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Preface

LINHAC 2025 took place June 2-4, 2025, and was organized by Linkdping University and
Linkdping Hockey Club. LINHAC brought together professionals and academics with an
interest in hockey analytics. It featured the latest research in hockey analytics in academia
and companies, discussions with analysts and coaches, industry sessions with the latest
hockey analytics products, and an analytics competition for students.

In addition to the research track and community notes, the program included talks by An-
dreas Hinni (49ing) and Olof Simander (Linkoping University) on large language model
interfaces to hockey databases, by Andreas Hinni (49ing) on analytics for officiating in the
Swiss League, by Adam Almgqvist Andersson and Johan Andersson (Swedish Ice Hockey
Association) on examples of concrete hockey analytics, by Erik Wilderoth (Firjestad BK)
with the title "No room for stagnation: We need to get better’, by Mikael Svarén (Dalarna
University and Swedish Sports Confederation), on using analytics for performance opti-
mization from an applied and academical perspective, by Robert Bandemer (d-fine) and
Karl Schwarzenbrunner (German Ice Hockey Federation) on how data enriches the ice
hockey game, by Curtis Harvey and Samuel Howorth (SMT) on skater and goalie work-
loads using player and puck tracking, and by Robin Blidstrand (Blidgency AB) on how to
create stories and memories in sports and TV production.

Further, there were panel discussions moderated by Mike Helber. A first panel was made
up of analysts from different European teams (Miika Arponen (Assit Pori), Martin Lund-
holm (Skelleftea AIK), Karl Malmquist (Linképing Hockey Club), Erik Lignell (HC Fribourg-
Gottéron SA)). The second panel discussed the state of the art and future of hockey analyt-
ics from the industry perspective (Tom Bertrand (Bearmind), Michael Elmer (KINEXON),
Leo Girod (Sportcontract), Andreas Hianni (49ing), Freddy Sjogren (Freddie Sjogren Con-
sulting AB), Morgan Zeba (Spiideo)). The third panel discussed sports analytics in use,
where we looked broader than hockey (Tom Bertrand (Bearmind), Ola Lidmark Eriksson
(Playmaker AI), Albin N Maelum (Stretch on Sense), Devin Pleuler (Maple Leaf Sports
& Entertainment)). The participants of the fourth panel consisted of NHL analysts (AJ
Bernstein (San Jose Sharks), Miranda McMillan (Montreal Canadiens), Josh Pohlkamp-
Hartt (Boston Bruins), David Radke (Chicago Blackhawks), Matthew Hamann (Nashville
Predators)). The final panel discussed the use of analytics in the media (Robin Blidstrand
(Blidgency AB), Andreas Hénni (49ing), Mike Kelly (Sportlogiq, NHL Network)).

Our industry collaborators presented their products: KINEXON Sports, Bearmind, 49ing,
Spiideo and Stretch on Sense.

This year’s LINHAC had an invited session on football analytics. Football analytics has
reached a higher level of maturity than hockey analytics and we invited representatives
from academia, teams and companies. Jesse Davis (KU Leuven) talked about an effort to
define a common data format for football match data. Pieter Robberechts (KU Leuven)
from the same research group presented their work on evaluating sports analytics models:
challenges, approaches and lessons learned. John Wall (Columbus Crew) discussed his use



of analytics to create sustainable success with succession planning and purpose during his
time as assistant coach with the Jamaican national team 2022-2024. Further, there was a
talk by Ola Lidmark Eriksson on the Playmaker Al system.

Finally, there was a student competition where the task was to provide insights based on
sequences of events in a hockey game. Data was provided by the SHL and Sportlogiq. A
jury consisting of Tim Brecht (University of Waterloo), Hassaan Inayatali (Chicago Black-
hawks), Patrick Lambrix (Linkoping University), David Radke (Chicago Blackhawks) and
Mikael Vernblom (Linkdping Hockey Club) selected the project Identifying and Analyzing
SHL Ice Hockey Match Styles Based on Event Data Aggregation and K-Means Clustering
by Yanjie Lyu, Qingxuan Cui, Huaide Liu, Han Xia, and Yi Yang as the winner of the
competition.

LINHAC is the only conference of its kind in Europe, and to our knowledge, it is the only
hockey analytics conference that covers all aspects related to hockey analytics. This book
includes the research track papers and community notes as well as contributions from
industry, the student competition papers, and insights from contributors to LINHAC re-
garding their experience with hockey analytics and thoughts about its future. The research
track papers and community notes are also published at Linkdping Electronic Conference
Proceedings as ECP 214, https://doi.org/10.3384/ecp214. The research track
program committee with chairs Tim Brecht and Niklas Carlsson, selected the research pa-
per Ice Hockey Action Recognition via Contextual Priors by Kseniia Buzko, Amir Nazemi,
David A. Clausi and Yuhao Chen as the winner of the best research paper award.

We thank our moderator Mike Helber, our conference service Way, and the members of our
local organization committee Mina Abd Nikooie Pour, Ying Li, Priyansh Gupta, Adriana
Concha, Jenny Rydén, Veronica Gunnarsson, Lene Rosell, Anders Cronstierna, and Daniel
Jemander, for their excellent support.

Last, but not least, we thank our collaborators the Alliance of European Hockey Clubs and
Sportlogiq, our sponsor the Swedish Research Council for Sport Science, and our silver
(Bearmind, KINEXON Sports), and bronze (49ing, Spiideo, Stretch on Sense) industry
collaborators.

September 2025 Patrick Lambrix (chair),
Tim Brecht (co-chair),

Niklas Carlsson (co-chair),

Mikael Vernblom (co-chair)
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Ice Hockey Action Recognition via Contextual
Priors

Kseniia Buzkol[0009—0009—9930—8497]7 Amir 1\Iazen,li1[0000—0002—8405—473X]7 David
A. Clausil[OOOO—0002—6383—08’75]7 and Yuhao Chenl[0000—0001—6094—0545]

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON
N2L 3G1, Canada
{kbuzko,amir.nazemi,dclausi,yuhao.chenl@}@uwaterloo.ca

Abstract. Skeleton-based action recognition models, which are devel-
oped for generic human-pose data, struggle with ice-hockey broadcasts
player action recognition, where the players appear smaller, move abruptly,
and wield sticks that are invisible to standard skeleton models. To ad-
dress these issues, we propose CP-Hockey, a context-aware pipeline that
incorporates two domain-specific priors. First, a temporal player’s bounding-
box normalization stabilizes player scale across the player tracklet, rais-
ing top-1 accuracy from 31 % to 57 % on a six-class NHL dataset. Second,
we design hockey-specific skeletons that include stick end-points and op-
tional detailed head landmarks. A 15-keypoint body-plus-stick model
improves the accuracy to 64 %, while our full 20-keypoint configuration
reaches 65 %. Experimental results with STGCN++ and 2s-AGCN show
that both contextual priors are necessary: scale normalization reduces
spatial jitter, and stick keypoints disambiguate visually similar move-
ments such as stickwork versus striking a puck with a stick. CP-Hockey
establishes a strong baseline for fine-grained ice-hockey analytics and
provides a blueprint for adapting skeleton pipelines to other equipment-
centric sports.

Keywords: Ice Hockey Action Recognition - Skeleton-based Action Recog-
nition - Contextual Priors

1 Introduction

Player action recognition is a fundamental task in sports analytics, enabling the
automatic identification and classification of particular player movements during
the game, such as skating, striking a puck, or maintaining position. Understand-
ing these actions allows deeper insights into player strategies and game analysis.
Although sports such as basketball [2,5] and soccer [3,18] have seen extensive
development in player action recognition methodologies due to their popularity,
ice hockey remains comparatively underexplored. Traditional approaches like the
Action Recognition Hourglass Network (ARHN) [1] rely mainly on static pose
input, ignoring temporal and ice hockey contextual information. By ‘contextual
information’ of broadcast ice hockey videos, we point to structured domain-
specific cues such as camera-driven scale changes and stick pose that go beyond
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Fig. 1. Illustration of the two contextual priors exploited by CP-Hockey. (a) Temporal
bounding-box (BB) normalization suppresses scale jitter by resizing every frame in the
player tracklet to the maximum BB dimensions. (b) A 15-keypoint ice hockey skeleton
(green body joints, red stick joints) with the stick pose which is vital for player action
recognition and not included in the generic 17-keypoint COCO skeleton.

the joint coordinates; the two contextual priors that we leverage in this work are
visualized in Figure 1.

Player action recognition in broadcast ice hockey footage is challenging for
several reasons. The players bounding boxes are small and fast-moving (Figure
2); rapid camera pans create scale jitter; bulky protective gear and frequent
occlusions confound generic pose estimators.

