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Abstract. Player categorization based on playing style is a highly im-
portant task in professional ice hockey, aiding scouting, player develop-
ment, and strategic decision-making. Traditional methods often rely on
simple metrics like goals or assists, which fail to capture the full com-
plexity of a player’s style and contributions. Motivated by the increas-
ing availability of detailed event data and advances in machine learning
based modeling techniques, this paper explores a richer, data-driven ap-
proach to player categorization. We build on recent work in player vector
representations and apply Gaussian Mixture Models (GMMs) to cluster
forwards and defenders based on event data from five seasons of the
Swedish Hockey League (SHL). Our contributions are threefold: (1) we
construct detailed player vectors that summarize a wide range of offen-
sive and defensive skills, (2) we apply GMMs to identify soft clusters of
players, allowing for nuanced overlapping playing styles, and (3) we ana-
lyze the resulting clusters to interpret distinct player profiles and provide
concrete examples. Our results offer a more flexible and realistic view of
player roles, reflecting the continuous and multi-dimensional nature of
playing styles. The approach helps enhance talent evaluation and ros-
ter building, and offers an efficient framework for future analyses across
leagues and seasons.

1 Introduction

Player categorization based on playing style is an important task in professional
ice hockey, supporting scouting, player development, and strategic decision mak-
ing. Traditional approaches typically rely on discrete performance metrics, such
as goals, assists, or shots, offering only a partial view of a player’s overall style
and contribution. More recently, increased event data collection and advances
in modeling techniques have opened up new possibilities for representing and
analyzing player behaviors in more nuanced ways.

In this paper, we build upon recent developments in player vector represen-
tations [17] and apply Gaussian Mixture Models (GMMs) to identify clusters of
forwards and defenders based on their playing styles. GMMs offer a probabilistic
soft clustering approach that is particularly well-suited to model the continuous
and overlapping nature of player styles. Unlike hard clustering methods, which



assign each player to a single cluster, GMMs allow players to belong to multiple
clusters with varying degrees of membership, reflecting the reality that players
often exhibit characteristics of multiple styles.

The specific contributions of this paper are threefold. First, we leverage de-
tailed event data from five seasons of the Swedish Hockey League (SHL) to
construct player vectors capturing a wide range of offensive and defensive skills.
Second, we apply GMMs to these vectors, determining the number of clusters
using model selection criteria such as the Bayesian Information Criterion (BIC).
Finally, we analyze the resulting clusters to interpret the different playing styles
represented among forwards and defenders, and provide examples of players as-
sociated with each style.

Organization: Section 2 provides background on finite mixture models,
Gaussian mixture models, and model selection methods. Section 3 reviews re-
lated work in player evaluation and categorization. Section 4 describes the dataset
used in this study. Section 5 outlines our methodology for constructing player
vectors and fitting GMMs. Section 6 presents the clustering results and analyzes
the identified playing styles, before Section 7 concludes the paper.

2 Background

In this paper, we apply Gaussian Mixture Models (GMMs) to cluster forwards
and defenders based on their playing styles. A GMM is a type of Finite Mixture
Model (FMM) where each component is a Gaussian distribution. GMMs are
particularly well-suited for player data, as different playing styles often overlap
and evolve along continuous spectrums, making soft clustering approaches like
GMMs more appropriate than hard clustering alternatives.

An FMM models data from a combination of unobserved groups, without
knowing in advance which point belongs to which group. With FMMs, each group
is associated with its own probability distribution, and the overall dataset is
modeled as a weighted sum of these components. Instead of trying to fit just one
model to the entire dataset, this allows the FMMs to fit multiple smaller models
and combine them [16]. This offers a flexible framework that better captures
complex data structures than single-model approaches.

Although various distributions, such as Poisson and Bernoulli, can be used
within the FMM framework, the choice of Gaussian distributions in GMMs pro-
vides two key advantages: flexibility and interpretability. Gaussian components
can model elliptical clusters with different orientations and scales, which is im-
portant when different playing styles vary along distinct combinations of per-
formance features. Furthermore, GMMs naturally produce soft assignments of
players to clusters, reflecting the intuition that playing styles often exist on a
continuum rather than falling into rigid categories.

