likelihood. This composite score 

𝐶𝑖  underlies our subsequent deep-sequence modeling, spatial clustering, and causal-inference analyses. 

2.2 Deep Neural Network Sequencing (LSTM) Although our logistic-regression and gradient-boosted xG models 

quantify instantaneous pressure and scoring likelihood, they do not exploit the rich temporal structure of in-game 

events. To capture these dependencies, we implement a Long Short-Term Memory (LSTM) neural network [9] that 

processes each 30-second window as a fixed-length sequence of discrete game actions. Specifically, we first encode 

each event (e.g., pass, recovery, shot) as an integer token and map it to a 32-dimensional embedding, which provides 

a continuous representation reflecting similarities among event types [3]. These embeddings feed into a single 

LSTM layer with 50 hidden units (chosen to balance representational capacity and computational efficiency) 

followed by a dropout rate of 30 % on the recurrent outputs to guard against overfitting [10]. The LSTM’s final 

hidden state then passes through a fully connected layer with sigmoid activation, yielding the sequence’s predicted 

goal probability. We trained this architecture on 80 % of our dataset, reserving 20 % for validation, using binary 

cross-entropy loss and the Adam optimizer with a learning rate of 0.001 [11]. Sequences were padded or truncated 

to 20 events, covering over 95 % of windows based on empirical length distributions, and training proceeded in 

mini-batches of 32 with early stopping after five epochs of no improvement in validation loss. In 30 epochs, the 

model achieved 83.9 % training accuracy and 82.6 % validation accuracy, with final losses of 0.357 and 0.379, 

respectively. These results confirm that the LSTM effectively learns long-term event patterns, such as how a 

loose-puck recovery two actions prior can amplify shot quality, that static models cannot capture. 

 

Event  Value 
Faceoff Success  0.2242 

Loose Puck Recovery  0.0365 

Pass  0.0391 

Reception 

…  
0.1014 

… 

Offside  -0.1184 

Table 1. Selected logistic regression weights 

for key momentum events (Full coefficient set 

available in Appendix A.) 



 

Fig. 1. The left panel shows the decreasing loss for both training and validation sets, indicating effective learning and minimal 

overfitting. The right panel displays accuracy trends, with both training and validation accuracy converging above 80%, 

demonstrating strong generalization and predictive performance on sequential hockey event data. 

Finally, we integrate each sequence’s LSTM-predicted goal 𝑝𝑖
LSTM̂ into our composite metric alongside the 

logistic-regression momentum score 𝑀𝑖 and the gradient-boosted xG,  𝑝𝑖
xĜ, forming 

𝑆𝑖 = 𝑀𝑖 + 𝑝𝑖
xĜ + 𝑝𝑖

LSTM̂
 

2.3 Positional Clustering and Optimal Formation Identification To incorporate spatial tactics into our 

framework, we first compute, for each 30-second sequence window, the average rink coordinates of three forwards 

(F1–F3) and two defenders (D1–D2), yielding a ten-dimensional positional feature vector. After standardizing these 

coordinates to zero mean and unit variance, we apply principal component analysis (PCA) to reduce noise while 

preserving the majority of spatial variance [13]. In our data, the first three principal components capture over 85 % 

of the variance, allowing us to embed each window in a lower-dimensional space that highlights formation patterns. 

We then perform K-Means clustering on the PCA embeddings, using the standard Lloyd’s algorithm as introduced 

by MacQueen [14] and widely adopted in sports analytics [15]. This yields k distinct formation archetypes, each 

characterized by a centroid in the reduced space. To quantify each cluster’s offensive potency, we compute the mean 

composite score (momentum + xG + LSTM) of all sequences assigned to that cluster. The cluster exhibiting the 

highest mean composite score is designated the optimal offensive cluster. For any new sequence, we measure its 

adherence to this ideal formation by calculating the Euclidean distance from each player’s actual rink coordinate to 

the corresponding player-role coordinate in the optimal-cluster centroid and then averaging these five distances to 

produce a per-sequence deviation metric. Sequences whose deviation falls within the lowest 25th percentile are 

flagged as optimally positioned. 