Most pose-based solutions for action recognition ignore the temporal con-
textual features of the data domain [22,7] and rely on generic 17-keypoint
human skeletons (such as keypoint COCO model [14]). However, static cropping
and resizing of a player’s bounding box on a frame-by-frame basis disregards
the temporal context, often resulting in irregular player scales and spatial jitter
across consecutive frames. This jitteriness of the players’ poses decreases the per-
formance of downstream models, as the player’s pose rapidly changes in size or
position due to camera effects rather than actual movement of the player’s poses.
Although generic skeletal configurations are widely used in human pose estima-
tion [14], they are not tailored for the ice hockey domain. Many of the keypoints
in these models correspond to body joints that can be easily occluded by hockey
gear like helmets or pads. In addition, they do not consider key objects such
as the hockey stick in their solution. From the perspective of contextual priors
in ice hockey, we argue that the hockey stick serves as a vital cue to recognize
actions in the sport. It can differentiate various actions, such as stickwork, where
the stick primarily makes contact with the ice, and striking the puck, where the
stick is in a winding-up motion.

Linkoping Hockey Analytics Conference 2025 3
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Fig. 2. Comparison of bounding-box pixel sizes between ice hockey (left) and volleyball
(right) broadcast footage [4]. In addition to the rapid movement of players and the
camera, the bounding boxes of players are relatively smaller in ice hockey broadcast
videos, which makes player action recognition more complicated.

In this work, we propose CP-Hockey, a novel ice hockey action recognition
pipeline that leverages contextual priors to address the mentioned challenges.
Our CP-Hockey pipeline benefits from contextual priors at two points (Fig-
ure 1). First, a context-sensitive temporal normalization stabilizes the bounding
box of each player’s tracklet throughout the action clip, suppressing camera-
driven scale variability. Second, our solution benefits from skeleton with stick
end-points, giving the action recognition model explicit access to stick pose and
motion. Through extensive experiments on an NHL hockey video dataset, we
demonstrate that integrating such contextual priors markedly improves player
action recognition performance in ice hockey broadcast videos.

This paper makes the following unique and novel contributions to player
action recognition in ice hockey broadcast videos:

— We implement a temporal bounding box normalization method that reduces
spatial jitter of a player’s tracklet in broadcast footage and improves the
skeleton-based player action recognition in ice hockey broadcast videos.

— We implement a novel skeletal configuration specifically tailored to the ice
hockey domain, which integrates stick keypoints to capture important stick-
related interactions, an aspect that to the best of our knowledge, has not
been previously explored.

— We perform extensive evaluations comparing graph convolutional networks
(GCNs) such as 2s-AGCN [9] and STGCN++ [6], generating empirical evi-
dence advocating for the use of STGCN-+ with contextual priors in recog-
nizing ice hockey-specific actions.
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2 Background Research

2.1 Pose Estimation

Human pose estimation models identify key anatomical points, such as joints
and limbs, from images or videos, providing a structured representation of hu-
man posture. Pose estimation is particularly relevant in sports analytics, as it
enhances the ability to capture precise body configurations necessary for effec-
tively classifying specific movements. In ice hockey, accurate pose estimation
can significantly improve action recognition by providing robust temporal skele-
tal representations of players’ complex movements.

However, standard human pose estimation methods, typically trained on gen-
eral datasets such as COCO [14] or MPII [15], face unique difficulties when ap-
plied to ice hockey broadcasts. Players wear bulky protective equipment that
alters the shape of the body, leading to frequent misinterpretation of limb po-
sitions. In addition, uniform colors, such as white jerseys, visually blend with
ice or boards, complicating limb identification. Pose estimation in ice hockey is
further challenged by rapid and agile player movements, such as quick skating
transitions or sudden turns, which often result in severe motion blur and unusual
body poses [1, 10].

Recent work has begun to address these challenges associated with ice hockey-
specific poses. Balaji et al. [11] introduced a multimodal approach that utilizes
language cues to manage occluded keypoints, focusing on the player’s body and
using textual prompts for expected stick positions. This method significantly
improved pose accuracy in an ice-hockey dataset by leveraging domain context,
such as equipment knowledge. We incorporate pose estimation [10, 11] into our
CP-Hockey pipeline, as accurate skeletal representations are essential for reliable
ice hockey action recognition, especially for subtle actions like puck striking and
stick handling.

2.2 Skeleton-Based Action Recognition

Building on pose estimation, researchers have explored skeleton-based action
recognition for sports, where player joint sequences are input to an action classi-
fier. Graph convolutional networks (GCNs) have become a dominant paradigm
for this problem [22], as they naturally model the human skeleton as a graph,
where each vertex represents a body joint and edges are split into temporal and
spatial connections. The edges that join vertices inside a frame are referred to
as spatial edges, while the edges that join the same vertex across consecutive
frames are referred to as temporal edges. This representation significantly out-
performed convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) based approaches [16,17] that employed the skeleton modality without
taking joint dependence into account.
ST-GCN (8] demonstrated the effectiveness of spatio-temporal keypoint graphs

for action recognition, outperforming purely appearance-driven approaches. Sub-
sequent improvements, such as 2s-AGCN [9] and STGCN++ [6], introduced
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adaptive graph structures and multi-stream inputs, such as joint and bone data,
for improved performance. These models have proven particularly effective in
sports analytics [23], where structured skeletal data remains reliable despite
variations in clothing, lighting, and background clutter.

Despite advancements, action recognition in ice hockey remains underex-
plored compared to sports with a larger following, such as basketball or soccer.
Prior research has focused mainly on coarse tasks such as player tracking [19]
and puck tracking [20], often relying on traditional vision pipelines or CNN-based
trackers. For particular action recognition, such as forward skating, stickwork,
and rapid deceleration, remains underexplored.

2.3 Contextual and Object-Aware Action Recognition

Early skeleton pipelines inferred actions almost exclusively from joint coordi-
nates, treating each frame or short clip in isolation. Recent work shows that con-
textual priors like temporal neighborhoods, interacting objects, and high-level
semantics, can greatly sharpen recognition, especially when skeleton trajectories
alone are ambiguous. For example, Cioppa et al. design CALF [12], a context-
aware loss that spots soccer events by supervising not the single annotated frame
but a short temporal window around it. While Wen et al. add dynamically de-
tected object centers to the ST-VGCN graph [7], demonstrating that even coarse
object localization can disambiguate actions sharing near-identical limb motions.

3 Dataset

To develop and evaluate our CP-Hockey pipeline, we collected video clips from
National Hockey League (NHL) broadcasts captured at 30 frames per second
(fps). These clips were sourced from multiple NHL games, covering 29 different
teams, which provides a wide range of arenas, lighting conditions, and team
uniforms for a diverse and challenging dataset. The raw footage was segmented
into individual shots, where each clip lasts from a few seconds to over a minute.

Six ice-hockey-specific classes were selected for their frequency, tactical im-
portance, and visual distinctness. Table 1 summarizes the class definitions and
their distribution. In total, the dataset contains 1,547 annotated action instances,
each spanning 2 seconds (60 frames), where the start and end frames are defined
as +30 frames around the anchor action frame.

4 Methodology

4.1 Pipeline Overview

The CP-Hockey pipeline for ice-hockey action recognition comprises four stages
that together inject two complementary contextual priors: a temporal prior that
stabilizes player scale and position, and an object prior that models the hockey
stick explicitly. Figure 3 gives a high-level view of the proposed pipeline.

Linkdping Hockey Analytics Conference 2025 6
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Table 1. Action classes with descriptions and frequency.

Action Class Description Occurrences

Rapid Deceleration Player abruptly reduces skating speed to change 52
direction or avoid contact

Backwards Skating Player skates in reverse, typically to maintain 116
defensive positioning

Maintaining Position |Player remains largely stationary while reading 164
the play or screening the goalie

Strike Puck with Stick|Player’s stick makes direct contact with the puck 337
for a pass, shot, or block

Forwards Skating Player accelerates toward the offensive zone 421
while controlling balance and speed

Stickwork Player performs intricate stickhandling to retain 457
or regain puck control

Total 1547

Each annotated action segment is first preprocessed by automatically ex-
tracting a player tracklet with the VIP-HTD tracker [19]. Bounding boxes are
then temporally normalized to enforce scale consistency (Section 4.3, Contextual
Prior #1). Next, an ice-hockey-specific pose estimator [10, 11] converts every nor-
malized crop to a skeleton, yielding 2-D key-point sequences with six alternative
configurations (Section 4.4, Contextual Prior #2). Finally, a GCN-based model
classifies the action (Section 4.5).

EEL ]
BER@

17 keypoints 13 keypoints 12 keypoints 15 keypoints 20 keypoints
Pose Extraction

T4

Bounding Box Normalization

’7— X
: i Action
Broadcast Video & GCN model Recognition
Player Tracking Prediction

Fig. 3. Overview of the CP-Hockey pipeline. Contextual Prior #1 (green) stabilizes
bounding-box scale; Prior #2 (orange) augments the skeleton with stick key-points.
The enriched graph is fed to GCN-based model for action recognition.