Formally, an FMM assumes that each observation y comes from one of g
different groups (components), each described by its own distribution. These
components are mixed using probabilities π1, π2, ..., πg, where each πi is the
mixing proportion for the i-th component. These values are all positive and add



up to 1. The overall distribution of an FMM can either be a probability density
function (PDF), if the data is continuous, or a probability mass function (PMF)
in the case of a discrete dataset [2,15]. More specifically, the PDF or PMF of the
mixture model is represented as follows:

f(y) =

g∑
i=1

πifi(y), (1)

where fi(y) represents the PDF or PMF of the i-th component, πi represents the
mixing proportion of the component, and g is the total number of components
[16]. Depending on the type of distribution, the component densities fi(y) are
represented as fi(y, θi), where θi is the vector of unknown parameters for the i-th
component density. In the case of a Gaussian distribution, these parameters are
the mean and variance θi = [µi, σ

2
i ], resulting in the following way to represent

the PDF or PMF of the mixture model:

f(y, Ψ) =

g∑
i=1

πifi(y, θi), (2)

where y is the data we want to model, and Ψ is a vector containing all the
unknown parameters in the mixture model, such as πi and θi for i-th component.
It can be expressed as Ψ = (π1, ..., πg−1, ζ

T )T , where the parameter ζ includes
the parameters of the selected distributions for all g components [15]. In the
context of this study, y refers to a player vector that characterizes an individual
player’s style, and the parameters Ψ collectively describe how these playing styles
are distributed across the population.

To estimate the values of the parameters of a FFM, i.e., the mixing propor-
tion π and the parameters of each component distribution θ, several approaches
exist, but the most commonly used is the Expectation-Maximization (EM) al-
gorithm. EM applies maximum likelihood estimation to fit the FMM. The EM
algorithm consists of two main steps: the Expectation (E-step), which calculates
the probability that each data point belongs to each component based on the
current parameter estimates, and the Maximization (M-step), which updates the
parameter estimates using these probabilities to better fit the data. These two
steps are repeated iteratively until convergence is achieved [15].

A key challenge in applying FMM is identifying the value of g, i.e., the num-
ber of components in the model. Lower values of g may lead to underfitting,
while higher values can result in overfitting [15]. To address this, several model
selection criteria have been developed, aiming to balance model fit with com-
plexity. Two widely used criteria for model selection are the Akaike Information
Criterion (AIC) [1] and the Bayesian Information Criterion (BIC) [27]. Both
criteria evaluate models based on the maximized likelihood L̂, while introducing
a penalty that increases with the number of estimated parameters |Ψ |; thus, dis-
couraging overfitting. The AIC provides an estimator of the relative prediction
error, calculated as follows

AIC = 2|Ψ | − 2 ln(L̂), (3)



which can be used to compare the quality of multiple models fitted to the same
dataset. Lower AIC values indicate models that are expected to predict new data
more accurately. Similarly, the BIC is given by

BIC = |Ψ | ln(n)− 2 ln(L̂), (4)

where n is the number of observations. BIC imposes stricter penalty on model
complexity compared to AIC, making it more conservative when selecting the
number of components, specially for large datasets [28].

In practice, both AIC and BIC are calculated for models with different values
of g, and the model with the lowest value of the selected criterion is considered
optimal. While AIC favors more complex models, BIC generally performs better
in identifying an adequate number of components in FMMs, especially in the
context of large datasets [15,28].

3 Related Work

Characterizing and comparing players in ice hockey has been done in different
ways. The most common approach is to use performance metrics [8]. These
range from the traditional metrics such as goals, assists, and points to Corsi and
xG (expected goals) which are all well-known in the hockey discourse. To deal
with some of the disadvantages of the traditional metrics, other advanced data-
driven metrics have been proposed such as extensions for the +/- metric using
regularized logistic regression models [14,4]. There is also work on combining
metrics, such as in [5] where principal component analysis is used on 18 basic
stats. A major critique for traditional metrics has been that context is not taken
into account. Therefore, some approaches for player performance metrics take
game context into account such as event impacts, e.g., [24,19], and much of the
work that models the dynamics of an ice hockey game using Markov games where
two opposing sides (i.e., the home team and the away team) try to reach states in
which they are rewarded (e.g., scoring a goal) [29,7,20,25,26,11,22,13,9]. We note
that the introduction of new metrics may change the way the game is played.
For instance, in [6] it was shown that team play transitioned first to taking
more shots (high Corsi, shot-based), and then to taking high-quality shots (high
expected goals). Player rankings are presented in [23,12,10].

Player categorization is a relatively unexplored field in the context of ice
hockey. In earlier work, a player could belong to only one role or category [30,3].
More recent work used soft clustering techniques to categorize players, allowing
for a player to belong to different roles with some probability [21,17]. In the latter
case, players can be compared based on their membership in different roles.