 

3. Results 

3.1 Optimal Team Positional Shapes As shown in Fig. 2 below, the spatial positioning of our baseline composite 

sequences span wide throughout in the offensive zone, whereas the sequences selected by our LSTM model 

converge into a markedly tighter “wedge” formation. In these optimized sequences, the three forwards form a 

compact triangle in the right-hand half-space, enhancing passing lanes and shot angles, while both defenders pinch 

higher yet maintain balanced east–west spacing to support rapid puck circulation without overcommitting 

defensively. Overlaying the two density maps also reveals a pronounced high-pressure corridor running from the 

right hash marks toward the slot; this feature is nearly absent in the baseline distribution but prominent in the 

LSTM-selected sequences. Importantly, this corridor aligns with our logistic-regression and gradient-boosted tree 

findings that puck recoveries and quick slot entries significantly drive scoring probability [7, 8]. Quantitatively, the 

convex hull enclosing the LSTM-optimized clusters is over 30 % smaller in area than the baseline hull, indicating 



that the optimized formation promotes shorter pass 

lengths and faster shot generation. Role-specific positional 

shifts further underscore these collective patterns: 

forwards F1 and F2 both migrate closer to the goal crease 

to facilitate interior scoring options; F3 trades a deep 

board position for a weak-side lane; defender D1 

advances to the top of the right circle to serve as a 

high-slot outlet; and defender D2 anchors the left point to 

guard against breakouts. Together, these spatial 

adjustments compose a repeatable “optimal” formation 

that consistently elevates both momentum and 

expected-goal likelihood. 

3.2 Optimal Event Sequences We evaluated 1,148 

offensive chains to find those that maximize our 

composite momentum + xG metric. The top pattern, 

penalty drawn → loose puck recovery (LPR) → shot—

scored 4.33. This reflects the synergy of a man-advantage 

event followed by an uncontested recovery. The runner-up 

sequence, LPR → pass → carry → reception → shot, 

further underscores the value of streamlined possessions. 

Chains featuring LPR averaged 27 % higher composite 

scores, corroborating its positive coefficient (β = 0.0365; 

Table 1). Our LSTM model independently validates these 

findings: its top ten sequences carry an average goal 

probability of 0.91 ± 0.07. A few sequences had extended 

passing chains score highly in LSTM but only moderately 

in the composite metric, suggesting the network captures 

temporal subtleties—deception, defender displacement, 

pace changes—that event counts alone miss. Overall, the 

most potent offensive sequences begin with a puck 

recovery and employ minimal intermediate actions, as 

confirmed by both our statistical and deep-learning 

models. 

4. Understanding Causation vs Correlation 

4.1 Causal Inference (X-Learner) Although our previous analyses identify which sequences and formations 

correlate with elevated offensive output, correlation alone cannot establish that adopting these patterns drives 

improved performance. To address this, we first estimate each sequence’s propensity score, the probability that it 

receives the “treatment” of optimal sequence pattern and optimal positioning and verify substantial overlap between 

treated and control groups (Fig. 4) [4]. We then apply the X-Learner meta-algorithm [5], which fits separate 

outcome models for treated and control sequences and combines them via propensity-score weighting to adjust for 

observed confounding and estimate causal effects. In our implementation, treatment denotes sequences assigned to 

the optimal offensive cluster (based off composite momentum score) with deviation in the lowest quartile for 

positioning (Section 2.3). We fit gradient-boosted tree models (LightGBM) to predict the composite 

momentum + xG score for treated and control sequences separately; the X-Learner then uses these predictions and 

each sequence’s propensity score to compute individual treatment effects, which are averaged to yield the average 

Optimal Team Position: Momentum 

Score (Top) vs LSTM Prediction 

(Bottom) 

 

Fig. 2. (Offensive Zone, Goal Towards Right Side) The 

top panel shows overall positioning density across all 

sequences with the highest momentum and xG score. The 

bottom panel shows optimal player positions from the 

LSTM-predicted sequences with the highest momentum 

and scoring  

 



treatment effect (ATE). Both five-fold 

cross-validation and a 1,000-sample bootstrap produce 

consistent ATE estimates of approximately 0.11–0.13, 

with a 95 % confidence interval of 0.05–0.17 and a 

p-value below 1 × 10⁻⁵⁰. Practically, this corresponds 

to a 0.12-point increase in our composite score, 

shifting an average sequence from the 50th to the 65th 

percentile in combined scoring potential 15 % relative 

gain in offensive momentum and expected goals. 

Table 2. X-Learner Results of ATE 

Metric  Value 

Momentum Score ATE (CV)  0.12576 

Momentum Score ATE (Bootstrap)  0.10688 

95% CI Lower  0.05002 

95% CI Upper  0.17436 

Score p-value  1.42883e-52 

4.2 Practical Implications 

These causal results demonstrate that the identified 

spatial-temporal patterns do more than coincide with 

success, they drive it. By structuring offensive 

windows according to our optimal formation and 

event sequence, teams can expect measurable gains in 

both momentum and expected-goal probability. This 

empowers coaches and analysts to deploy 

prescriptive, causally grounded tactics in real time, 

rather than relying on correlations alone. 