4.2 Preprocessing

To automate bounding box extraction and ensure temporal consistency across
frames, we leverage a tracking approach [19], specifically tailored for player de-
tection in ice hockey broadcast footage. After extracting bounding boxes, frame-
wise bounding box cropping and resizing to a normalized spatial representation
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is performed. These cropped bounding boxes are the inputs for pose extraction,
which uses ice hockey-optimized models presented in [10, 11].

4.3 Bounding Box Normalization

A significant challenge in using broadcast video for pose estimation is the vari-
ability in player size and position across frames. A naive approach might resize
each frame independently, stretching the player’s skeleton and distorting the
body shape, which negatively impacts downstream performance. To mitigate
this, we propose a robust bounding box normalization strategy. Specifically, we
compute the maximum width and height of the bounding box for each anno-
tated action across all frames within the action segment. We then re-extract
the bounding box from the original video, expanding each frame’s bounding box
to consistently match these maximum dimensions, ensuring the player remains
centered.

To illustrate the effectiveness of this approach, Figure 4 compares keypoint
trajectories for a sample data sequence without and with bounding box nor-
malization. On the left, the raw joint trajectories without normalization are
scattered, showing significant variability due to changes. In contrast, the trajec-
tories on the right, after applying bounding box normalization, are significantly
more stable and coherent.
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Fig. 4. Impact of bounding box normalization on joint trajectories for one data sam-
ple. Left: Without bounding box normalization, the joint trajectories are scattered and
inconsistent due to variability in player scale. Right: After applying bounding box nor-
malization, trajectories appear significantly more stable and coherent, clearly reducing
positional variance and making movement patterns easier to interpret.

4.4 Pose Keypoint Extraction

We apply ice hockey-optimized 2D pose estimators [10,11] to generate skeletal
keypoints from players in normalized bounding boxes belonging to a sequence.
We experimented with various keypoint configurations (Figure 5):
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17 Keypoints (COCO [14]): Standard full-body representation.

13 Keypoints: Merged head keypoints.

12 Keypoints: Head keypoints omitted to focus solely on torso and limbs.

15 Keypoints: 12 body keypoints plus 3 ice hockey stick keypoints (butt

end, heel, toe).

5. 20 Keypoints: Comprehensive setup with 5 head, 12 body, and 3 stick
keypoints.

6. 3 Stick Keypoints Only: Focused solely on stick interaction.

e

17 keypoints 13 keypoints 12 keypoints 15 keypoints 20 keypoints

Fig. 5. Five skeletal configurations used in this study, from left to right: 17-keypoint
COCO, 13-keypoint merged head, 12-keypoint head-omitted, 15-keypoint with ice
hockey stick endpoints, 20-keypoint comprehensive configuration.

4.5 GCN for Action Recognition

We employ the 2s-AGCN [9] and STGCN++ [6] architectures to classify skeleton-
based action sequences. Training and evaluation leverage the mmAction2 tool-
box [21]. Our approach exclusively utilizes the joint modality (keypoint coordi-
nates) to capture spatial-temporal dynamics. This choice simplifies model inputs
while effectively capturing both static postures and dynamic movements neces-
sary for accurate ice hockey action recognition.

5 Experiments

5.1 Experimental Setup

To ensure a robust model evaluation, we partitioned the dataset described in
Section 3 into training and validation sets using a 70%-30% stratified split, main-
taining an approximately proportional representation of each action class. We
evaluate action recognition performance using standard metrics.

We adopt the mmAction2 toolbox [21] for training and evaluation. The train-
ing process leverages the GCN-based architectures (described in Section 4.5)
with cross-entropy loss. Experiments were conducted on an NVIDIA RTX 3090
Ti GPU. The training setup for our GCN experiments is as follows: a learning
rate of 0.1, weight decay of 5 x 10™4, batch size of 16, and training for a total of
20 epochs using stochastic gradient descent (SGD) as the optimizer.

Linkdping Hockey Analytics Conference 2025 9
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5.2 Experimental Results

We evaluated our ice hockey action recognition framework using exclusively the
joint modality, focusing clearly on different skeletal configurations and their im-
pact on performance. Results across these configurations are presented in Ta-
ble 2.

Table 2. Comparison of action recognition accuracy using joint modality across dif-
ferent skeletal configurations and models.

Model ‘Keypoint Configuration ‘Accuracy (%)

17 Keypoints (No Bounding Box Norm) 31

12 Keypoints 40

13 Keypoints 44
STGCN++ |17 Keypoints 57

15 Keypoints (12 body + 3 stick) 64

20 Keypoints (5 head + 12 body + 3 stick) 65

3 Stick Keypoints Only 52

17 Keypoints 51
2-AGEN 5 Keypoints (12 body -+ 3 stick) 56

The 20-keypoint skeleton with STGCN-++ attains the highest 65 % accu-
racy. Using the same model, bounding-box normalization plus the standard 17-
keypoint human skeleton yields 57 %. Adding only three stick joints to that
baseline raises accuracy by 7 pp to 64 %, and further appending five fine-grained
head landmarks adds another 1 pp, reaching 65 %. Conversely, dropping head
landmarks altogether (13 or 12 keypoints) lowers accuracy to 44 % and 40 %,
respectively. These step-wise gains and losses show that both detailed head cues
and explicit stick endpoints are essential for recognizing hockey-specific actions.
Additionally, results from the 3 stick keypoints alone configuration (52%) mo-
tivate the significant role of stick interactions. STGCN++ consistently outper-
formed 2s-AGCN, validating our selection of STGCN++ as the core model.

5.3 Qualitative Results

Figure 6 illustrates qualitative predictions from our models on six representative
action clips. Each image captures the midpoint frame of a two-second action
sequence along with ground-truth labels and predictions from five experimental
setups: (1) without bounding box normalization, (2) 2s-AGCN with 17 keypoints,
(3) STGCN++ with 15 keypoints, (4) STGCN-++ with 17 keypoints, and (5)
STGCN++ with our optimized 20-keypoint configuration.

The model without bounding box normalization often misclassifies subtle
actions, mistaking stick interactions for general stickwork due to spatial incon-
sistencies. While the 2s-AGCN model with 17 keypoints struggles to differen-
tiate stick actions from skating movements, our 15-keypoint and 17-keypoint
STGCN++ configurations significantly improve accuracy. However, the 20-keypoint
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Fig. 6. Qualitative comparison of ice hockey action recognition predictions across dif-
ferent model setups on six action clips from our dataset. Ground-truth labels are in-
dicated in green (correct predictions), while incorrect predictions are shown in red.
The optimized STGCN++ model with 20 keypoints demonstrates improved accuracy,
effectively differentiating subtle actions compared to models without bounding box
normalization or fewer keypoints.

STGCN++ model excels, effectively distinguishing visually similar actions such
as forward skating versus backward skating, and reliably differentiating "strike
puck with stick" from general stickwork. These findings highlight the importance
of incorporating detailed head and stick keypoints, along with effective bounding
box normalization, to enhance ice hockey action recognition accuracy.

6 Conclusion

In this paper, we introduced CP-Hockey, a pipeline that injects two complemen-
tary contextual priors: a temporal prior that stabilizes player scale and an object
prior that models the hockey stick into the skeleton-based action-recognition
stack for broadcast ice-hockey footage. By counteracting camera-induced scale
jitter and making stick pose explicit, CP-Hockey tackles the key challenges of
tiny, fast-moving players, heavy occlusion from protective gear, and subtle stick-
centric motions.

Exploiting the temporal prior alone, our bounding-box normalization lifts
top-1 accuracy from 31 % to 57 % with the general 17-keypoint skeleton. Adding
the object prior (three stick end-points) further raises accuracy to 64 %. Our
most expressive 20-keypoint configuration, which also restores detailed head
landmarks, tops out at 65 %. These gains confirm that action recognition bene-
fits not merely from more keypoints but from the right context-aware keypoints,
aligned with the physics and semantics of ice hockey.
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Although CP-Hockey demonstrates strong performance on pre-segmented
action clips, extending the method to the action spotting [24] task would be
challenging. Future work should focus on developing mechanisms for automatic
action spotting in continuous video streams. Integrating multi-view or depth
information may also enable more accurate 3D pose estimation. Additionally,
incorporating contextual signals such as puck tracking and player interactions
could further enhance recognition of complex, team-based plays.