This work can be seen as a variant of the work of [17]. In that paper, we used
player vectors to characterize a player’s playing style. The player vectors contain
representations of skills that are computed from game event data. Further, we
used fuzzy clustering on the vectors to generate five types of defender playing
styles and five types of forward playing styles. For these types, we showed typical
skill levels and players with similar styles. The data included complete seasons for



the three leagues AHL, SHL, and HockeyAllsvenskan for 2021/22 and 2022/23,
as well as data from the 2023/24 season up until Jan. 28th, 2024.

4 Data

The dataset used in this research is a proprietary dataset developed by Sport-
logiq3, and consists of event data for all the SHL regular season games for 5
seasons (2019/20 to 2023/24). In total, the dataset consist of 1820 games, 1072
unique players, 16 unique teams, and 6,814,336 events. Among the 1072 unique
players, there are 656 forwards, 377 defenders, and 94 goaltenders. We note that
in the dataset 55 players have been marked as playing in more than one position.

5 Method

5.1 Player vectors

We use the player vectors introduced in [17], and briefly summarizing how these
were constructed here. The player vectors for defenders and forwards were con-
structed by concatenating the feature vectors for the skills applicable to each of
the two player categories. Tables 1 and 2 summarize these skills. More specifi-
cally, for each skill, a feature vector is constructed which contains the frequencies
of each feature that describes that skill standardized using MinMaxScaler in the
scikit-learn library for Python [18]. Further, non-negative matrix factorization
(NMF) was applied to each feature vector using the NMF in the scikit-learn
library. After this operation, every skill is represented by one feature and these
are concatenated into player vectors (i.e., vectors of length 13 for defenders and
of length 18 for forwards).

Figs. 1a and 1b use boxplots to show the distributions of the values for
the skills for defenders and forwards, respectively, for the dataset containing all
seasons. Here, the lower edge of the box represents the lower quartile value (25%)
value, the (red) line in the box the median (50%) value, and the upper edge of
the box the higher quartile (75%) value. The lower whisker shows the minimum
value and the upper whisker the maximum value. Points below the lower whisker
or above the upper whisker are outliers.

5.2 Gaussian Mixture Model

To decide on the number of clusters for forwards and for defenders, we used the
BIC approach. A full-factorial grid search was performed to identify different
configurations of the model; resulting in a total of 14,400 different models being
evaluated, each with different values of parameters such as number of compo-
nents, covariance types, maximum number of iterations, and different initializa-
tion methods. Table 3 summarizes the example values used for each parameter.
3 https://www.sportlogiq.com/hockey/



Table 1: Skills and example actions for defenders [17].
Skills Actions
Passing e.g., different types of passes
Skating e.g., exits, entries, dumps
Shooting e.g., different types of shots
Defensive Stickwork e.g., blocked passes, loose puck recoveries
Puck Moving e.g, some types of passes, dump-in recoveries
Point Producing e.g., different offensive zone events
Powerplay Playmaking e.g., powerplay playmaking events
Powerplay Scoring e.g., powerplay shots and goals
Physical Play e.g., body checks and defensive plays
Slot Defense e.g., blocked shots and dump outs
Stay at Home e.g., different defensive zone events
Penalty Killing e.g., different penalty killing events related to puck recovery
Penalty Killing Slot Defense e.g., different penalty killing defensive plays

Table 2: Skills and example actions for forwards [17].
Skills Actions
Passing e.g., different types of passes
Skating e.g., different types of controlled entries
Powerplay Playmaking e.g., different types of controlled entries and passes in powerplay
Powerplay Slot Engagement e.g., powerplay actions close to net
Powerplay Scoring e.g., powerplay shots and goals
Defensive Puck Control e.g., dump outs and loose puck recoveries
Defensive Zone Play e.g., different defensive zone actions
Defensive Positioning e.g., blocked shots and passes
Slot Defense e.g., rebounds and dump outs
Penalty Killing e.g., shorthanded defensive plays
Slot Engagement e.g., offensive actions close to net
Heavy Game e.g., body checks and defensive plays
Forechecking e.g., offensive zone loose puck recoveries
Cycling the Puck e.g., puck protections and receptions
Neutral Zone e.g., different neutral zone actions
Puck Moving e.g, some types of passes, entries
Offensive Zone Play e.g., different offensive zone events
Shooting e.g., different types of shots

Table 3: Grid Search Parameters for Gaussian Mixture Models.
Parameter Values
Initialization Method K-means++, Kmeans, Hybrid hierarchical, Random, Random from data
Number of components 3-11
Covariance type Spherical, Tied, Diagonal, Full
Convergence Threshold 10−7, 10−6, 10−5, 10−4

Regularization covariance 10−5, 10−4, 10−3, 10−2

Max iterations 100, 200, 300, 400, 500



(a) Forwards. (b) Defenders.