5 Conclusions We have developed a unified, five-stage pipeline that blends statistics, machine-learning, and 

causal-inference techniques to prescribe offensive tactics in professional hockey. First, logistic regression assigns 

interpretable momentum weights to micro-events; second, gradient-boosted trees combine those weights with spatial 

and event features to predict expected-goals; third, an LSTM network learns rich temporal patterns across up to 20 

actions; fourth, PCA + K-Means clustering uncovers optimal formations from five-player positional embeddings; 

and finally, the X-Learner meta-algorithm leverages propensity scores to quantify the causal impact of adopting 

these spatial-temporal strategies. Applied to 541,000 thirty-second windows, our composite momentum + xG metric 

identifies a repeatable optimal sequence, penalty drawn → loose-puck recovery → shot, and a causal analysis 

estimates an ATE of 0.12 These findings demonstrate that data-driven, causally grounded prescriptions can deliver 

real-time tactical advantages, enabling coaches and analysts to move beyond heuristic play-calling to 

evidence-based strategy.  

5.1 Future Work 

Key extensions include applying our pipeline to special-team scenarios (power plays, penalty kills, odd-man rushes), 

integrating defensive-alignment analyses and player-level metrics (e.g., skating speed, fatigue), and deploying 

real-time tactical alerts under low-latency tracking. Addressing limitations, such as event-tagging accuracy, potential 

unmeasured confounders, and cross-league calibration via sensitivity analyses and external validation will further 

strengthen the robustness and practical impact of this prescriptive analytics approach. 

Fig. 3 (Top) Histogram of individual treatment-effect 

estimates from the X-Learner,  

Fig. 4 (Bottom). Histogram of estimated propensity scores for 

treated (orange) and control (blue) sequences 
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Appendix 

Appendix A. Full Logistic Regression Coefficients 

Table 1. Selected logistic regression weights for key 

momentum events (Full coefficient set available in 

Appendix A.) 

Event  Value 
Faceoff Success  0.2242 

Loose Puck Recovery  0.0365 

Pass  0.0391 

Reception  0.1014 

Block 
Puck Protection 

Carry 

Check 

Controlled Entry Against 

Controlled Entry 

Controlled Exit 

Icing 

Dump Out 

Dump In 

Shot 

Penalty 

Penalty Drawn 

Save 

Rebound 

Offside 

 

-0.0366 
-0.0696 

0.0771 

0.0303 

0.0147 

0.0114 

-0.1674 

-0.2367 

-0.1753 

-0.2530 

0.0174 

-0.8414 

0.7205 

-0.1103 

0.2190 

-0.1184 

Appendix B. Top 10 Sequences Based on LSTM Prediction: 

1. LSTM Score: 0.9871, Sequence: puckprotection -> puckprotection -> pass -> reception -> pass -> reception -> pass -> 

reception -> pass -> reception -> pass -> reception -> pass -> assist -> reception -> assist -> shot 

2. LSTM Score: 0.9871, Sequence: block -> lpr -> pass -> reception -> pass -> reception -> pass -> reception -> pass -> assist -> 

reception -> assist -> shot 

3. LSTM Score: 0.9870, Sequence: pass -> reception -> pass -> reception -> pass -> reception -> pass -> reception -> pass -> 

assist -> reception -> pass -> assist -> reception -> shot 

4. LSTM Score: 0.9870, Sequence: carry -> controlledentry -> pass -> reception -> pass -> reception -> pass -> reception -> pass 

-> reception -> pass -> reception -> pass -> assist -> reception -> pass -> assist -> reception -> shot 

5. LSTM Score: 0.9870, Sequence: reception -> pass -> reception -> pass -> reception -> pass -> reception -> pass -> assist -> 

reception -> pass -> assist -> reception -> shot 



6. LSTM Score: 0.9870, Sequence: lpr -> pass -> reception -> pass -> reception -> pass -> assist -> reception -> pass -> assist -> 

reception -> shot 

7. LSTM Score: 0.9870, Sequence: block -> lpr -> pass -> reception -> pass -> reception -> pass -> reception -> pass -> assist -> 

reception -> pass -> assist -> reception -> shot 

8. LSTM Score: 0.9870, Sequence: lpr -> pass -> reception -> pass -> lpr -> pass -> reception -> pass -> reception -> pass -> 

assist -> reception -> pass -> assist -> reception -> shot 

9. LSTM Score: 0.9870, Sequence: pass -> reception -> pass -> reception -> pass -> assist -> reception -> pass -> assist -> 

reception -> shot 

10. LSTM Score: 0.9870, Sequence: lpr -> pass -> reception -> pass -> reception -> pass -> reception -> pass -> reception -> 

pass -> reception -> pass -> reception -> pass -> assist -> reception -> pass -> assist -> reception -> shot 

Appendix C. Figure 3. Covariance Balance Before X-Learner  

 

 

 

 

 



Appendix D. Figure 4. PCA of Positional Features with K-Means  

 

Appendix E. Figure 6. Optimal Defensive Player Positioning 

 