Overall, our results demonstrate that combining robust spatial normaliza-
tion, sport-specific skeletal representations, and spatio-temporal graph models
substantially improves action recognition in visually challenging sports scenarios.
Validated on real NHL broadcast footage, CP-Hockey lays a strong foundation
for advanced ice hockey analytics and provides a blueprint for extending action
recognition methods to other demanding sports domains.
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Abstract. Player categorization based on playing style is a highly im-
portant task in professional ice hockey, aiding scouting, player develop-
ment, and strategic decision-making. Traditional methods often rely on
simple metrics like goals or assists, which fail to capture the full com-
plexity of a player’s style and contributions. Motivated by the increas-
ing availability of detailed event data and advances in machine learning
based modeling techniques, this paper explores a richer, data-driven ap-
proach to player categorization. We build on recent work in player vector
representations and apply Gaussian Mixture Models (GMMs) to cluster
forwards and defenders based on event data from five seasons of the
Swedish Hockey League (SHL). Our contributions are threefold: (1) we
construct detailed player vectors that summarize a wide range of offen-
sive and defensive skills, (2) we apply GMMs to identify soft clusters of
players, allowing for nuanced overlapping playing styles, and (3) we ana-
lyze the resulting clusters to interpret distinct player profiles and provide
concrete examples. Our results offer a more flexible and realistic view of
player roles, reflecting the continuous and multi-dimensional nature of
playing styles. The approach helps enhance talent evaluation and ros-
ter building, and offers an efficient framework for future analyses across
leagues and seasons.

1 Introduction

Player categorization based on playing style is an important task in professional
ice hockey, supporting scouting, player development, and strategic decision-
making. Traditional approaches typically rely on discrete performance metrics,
such as goals, assists, or shots, offering only a partial view of a player’s overall
style and contribution. More recently, increased event data collection and ad-
vances in modeling techniques have opened up new possibilities for representing
and analyzing player behaviors in more nuanced ways.

In this paper, we build upon recent developments in player vector represen-
tations [17] and apply Gaussian Mixture Models (GMMs) to identify clusters of
forwards and defenders based on their playing styles. GMMs offer a probabilistic
soft clustering approach that is particularly well-suited to model the continuous
and overlapping nature of player styles. Unlike hard clustering methods, which
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assign each player to a single cluster, GMMs allow players to belong to multiple
clusters with varying degrees of membership, reflecting the reality that players
often exhibit characteristics of multiple styles.

The specific contributions of this paper are threefold. First, we leverage de-
tailed event data from five seasons of the Swedish Hockey League (SHL) to
construct player vectors capturing a wide range of offensive and defensive skills.
Second, we apply GMMs to these vectors, determining the number of clusters
using model selection criteria such as the Bayesian Information Criterion (BIC).
Finally, we analyze the resulting clusters to interpret the different playing styles
represented among forwards and defenders, and provide examples of players as-
sociated with each style.

Organization: Section 2 provides background on finite mixture models,
Gaussian mixture models, and model selection methods. Section 3 reviews re-
lated work in player evaluation and categorization. Section 4 describes the dataset
used in this study. Section 5 outlines our methodology for constructing player
vectors and fitting GMMSs. Section 6 presents the clustering results and analyzes
the identified playing styles, before Section 7 concludes the paper.

2 Background

In this paper, we apply Gaussian Mixture Models (GMMSs) to cluster forwards
and defenders based on their playing styles. A GMM is a type of Finite Mixture
Model (FMM) where each component is a Gaussian distribution. GMMs are
particularly well-suited for player data, as different playing styles often overlap
and evolve along continuous spectrums, making soft clustering approaches like
GMDMs more appropriate than hard clustering alternatives.

An FMM models data from a combination of unobserved groups, without
knowing in advance which point belongs to which group. With FMMs, each group
is associated with its own probability distribution, and the overall dataset is
modeled as a weighted sum of these components. Instead of trying to fit just one
model to the entire dataset, this allows the FMMs to fit multiple smaller models
and combine them [16]. This offers a flexible framework that better captures
complex data structures than single-model approaches.

Although various distributions, such as Poisson and Bernoulli, can be used
within the FMM framework, the choice of Gaussian distributions in GMMs pro-
vides two key advantages: flexibility and interpretability. Gaussian components
can model elliptical clusters with different orientations and scales, which is im-
portant when different playing styles vary along distinct combinations of per-
formance features. Furthermore, GMMs naturally produce soft assignments of
players to clusters, reflecting the intuition that playing styles often exist on a
continuum rather than falling into rigid categories.

Formally, an FMM assumes that each observation y (in this study, a player
vector representing various skills for the player) comes from one of g different
groups (components), each described by its own distribution. These components
are mixed using probabilities 7y, 2, ..., T4, Where each m; is the mixing proportion
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for the i-th component. These values are all positive and add up to 1. The overall
distribution of an FMM can either be a probability density function (PDF), if
the data is continuous, or a probability mass function (PMF) in the case of a
discrete dataset [2,15]. More specifically, the PDF or PMF of the mixture model
is represented as follows:

F) =Y mifilo), (1)

where f;(y) represents the PDF or PMF of the i-th component, 7; represents the
mixing proportion of the component, and g is the total number of components
[16]. Depending on the type of distribution, the component densities f;(y) are
represented as f;(y, 0;), where 6; is the vector of unknown parameters for the i-th
component density. In the case of a Gaussian distribution, these parameters are
the mean and variance 0; = [u;, 02], resulting in the following way to represent
the PDF or PMF of the mixture model:

[y, ¥) Zzﬂifi(y79i)7 (2)

where y is the data we want to model, and ¥ is a vector containing all the
unknown parameters in the mixture model, such as m; and 6; for i-th component.
It can be expressed as ¥ = (7, ..., my_1, ¢TT, where the parameter ¢ includes
the parameters of the selected distributions for all g components [15]. In the
context of this study, y refers to a player vector that characterizes an individual
player’s style, and the parameters ¥ collectively describe how these playing styles
are distributed across the population.

To estimate the values of the parameters of a FFM, i.e., the mixing propor-
tion 7 and the parameters of each component distribution @, several approaches
exist, but the most commonly used is the Expectation-Maximization (EM) al-
gorithm. EM applies maximum likelihood estimation to fit the FMM. The EM
algorithm consists of two main steps: the Expectation (E-step), which calculates
the probability that each data point belongs to each component based on the
current parameter estimates, and the Maximization (M-step), which updates the
parameter estimates using these probabilities to better fit the data. These two
steps are repeated iteratively until convergence is achieved [15].

A key challenge in applying FMM is identifying the value of g, i.e., the num-
ber of components in the model. Lower values of ¢ may lead to underfitting,
while higher values can result in overfitting [15]. To address this, several model
selection criteria have been developed, aiming to balance model fit with com-
plexity. Two widely used criteria for model selection are the Akaike Information
Criterion (AIC) [1] and the Bayesian Information Criterion (BIC) [27]. Both
criteria evaluate models based on the maximized likelihood L, while introducing
a penalty that increases with the number of estimated parameters |¥|; thus, dis-
couraging overfitting. The AIC provides an estimator of the relative prediction
error, calculated as follows,

AIC = 2|¥| — 21n(L), (3)
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which can be used to compare the quality of multiple models fitted to the same
dataset. Lower AIC values indicate models that are expected to predict new data
more accurately. Similarly, the BIC is given by

BIC = |#|In(n) — 21In(L), (4)
where n is the number of observations. BIC imposes stricter penalty on model
complexity compared to AIC, making it more conservative when selecting the
number of components, specially for large datasets [28].

In practice, both AIC and BIC are calculated for models with different values
of g, and the model with the lowest value of the selected criterion is considered
optimal. While AIC favors more complex models, BIC generally performs better
in identifying an adequate number of components in FMMs, especially in the
context of large datasets [15,28]. In our implementation, we used GaussianMix-
ture and ParameterGrid in the scikit-learn library for Python [18].

3 Related Work

Characterizing and comparing players in ice hockey has been done in different
ways. The most common approach is to use performance metrics [8]. These
range from the traditional metrics such as goals, assists, and points to Corsi
and xG (expected goals) which are all well-known in the hockey discourse. To
deal with some disadvantages of the traditional metrics, other advanced data-
driven metrics have been proposed, such as extensions for the + /- metric using
regularized logistic regression models [14,4]. There is also work on combining
metrics, such as in [5] where principal component analysis is used on 18 basic
stats. A major critique for traditional metrics has been that context is not taken
into account. Therefore, some approaches for player performance metrics take
game context into account such as event impacts, e.g., [24,19], and much of the
work that models the dynamics of an ice hockey game using Markov games where
two opposing sides (i.e., the home team and the away team) try to reach states in
which they are rewarded (e.g., scoring a goal) [29,7,20,25,26,11,22,13,9]. We note
that the introduction of new metrics may change the way the game is played. For
instance, in [6] it was shown that team play transitioned first to taking more shots
(high Corsi, shot-based), and then to taking high-quality shots (high expected
goals). Player rankings are presented in [23,12,10]. In [23] a generalized additive
model was used to predict player performance metrics from player demographics
and player performance data, while in [12] a logistic regression model tree was
used. In [10] predictive models were generated that can be used to identify and
predict players’ ranking tier (top 10%, 25% and 50%).

Player categorization is a relatively unexplored field in the context of ice
hockey. In earlier work, a player could belong to only one role or category [30,3].
More recent work used soft clustering techniques to categorize players, allowing
for a player to belong to different roles with some probability [21,17]. In the latter
case, players can be compared based on their membership in different roles.