Fig. 1: Boxplots of the skill value distributions, as calculated across all seasons.

Fig. 2 shows the average of AIC and BIC values based on the number of
components applied to the skill vectors for forwards and defenders, respectively.
For this paper, we chose to use the same number of clusters as in [17]. Fig. 2
shows a significant decrease between three and five components for both AIC and
BIC, suggesting that adding components to the model improves the performance.
As the decrease after five components is smaller, we deem it interesting to work
with five clusters as in [17]. As the BIC is smallest for 10 components, we will
run the algorithms with 10 components as well in the future.

Fig. 2: Average AIC and BIC score by the number of components for forwards
(left) and defenders (right) for the dataset containing all seasons.

6 Results

6.1 Forwards

Fig. 3a shows for the five clusters of forwards the average skill values for the ten
forwards closest to the centroid of the cluster for the five seasons aggregated.
When assigning players to the cluster for which it has highest membership, the
players are relatively evenly distributed to the different clusters. To clusters F-
all.0, F-all.1, F-all.2, F-all.3, and F-all.4, there are 32, 126, 111, 144, and 120
players assigned, respectively. The forwards in cluster F-all.0 do not excel in
any skills, but have there strengths in slot defense, puck moving, OZ play, and



shooting. Forwards in cluster F-all.1 are good in many skills and excel in skating,
heavy game, forechecking, and cycling the puck. The strengths of forwards in
cluster F-all.2 are slot defense, puck moving, OZ play, shooting, and playmaking.
Cluster F-all.3 forwards have many skills with strengths in slot defense, puck
moving, OZ play, shooting, and PP playmaking. Finally, the forwards in cluster
F-all.4 are good at slot defense, penalty killing, OZ play, and PP playmaking,
but lack in slot engagement, PP slot engagement, and PP scoring.

We also investigated clusters when we use data for one season. As an ex-
ample, Fig. 3b shows for the 5 clusters of forwards the average skill values for
the ten forwards closest to the centroid of the cluster for season 2019/20. The
cluster skill box diagrams for the other seasons are similar. We note that the
skill distributions for clusters F-all.0, F-all.1, F,2, and F-all.3 have a clear coun-
terpart in the 2019/20 season (cluster F-all.0 - cluster F-19/20.1, cluster F-all.1
- cluster F-19/20.3, cluster F-all.2 - cluster F-19/20.0, cluster F-all.3 - cluster
F-19/20.2). The cluster F-19/20.4 is similar to cluster F-all.4, but the forwards
in the cluster have higher skill levels for many of the skills. Example forwards
for the clusters are given in Table 4.
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(a) All seasons. In the text we call the clus-
ters F-all.0 to F-all.4.
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(b) Season 2019/20. In the text we call the
clusters F-19/20.0 to F-19/20.4.

Fig. 3: Average skill values of the ten forwards closest to each cluster centroid.

6.2 Defenders

Fig. 4a shows for the 5 clusters of defenders the average skill values for the ten
defenders closest to the centroid of the cluster for the 5 seasons aggregated.
Cluster D-all.3 has the most players regarding highest membership. Defenders
in cluster D-all.0 have low skill levels. The players in this cluster all played few
games in the SHL. D-all.1 defenders are highly skilled and excel in defensive skills
such as slot defense, stay at home, penalty killing, PK slot defense, physical play,
and defensive stickwork. They do not seem to play powerplay. D-all.3 defenders
have average skill levels. Defenders in cluster D-all.4 are highly skilled and in



Table 4: Forwards closest to the centroids for the clusters. F-all.0 - F-all.4 for
the 5 seasons aggregated. F-19/20.0 - F-19/20.4 for season 2019/20.
Cluster F-all.0 Cluster F-all.1 Cluster F-all.2 Cluster F-all.3 Cluster F-all.4
(132 players) (126 players) (111 players) (144 players) (120 players)
Mateusz Szurowski Simon Ryfors Jacob Micflikier Marco Kasper Mikael Frycklund
Melvin Fernström Kalle Östman Peter Holland Dick Axelsson Mikkel Boedker
Johan Lundgren Linus Fröberg Markus Nenonen Filip Cederqvist Juuso Ikonen
William Magnusson Sebastian Strandberg Marcus Paulsson Markus Modigs Joonas Nattinen
Linus Lööf Andreas Wingerli Adam Johnson Tuomas Kiiskinen Petrus Palmu
Cluster F-19/20.0 Cluster F-19/20.1 Cluster F-19/20.2 Cluster F-19/20.3 Cluster F-19/20.4
(56 players) (49 players) (55 players) (65 players) (50 players)
Rok Ticar Jesper Kandergård Jesper Frödén Emil Pettersson Joakim Andersson
Gustav Possler Melker Eriksson Tuomas Kiiskinen Brendan Shinnimin Johan Johnsson
Marcus Paulsson Alexander Ljungkrantz Olle Lycksell Johan Sundström Adam Pettersson
Viktor Lodin Linus Hedman Dominik Bokk Greg Scott Axel Wemmenborn
Michael Latta Samuel Solem Henrik Törnqvist Ted Brithén John Dahlstrom