This work can be seen as a variant of the work of [17]. In that paper, we used
player vectors to characterize a player’s playing style. The player vectors contain
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representations of skills that are computed from game event data. Further, we
applied fuzzy clustering on the vectors to generate five types of defender playing
styles and five types of forward playing styles. For these types, we showed typical
skill levels and players with similar styles. The data included complete seasons for
the three leagues AHL, SHL, and HockeyAllsvenskan for 2021/22 and 2022/23,
as well as data from the 2023/24 season up until Jan. 28th, 2024. In contrast,
the present study focuses exclusively on the SHL and uses data from five full
seasons (2019/20 to 2023/24). We use the same kind of player vectors, but apply
GMNMs to perform soft clustering.

4 Data

The dataset used in this research is a proprietary dataset developed by Sport-
logiq®, and consists of event data for all the SHL regular season games for 5
seasons (2019/20 to 2023/24). In total, the dataset consists of 1820 games, 1072
unique players, 16 unique teams, and 6,814,336 events. Among the 1072 unique
players, there are 656 forwards, 377 defenders, and 94 goaltenders. We note that
in the dataset, 55 players have been marked as playing in more than one position.

5 Method

5.1 Player vectors

We use the same kind of player vectors as introduced in [17]. In this section we re-
capitulate how these were developed. For defenders and forwards, different skills
were identified (Tables 1 and 2). Each skill is represented by a set of features.
For each skill, a feature vector was constructed which contains the frequencies of
each feature that describes that skill, standardized using MinMaxScaler in the
scikit-learn library for Python [18]. Further, non-negative matrix factorization
(NMF) was applied to each feature vector using the NMF in the scikit-learn li-
brary. After this operation, every skill was represented by one feature and these
were concatenated into player vectors. This resulted in player vectors of length
13 for defenders and of length 18 for forwards.

Figs. 1a and 1b use boxplots to show the distributions of the values for
the skills for defenders and forwards, respectively, for the dataset containing all
seasons. Here, the lower edge of the box represents the lower quartile value (25%)
value, the (red) line in the box the median (50%) value, and the upper edge of
the box the higher quartile (75%) value. The lower whisker shows the minimum
value and the upper whisker the maximum value. Points below the lower whisker
or above the upper whisker are outliers.

3 https://www.sportlogiq.com/hockey /
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Table 1: Skills and example actions for defenders [17].

Skills Actions

Passing e.g., different types of passes

Skating e.g., exits, entries, dumps

Shooting e.g., different types of shots

Defensive Stickwork e.g., blocked passes, loose puck recoveries
Puck Moving e.g., some types of passes, dump-in recoveries
Point Producing e.g., different offensive zone events
Powerplay Playmaking e.g., powerplay playmaking events

Powerplay Scoring e.g., powerplay shots and goals

Physical Play e.g., body checks and defensive plays

Slot Defense e.g., blocked shots and dump outs

Stay at Home e.g., different defensive zone events

Penalty Killing e.g., different penalty killing events related to puck recovery
Penalty Killing Slot Defense|e.g., different penalty killing defensive plays

Table 2: Skills and example actions for forwards [17].

Skills Actions

Passing e.g., different types of passes

Skating e.g., different types of controlled entries
Powerplay Playmaking e.g., different types of controlled entries and passes in powerplay
Powerplay Slot Engagement |e.g., powerplay actions close to net
Powerplay Scoring e.g., powerplay shots and goals

Defensive Puck Control e.g., dump outs and loose puck recoveries
Defensive Zone Play e.g., different defensive zone actions
Defensive Positioning e.g., blocked shots and passes

Slot Defense e.g., rebounds and dump outs

Penalty Killing e.g., shorthanded defensive plays

Slot Engagement e.g., offensive actions close to net

Heavy Game e.g., body checks and defensive plays
Forechecking e.g., offensive zone loose puck recoveries
Cycling the Puck e.g., puck protections and receptions
Neutral Zone e.g., different neutral zone actions

Puck Moving e.g., some types of passes, entries
Offensive Zone Play e.g., different offensive zone events
Shooting e.g., different types of shots

5.2 Gaussian Mixture Model

To decide on the number of clusters for forwards and for defenders, we used the
BIC approach. A full-factorial grid search was performed to identify different
configurations of the model; resulting in a total of 15,360 different models being
evaluated, each with different values of parameters such as number of compo-
nents, covariance types, maximum number of iterations, and different initializa-
tion methods. Table 3 summarizes the example values used for each parameter.

Fig. 2 shows the average of AIC and BIC values based on the number of
components applied to the skill vectors for forwards and defenders, respectively.
Fig. 2a shows a significant decrease between three and five components for both
AIC and BIC, suggesting that up to five components to the model improves
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Fig. 1: Boxplots of the skill value distributions, as calculated across all seasons.
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Table 3: Grid Search Parameters for Gaussian Mixture Models.

Parameter Values
Initialization Method K-means++, Kmeans, Hybrid hierarchical, Custom Hierarchical

Number of components |3-15

Covariance type Spherical, Tied, Diagonal, Full
Convergence Threshold [1077, 107%,107°, 1072
Regularization covariance|[107°, 1072, 1072, 10~2

Max iterations 100, 200, 300, 400, 500

the performance. The lowest average BIC value is observed at ten components.
When analyzing each season individually, the average BIC reaches it minimum
around five components for both forwards and defenders, as shown in Fig. 2b.
Based on this observation, and to remain consistent with earlier work [17], we
chose to use five components in this study.
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Fig. 2: Average AIC and BIC score by the number of components for forwards
(left) and defenders (right).

6 Results

6.1 Forwards

Fig. 3a shows the average skill values of the ten forwards closest to the centroid of
each of the five clusters, aggregated across all five seasons. When assigning each
player to the cluster for which they have the highest membership, the players
are relatively evenly distributed across the five clusters. Specifically, in clusters
F0.19-24, F1.19-24, F2.19-24, F3.19-24, and F4.19-24, there are 142, 113, 121,
128, and 127 players, respectively.

The forwards in F0.19-24 have many skills, having strengths in slot defense,
puck moving, OZ play, shooting, PP playmaking. Players in F'1.19-24 show lower
overall skill values but still have strengths in slot defense, PP playmaking, puck
moving, and OZ play. The strengths of forwards in F2.19-24 are slot defense,
penalty killing, and OZ play, but these players lack in slot engagement, PP slot
engagement, and PP scoring. Forwards in F3.19-24 do not excel in any skills,
but have strengths in slot defense, puck moving, OZ play, and shooting. Finally,
players in F4.19-24 excel in most of the skills, having strengths in both defensive
and offensive play.

We also investigated clustering results using data from a single season. As
an example, Fig. 3b presents the average skill values for the ten forwards closest
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to the centroid of each of the five clusters from the 2019/20 season. The cluster
skill bar plots for the other seasons show similar patterns. We observed that
clusters F0.19-24, F2.19-24, F3.19-24, and F4.19-24 have clear counterpart in
the 2019/20 season (F0.19-24 — F3.19/20, F2.19-24 — F4.19/20, F3.19-24 —
F1.19/20, F4.19-24 — F2.19/20). Cluster F0.19/20 does not closely match any of
the clusters aggregated over all five seasons. The forwards in F0.19/20 have many
skills, with strength in defensive play, but lack in PP scoring, PP slot engagement
and slot engagement. Example forwards closest to centroids for each cluster are
presented in Table 4.

Players develop over time and our approach may give insights in the devel-
opment of certain players. For instance, Richard Hugg belonged in the 2019/20
season to cluster F3.19/20. In 2020/21 he primarily belonged to a cluster similar
to F0.19/20, and in 2021/22, he appeared in a cluster similar to F2.19/20. This
progression suggests that over time, from being an offensively-skilled forward,
he first improved his defensive play and then developed into a player that excels
both defensively and offensively.

F0.19-24 (142) F1.19-24 (113) F2.19-24 (121) F0.19/20 (49) F1.19/20 (49) F2.19/20 (69)
0.75 0.75

oo L Ly

F4.19/20 (57)

F3.19-24 (128) F4.19-24 (127)
0.75 0.75

2050 2050

2 2

£0.254 I Il £0.254
0.00- 0.00-

(a) Aggregated over all seasons. (b) Season 2019/20.

Fig. 3: Average skill values of the ten forwards closest to each cluster centroid.

6.2 Defenders

Fig. 4a shows the average skill values of the ten defenders closest to the centroid
of each of the five clusters, aggregated over all seasons. Cluster D3.19-24 has
the most players regarding highest membership. Defenders in cluster D0.19-24
have low skill levels. The players in this cluster all played few games in the
SHL. D1.19-24 defenders are highly skilled and excel in defensive skills such as
slot defense, stay at home, penalty killing, PK slot defense, physical play, and
defensive stickwork. These players do not play powerplay. D3.19-24 defenders
have average skill levels. Defenders in cluster D4.19-24 are highly skilled and in
comparison to D1.19-24 defenders, they excel in offensive skills such as passing,
shooting, puck moving, point producing, and they also play powerplay. The
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Table 4: Forwards closest to the centroids of the clusters. F0.19-24 — F4.19-24
for the 5 seasons aggregated. F0.19/20 — F4.19,/20 for season 2019,/20.

F0.19-24 F1.19-24 F2.19-24 F3.19-24 F4.19-24

(142 players) (113 players) (121 players) (128 players) (127 players)

Marco Kasper Jacob Micflikier |Mikael Frycklund |Mateusz Szurowski |Simon Ryfors

Dick Axelsson Peter Holland Mikkel Boedker Melvin Fernstrom |Kalle Ostman

Filip Cederqvist |Markus Nenonen |Juuso Ikonen Johan Lundgren Linus Froberg
Markus Modigs |Marcus Paulsson |Joonas Nattinen |William Magnusson|Sebastian Strandberg
Tuomas Kiiskinen|Adam Johnson |Petrus Palmu Linus Loof Andreas Wingerli
F0.19/20 F1.19/20 F2.19/20 F3.19/20 F4.19/20

(49 players) (49 players) (69 players) (51 players) (57 players)

Rok Ticar Tuomas Kiiskinen|Emil Pettersson Joakim Andersson |Jesper Kandergard
Gustav Possler  |Olle Lycksell Brendan Shinnimin|Johan Johnsson Melker Eriksson
Marcus Paulsson |Dominik Bokk Johan Sundstrém [Adam Pettersson |Alexander Ljungkrantz
Viktor Lodin Juuso Ikonen Greg Scott Axel Wemmenborn |Linus Hedman

Linus Oberg Johan Ryno Ted Brithén John Dahlstrom Samuel Solem

players in cluster D2.19-24 played few games. In contrast to the players in D0.19-
24, these players were junior players and some long-time injured players (e.g.,
Mattias Backman in 2019/20).

When investigating clusters across individual seasons, we observed that clus-
ters similar to D1.19-24, D2.19-24, D3.19-24, and D4.19-24 consistently ap-
peared. However, no clusters similar to D0.19-24 were found in any single season.
Fig. 4b shows the average skill values for the ten defenders closest to the centroid
of each of the five cluster for the 2019/20 season. In all other seasons, we found
equivalent clusters for all except D4.19/20. For D4.19/20, an equivalent cluster
was present in every season except 2023/24. In the 2023/24, cluster D2.19/20
appeared to represent an aggregation of two distinct clusters. Example defenders
closest to each cluster are presented in Table 5.

Similarly as for forwards, defenders can change cluster during their career.
For instance, Rasmus Rissanen belonged mainly to cluster D2.19/20 while in
2023/24 he belonged mainly to the cluster that matches D2.19/20 with high
values for all the skills. In this case, his best skills are still in the defensive work,
but he has raised the skill level of most of his skills.

6.3 Practical Applications

Beyond descriptive clustering, these playing style profiles have practical appli-
cations in player management and roster decisions. For example, clubs can use a
player’s cluster profile to find comparable players when a replacement is needed.
Further, insights into player development and adaptability may be obtained by
observing how players’ cluster memberships vary across coaching system or sea-
sons, helping to distinguish which skill-based features are intrinsic to the player
and which are influenced by team context. Furthermore, by connecting emerg-
ing players with established professional archetypes, these clusters can help with
scouting in lower-tier leagues or youth programs, i.e., in situations where con-
ventional metrics are typically used for evaluations.
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D0.19-24 (59)

D1.19-24 (46)

D2.19-24 (66)

D0.19/20 (18)

D1.19/20 (18)

D2.19/20 (48)

D3.19-24 (115)

$

D4.19-24 (62)

D3.19/20 (39)

B

D4.19/20 (22)

(a) All seasons. (b) Season 2019/20.

Fig. 4: Average skill values of the ten defenders closest to each cluster centroid.

Table 5: Defenders closest to the centroids for the clusters. D0.19-24 - D4.19-24

for the 5 seasons aggregated. D0.19/20 - D4.19/20 for season 2019/20.

DO0.19-24
(60 players)

D1.19-24
(42 players)

D2.19-24
(67 players)

D3.19-24
(127 players)

D4.19-24
(57 players)

Lukas Klok
Jordan Murray
Axel Landén
Theodor Johnsson
Elias Rosen

Anton Myllari
Oscar Engsund
Jonathan Sigalet
Daniel Glad
Arvid Lundberg

Albin Thyni Johansson
Nils Strandberg Sarén
Oskar Hassel

Jakob Bondesson
Gustav Berglund

Daniel Brickley
Ville Pokka
Julius Bergman
Joonas Lyytinen
Anton Stralman

Matt Caito

Oskar Nilsson

Lucas Ekestéahl-Jonsson
Kristian Nakyva

Joel Nystrom

DO0.19/20
(18 players)

D1.19/20
(41 players)

D2.19/20
(40 players)

D3.19/20
(29 players)

D4.19/20
(19 players)

Gustav Berglund
Jakob Bondesson

Emil Andrae

Albin Thyni Johansson
Christian Lindberg

Jonathon Blum
Nils Lundkvist
Jonathan Pudas
Ilari Melart
Erik Gustafsson

Oscar Engsund
Emil Wahlberg
Jonathan Sigalet
Arvid Lundberg

Niklas Arell

Filip Johansson
Jonas Junland
Lucas Nordséter
Patrik Norén
Julius Bergman

Niklas Hansson
Miika Koivisto
Simon Despres
Jesper Sellgren
Eric Martinsson

7 Conclusion

In this paper, we presented a Gaussian Mixture Model (GMM) approach for char-
acterizing playing styles among ice hockey defenders and forwards. Our method
provides a data-driven framework for identifying distinct player types based on
skill profiles, offering new insights into player evaluation and team composition.

In future work, we plan to use data from AHL and HockeyAllsvenskan as well
(as in [17]) and investigate whether the playing styles are the same or different
in the different leagues. Further, we will use the algorithms from [17] on the
data used in this paper and compare the different techniques. Such comparisons
are expected to provide insights into the relative strengths and weaknesses of
different unsupervised learning techniques for player style characterization.

Overall, our findings contribute to the growing research area on quantitative
analysis of player behavior, and we hope they will provide tools and foundation
for further research into improved player development, scouting, and strategic
decision-making in professional ice hockey.
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Individual Puck Possessions Part I: Frequency,
Duration, and Distance Travelled

Evan Iaboni, Sebastian Negulescu, Miles Pitassi, Fauzan Lodhi, and Tim Brecht

Cheriton School of Computer Science, University of Waterloo

Abstract. In this paper we use puck and player tracking data from the 2023-
24 NHL season to study individual player possessions (focusing on 5v5 situa-
tions). We study metrics such as possession count, average and total possession
duration, average and total distance travelled with the puck, and examine rela-
tionships between these metrics and traditional measures of success (i.e., goals,
assists and points). A key finding is that individual offensive zone possession
is strongly correlated with points (r = 0.70) and is moderately correlated with
goals (r = 0.64), assists (r = 0.54), and shots on goal (r = 0.69). We also
observe differences in individual possessions based on position (forwards versus
defence), zone of play, and strength and large and statistically significant differ-
ences between top ranked players and league averages (across most possession
metrics). Finally, we examine the benefits of our individual possession metrics
and find that they are highly stable (so they are useful for predictions), able to
differentiate players, and provide information not captured by existing metrics.

1 Introduction

In the 2021-22 season, the National Hockey League (NHL) added puck and player
tracking (PPT) technologies to all arenas, creating significant opportunities for ad-
vanced hockey analytics. The introduction of an individual player possession model
into the “DISH” data stream in March 2023 added the ability to measure and under-
stand teams’ and players’ abilities to control the puck.

In a previous study, we investigated the relationship between puck possession and
team success in the NHL. We found that overall team possession had a modest cor-
relation with team success; however, we introduced a new metric, average offensive
zone possession time differential (Avg. OZPTD), which showed a strong correlation
(r = 0.77) with team success, measured by average goal differential. This work ad-
vanced our understanding of team-level possession dynamics and highlighted the im-
portance of controlling the puck in high-value areas of the ice. However, it also raised
a series of questions about the role of individual possession in driving these team-level
outcomes. Is team success simply a function of aggregate possession time, or do in-
dividual contributions matter? Which players dominate possession and carry the puck
over the greatest distances? How do these metrics vary across positions and game situ-
ations, and how do they compare to possession metrics in other sports? These questions
drive our present study, marking a natural progression from team-focused analyses to
an investigation of individual player performance.
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To address these questions, we introduce and compute novel metrics, including av-
erage possession duration and distance travelled per possession. Where appropriate, all
metrics are normalized to eliminate the impact of differences in ice time. These metrics
are analyzed across 5v5 situations unless otherwise noted as power plays, penalty kills,
and other non-5v5 situations skew individual possession.