comparison to D-all.1 defenders excel in offensive skills such as passing, shooting,
puck moving, point producing, and they also play powerplay. The players in
cluster D-all.2 played few games. In contrast to the players in D-all.0. these
players were junior players and some long-time injured players (e.g., Mattias
Bäckman in 2019/20).

When investigating clusters for different seasons, we observed that clusters
similar to D-all.2, D-all.3, and D-all.4 appeared. However, there were no clusters
similar to D-all.0. For D-all.1, there was an equivalent cluster for the seasons
2019/20, 2020/21, and 2021/22. For the seasons 2022/23 and 2023/24 cluster D-
all.1 could be seen as an aggregation for 2 clusters for the season. Fig. 4b shows
for the 5 clusters of defenders the average skill values for the ten defenders closest
to the centroid of the cluster for season 2019/20. Example defenders for the
clusters using data from all season, and from the 2019/20 season, respectively,
are given in Table 5.

Players can change cluster during their career. For instance, Rasmus Rissanen
belonged mainly to cluster D-19/20.4 while in 2023/24 he belonged mainly to
the cluster that matches D-19/20.3. In this case, his best skills are still in the
defensive work, but he has raised the skill level of most of his skills.

7 Conclusion

In this paper, we presented a Gaussian Mixture Model (GMM) approach for char-
acterizing playing styles among ice hockey defenders and forwards. Our method
provides a data-driven framework for identifying distinct player types based on
skill profiles, offering new insights into player evaluation and team composition.

In future work, we plan to use data from AHL and HockeyAllsvenskan as well
(as in [17]) and investigate whether the playing styles are the same or different
in the different leagues. Further, we will use the algorithms from [17] on the
data used in this paper and compare the different techniques. Such comparisons
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(a) All seasons. In the text we call the clus-
ters D-all.0 to D-all.4.
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(b) Season 2019/20. In the text we call the
clusters D-19/20.0 to D-19/20.4.

Fig. 4: Average skill values of the ten defenders closest to each cluster centroid.

Table 5: Defenders closest to the centroids for the clusters. D-all.0 - D-all.4 for
the 5 seasons aggregated. D-19/20.0 - D-19/20.4 for season 2019/20.
Cluster D-all.0 Cluster D-all.1 Cluster D-all.2 Cluster D-all.3 Cluster D-all.4
(60 players) (42 players) (67 players) (127 players) (57 players)
Lukas Klok Anton Mylläri Albin Thyni Johansson Daniel Brickley Matt Caito
Jordan Murray Oscar Engsund Nils Strandberg Sarén Ville Pokka Oskar Nilsson
Axel Landén Jonathan Sigalet Oskar Hassel Julius Bergman Lucas Ekeståhl-Jonsson
Theodor Johnsson Tim Erixon Jakob Bondesson Joonas Lyytinen Kristian Näkyvä
Elias Rosen Arvid Lundberg Gustav Berglund Anton Strålman Joel Nyström
Cluster D-19/20.0 Cluster D-19/20.1 Cluster D-19/20.2 Cluster D-19/20.3 Cluster D-19/20.4
(18 players) (41 players) (40 players) (29 players) (19 players)
Gustav Berglund Filip Johansson Jesper Sellgren Oscar Engsund Daniel Glad
Jakob Bondesson Jonas Junland Marcus Högström Emil Wahlberg Jesper Pettersson
Emil Andrae Lucas Nordsäter Jonathon Blum Jonathan Sigalet Nichlas Torp
Albin Thyni Johansson Patrik Norén Oskar Nilsson Arvid Lundberg Johan Ivarsson
Christian Lindberg Julius Bergman Johan Fransson Hampus Larsson Niklas Arell



are expected to provide insights into the relative strengths and weaknesses of
different unsupervised learning techniques for player style characterization.

Overall, our findings contribute to the growing research area on quantitative
analysis of player behavior, and we hope they will provide tools and foundation
for further research into improved player development, scouting, and strategic
decision-making in professional ice hockey.
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