We report on the top players (we exclude goaltenders from our analysis) in several
possession metrics categories and discover statistically significant differences between
top players and the league average across several metrics. By identifying players who
excel at possession related metrics this work offers valuable insights that could be used
for talent evaluation, as well as line and roster construction. Most importantly, these
metrics can identify players with skills beyond traditional metrics like goals and assists.
In this work we make the following contributions:

— We define, compute and study several metrics related to individual possession in-
cluding: total possession duration, average possession duration, average distance
travelled per possession, and possession count. We find that, for most of these met-
rics, there are statistically significant differences among some of the top 10 players
and that the top 10 players differ substantially from the league average.

— We examine correlations between individual possession metrics and other offensive
metrics and find there is a strong correlation (r = 0.70) between offensive zone
possession time and points. When examining the same relationship during power
plays we find a much lower correlation (r = 0.42).

— We find that individual possession metrics are able to distinguish players from one
another, stable throughout the season, and introduce new information not captured
by existing metrics.

2 Related Work

Most research in soccer, basketball, and hockey has focused on team possession
[11[2][8][15][10]. Relatively little research has examined individual possessions in
those sports. We now describe studies that examine individual possession in soccer,
basketball, and hockey. Below, we use . and o2 when referencing a statistic to mean
that the average is x and the variance is o2. Additionally, we use the notation m : ss to
mean m minutes and ss seconds.

Using data from 60 soccer matches from the 2012-13 season of the German Soc-
cer League (Bundesliga), and excluding player’s who played less than 45 minutes in a
match, Link et al. [7] found that the league average was 0:14 £ 0:13 of possession per
10 minutes of playing time. Note that they use a more restrictive definition than what
we introduce for possession in hockey. They found that central midfielders and central
defenders had the most instances of ball control with an average of 12.8 possessions per
10 minutes of playing time. They found that, on average, wingers and central forwards
had fewer instances of controlled possessions but the differences were not statistically
significant. The authors found a strong correlation (r = 0.85) between the time a player
spent in control of the ball and a player’s ball control count.

Next, we examine studies of basketball. To better understand variability, where pos-
sible (e.g., if the paper provides sample sizes), we convert standard deviations to 95%
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mean confidence intervals (assuming a normal sampling distribution). We use the nota-
tion [L, H] to indicate that L is the low and H is the high of a 95% mean confidence
interval. Sampaio et al. [12] used data from 1,230 games played in the 2013-14 NBA
season, and found that players who were on the first, second, or third All-NBA team
(n = 15) possessed the ball for [5.4 sec, 9.0 sec] per minute played on average. In
contrast, non all-star players (n = 324), possessed the ball for an average of [4.4 sec,
5.2 sec] per minute played. The authors also found that all-stars averaged [1.94, 2.26]
touches of the ball per minute as opposed to non all-stars, who averaged [1.65, 1.75].

A study conducted between 2015 and 2017 using 70 games with point differences of
20 points or less, involving 44 male players from Italy’s Lega Basket Serie A and Serie
A2 who had played at least 10 minutes in one game prior to the study period, found that,
for guards, the mean percentage of playing time in possession of the ball was [9.4%,
14.4%] [3]. This is significantly higher than forwards and centres, who possessed the
ball for [2.8%, 4.2%] and [2.1%, 3.7%] of their playing time respectively. Zhang et
al. [14] used a sample of 699 games with a final score difference of less than or equal
to 10 points from the 2015-16 NBA season found no significant difference between the
amount of ball touches between players on teams that made the playoffs and players
on teams that did not make the playoffs. Although not explained in these papers, we
hypothesize that they exclude games with larger score differentials because they do not
reflect typical game play.

In a study of the 2002 Olympic Winter men’s ice hockey games, the author manu-
ally tracked individual possession for the top players, including Mike Modano and Joe
Sakic [13]. The study found that these players averaged 1:07 with the puck per game.
The study also looked at the top youth players in the USA hockey Tier 1 Youth National
Championships and found that the top players averaged 01:06 of possession. The study
highlights the extremely small amount of time players handle the puck during a game
and emphasizes the benefits of team practices with more puck handling opportunities.

To compare previous findings with our own we normalize soccer results to 20 min-
utes of game time and find an average of 0:28 & 0:26 in control of the ball per 20 min-
utes. For basketball, using the non-all star group, the same normalization yields [1:31,
1:49] of ball possession time and [33.2, 34.8] touches of the ball (both per 20 minutes
of playing time). Our findings show slightly higher amounts of puck possession times
for top players than the previous hockey study and that hockey falls somewhere be-
tween soccer and basketball, with an average possession duration of [0:39, 0:40] per 20
minutes and an average possession count of [33, 34]. In this paper, we examine the top
10 players across different metrics that capture data regarding individual possession.
In addition, we compare forwards and defencemen, and examine the correlations be-
tween individual possession metrics and traditional metrics that are based on offensive
production.

In Part II of this research [9] on individual puck possessions, we devise a metric to
measure players that consistently carry the puck at high speeds (called Bursts20). This
is a measure of the average number of times, per game, a player carries the puck for
one second or longer where their speed reaches 20 mph or more during the possession.
To avoid biases towards players who are given more ice time, we normalize the average
to 20 minutes of ice time per game. Using data from the 2023-24 NHL regular season,
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that work shows significant differences between forwards and defencemen. Forwards
average [0.39, 0.48] Bursts20 while defencemen average [0.12, 0.15]. Nathan MacKin-
non, the top ranked player, is significantly above average with [2.87, 3.83] bursts per 20
minutes of ice time. Cale Makar, the top ranked defencemen averages [0.50, 0.90] such
bursts per 20 minutes. That paper also explores the distribution of individual player
possessions during a game within a team. Jain’s Fairness Index [6] is used to compute
an equity score, which measures the degree to which possessions within a team are
equal. The metric produces values between O and 1, with 1 being completely equal.
The results show that despite there being a significant difference between teams with
high equity scores (e.g., FLA with [0.84, 0.85]), medium equity scores (e.g., BOS with
[0.80, 0.82]) and low equity scores (e.g., VAN with [0.68, 0.72]). All three of those
teams were ranked in the top 4 teams in the league in terms of average 5v5 goal differ-
ential, indicating that different styles of individual puck possessions can be successful.

3 Background

3.1 Definition of Individual Puck Possession

We use the definition of individual puck possession deployed by the NHL in the model
used to obtain the individual possession data we employ. There are two types of pos-
sessions. First, a player is considered to have possession and control of the puck when
they have two or more consecutive touches of the puck. The possession starts with the
first touch and is confirmed by a second touch. Individual possession ends when the
player loses the puck or another player gains possession. The second type of possession
includes specific one-touch actions, such as shot attempts, passes, or area plays (e.g.,
dump-ins), which are considered brief moments of possession [11].

3.2 Dataset Overview

Our study uses proprietary PPT data from the NHL which records x, y, and z coordi-
nates at high frequencies (60 times per second for the puck and 12 times per second
for each player on the ice). Players on the bench are updated once per second. In to-
tal, approximately 734,400 locations are recorded in a typical 60-minute game. Due
to different data collection frequencies and lack of synchronization, all locations are
interpolated to uniform one-hundredth of a second timestamps.

In March 2023, an individual player possession model was added to the “DISH”
data stream, which features Delayed, Interpolated, Smoothed, and Hundred-Hertz en-
hancements. That possession model uses the (x,y) coordinates of the puck and players
(i.e., their location on the ice). The changes between consecutive readings for all on-ice
entities are combined with physics-based models to attempt to determine when a player
is and is not in possession of the puck. The dataset we are provided contains information
about when an individual possession starts and ends, including the unique identification
number for the player. We applying cleaning and filtering techniques to the original
data, described in Section 4, to obtain the data used in our analysis. This dataset is con-
sidered unofficial by the NHL and may differ from other datasets that track possession
information (e.g., a hand-labelled dataset).
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There were 1,312 games played in the 2023-24 NHL season. After finding 118
games with significant data issues, as detailed in Section 4.1, 1,194 games remained for
our analysis.

4 Dataset Cleaning and Filtering

4.1 Preparing, Cleaning, and Filtering Games

Our dataset preparation, cleaning, and filtering methods are adapted from our previous
work [10]. First, we merged the player possession data with a detailed game information
file to provide broader game context, such as power play situations, goal differentials,
and player locations. This enriched the player possession data with relevant context.
Next, we cleaned the dataset by removing possessions that occurred during stoppages
or clock resets, and those that were out of sequence, overlapping, or duplicated. Despite
these efforts, some errors persisted, leading us to exclude games based on data corrup-
tion severity: if the data is compromised for either more than 4% of a games duration
or more than 4% of a teams possession time, we exclude the game from our analysis.
This resulted in the exclusion of 118 games, leaving 91% of the games for analysis. For
more detailed information on the filter criteria, refer to our previous work [10].

4.2 Filtering Individual Players

After filtering down to 1,194 games, we also filtered out players for which there was
insufficient data. We chose our filters in a way that ensured players had enough op-
portunity for our possession and production metrics to be reliably captured. We exclude
players with less than 10 games played or less than 10 minutes of 5v5 ice time per game.
In the 1,194 game sample, 921 players participated and 250 were excluded, leaving 671
players for our analysis (72.9% of the players who dressed for the included games).
With 32 teams in the league and 18 skaters (forwards and defencemen) dressing per
team, that equals 576 skaters (32 x 18). Since our dataset includes 671 players, we
believe our analysis captures a representative sample of regularly participating players.

We applied additional filters when conducting power play and short-handed analy-
sis. Players with less than 25 total minutes of ice time in these situations for the season
were removed. This left 45.9% of players for power play analysis and 45.4% of players
for short-handed analysis.

5 Individual Possession Analysis

We now analyze several metrics related to individual possession and their relationship
with traditional player performance metrics such as points, goals, assists, and shots
on goal. We found that possession duration is strongly correlated with time on ice (r =
0.89), so where appropriate, metrics are normalized to 20 minutes of ice time, providing
for a fair comparison across all players (regardless of their ice time).
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5.1 Possession Duration and Count

We use total possession duration (or possession time) to denote the average number
of minutes that a player possesses the puck per game, normalized to 20 minutes of ice
time. Similarly, possession count is the average number of times a player has possession
of the puck per game, normalized to 20 minutes of ice time. The average possession
duration is a player’s total possession duration divided by their possession count (shown
in seconds).

Total Possession Duration We start this section by examining the total possession
duration. Table 1 shows the top 10 forwards (left) and defencemen (right), ranked by
average total possession duration per 20 minutes (Possession Duration in the table).
Note that times in the table are denoted as m:ss, to indicate minutes and seconds.

As described in the caption for Table 1, {1 indicates that the player is ranked among
the top 10 players for average possession duration, total possession duration, and pos-
session count. We note that it should not be surprising that some players appear in all
three tables since there is a strong correlation between total possession duration and
both average possession duration (r = 0.87) and possession count (r = 0.86) and there
is a moderate correlation between average possession duration and possession count
(r =0.51).

Rank||Name Team| Possession Name Team| Possession
Duration Duration
(m:ss) (m:ss)

1||Mathew Barzal} NYT [1:21 [1:16, 1:26]||Quinn Hughes{{ | VAN [1:37 [1:31, 1:43]
2||Jack Hughest+ NID [1:15 [1:08, 1:19]||Cale Makart{ COL [1:25 [1:19, 1:31]
3|{Jack Eichelf+ VGK |1:14 [1:09, 1:20]||Jake Sandersont | OTT |1:18 [1:13, 1:22]
4||Leon Draisaitlff |EDM|1:13 [1:07, 1:18]||Owen Powerf BUF [1:16 [1:11, 1:20]
5||Artemi Panarinf |NYR |1:06 [1:03, 1:09]||Erik Karlssonf{ | PIT [1:13 [1:08, 1:18]
6||Nikolaj Ehlers WPG|1:05 [1:02, 1:08]|[Scott Perunovichf| STL |1:13 [1:06, 1:19]
7||William Nylanderf| TOR |1:05 [1:01, 1:08]||Mike Matheson{ |MTL [1:13 [1:08, 1:18]
8||Clayton Kellerf ARI [1:04 [1:01, 1:08]||Cam Fowlerf ANA |1:11 [1:07, 1:18]
9||Connor McDavidf |EDM|1:03 [0:58, 1:08]||Drew Doughtyt |LAK [1:11 [1:07, 1:16]
10|| Troy TerryT ANA |1:03 [0:58, 1:07]||{Evan Bouchard EDM |[1:10 [1:04, 1:14]
+||Forwards Avg. 0:40 [0:39, 0:40]||Defencemen Avg. 0:49 [0:48, 0:50]

Table 1. Top 10 forwards (left) and defencemen (right) ranked by total possession duration in
5v5 situations. Numbers in square brackets are the low and high of the 95% confidence interval
for the by-game mean. f{ indicates this player appears in another top 10 table in this section, and
11 indicates they appear in two other tables (i.e., all three tables).

The player with the highest total possession duration per 20 minutes is Quinn
Hughes (VAN) with 1:37 followed by Cale Makar (COL) with 1:25 and Mathew Barzal
(NYI) with 1:21. The mean 95% confidence interval for total possession duration is
[0:48, 0:50] among defencemen and [0:39, 0:41] among forwards. This suggests that
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on average, players spend about 3.3% to 4.2% of their ice time with the puck. More-
over, since the confidence intervals do not overlap, there is a statistically significant
difference [5] for mean total possession duration between defencemen and forwards.
In Table 2 we show correlations between total possession duration and individual
offensive production metrics. Notice that there is a weak correlation with all offensive
production metrics when separating forwards and defencemen, however the correlations
vanish when combining all positions. It is important to consider forwards and defence-
men separately since the nature of their possessions are different. Notably, only 19% of
possession time by defencemen is in the offensive zone in contrast to 46% for forwards.

Offensive Production | Forwards r-value| Defencemen r-value| Combined r-value
Points per 20 0.39 0.35 -0.02
Goals per 20 0.24 0.20 -0.14
Assists per 20 0.36 0.31 0.12
SOG per 20 0.38 0.34 -0.02

Table 2. Correlations between 5v5 possession per 20 minutes and player offensive production.

Average Possession Duration Shifting our focus to average possession duration, Ta-
ble 3 shows the top 10 forwards (left) and defencemen (right), ranked by average pos-
session duration (Avg. Time (sec.) in the table) with 95% confidence intervals (shown
in green).

Rank||Name Team|Avg. Time (sec.)||Name Team |Avg. Time (sec.)
1{{Mathew Barzal{ NYI |2.03 [1.94, 2.11]||Quinn Hughestf | VAN |2.00 [1.93,2.07]
2||William Nylanderf| TOR |1.85 [1.77, 1.93]||Cam Fowler} ANA [1.89 [1.80, 1.98]
3|{Jack Eichelf+ VGK |1.82 [1.74, 1.91]||Cale Makart COL |1.87 [1.79, 1.95]
4||Troy Terryt ANA |1.78 [1.70, 1.86]||Scott Perunovicht| STL [1.80 [1.68, 1.93]
5||Evgeny Kuznetsov | CAR |1.78 [1.67, 1.88]||Mike Mathesont |MTL |1.78 [1.70, 1.86]
6||Jack Hughestt NJD [1.76 [1.69, 1.84]||Owen Powerf} BUF [1.78 [1.71, 1.84]
7||Connor Bedard CHI [1.76 [1.68, 1.84]||Drew Doughtyt |LAK|1.74 [1.67, 1.81]
8||Leon Draisaitl{ |EDM/|1.75 [1.68, 1.82]|{John Klingberg | TOR [1.73 [1.55, 1.90]
9||Kent Johnson CBJ [1.72 [1.59, 1.85]||Bowen Byram COL |1.72 [1.64, 1.79]

10||{Isac Lundestrom |ANA |1.67 [1.54, 1.81]||Erik Karlssontt | PIT |1.71 [1.64, 1.78]
+||Forwards Avg. 1.27 [1.25, 1.28]||Defencemen Avg. 1.32 [1.30, 1.34]

Table 3. Top 10 forwards (left) and defencemen (right) ranked by average possession duration in
5v5 situations. Numbers in square brackets are the low and high of the 95% confidence interval
for the by-game mean. f indicates this player appears in another top 10 table in this section, and
11 indicates they appear in two other tables (i.e., all three tables).

For the forwards table, with the exception of two players, William Nylander (TOR)
and Troy Terry (ANA), all of the top 10 players play centre (according to their listed
position on the NHL website). Isolating the centres into their own group, their mean

Linkdping Hockey Analytics Conference 2025 34



Individual Puck Possessions Part I: Frequency, Duration, and Distance Travelled

average possession duration is 1.28 seconds (with a 95% confidence interval of [1.25
seconds, 1.31 seconds]). This means that there is no significant difference between the
averages of all centres and all forwards (who, from Table 3, have a 95% mean confi-
dence interval of [1.25 seconds, 1.28 seconds). With that being said, there is a small but
statistically significant difference between forwards and defencemen (who have a 95%
mean confidence interval of [1.30 seconds, 1.34 seconds]).

Table 4 shows the average possession duration by zone and position (in seconds
with 95% confidence intervals). For all players (All Positions), the average possession
duration is similar in the defensive and neutral zones, but lower in the offensive zone
(the differences are statistically significant).

Position All Zones Defensive Zone | Neutral Zone | Offensive Zone
All Skaters|1.29 [1.27, 1.30]({1.43 [1.41, 1.45]|1.47 [1.45,1.49]|11.05 [1.03, 1.06]
Forwards [1.27 [1.25,1.28](1.39 [1.36, 1.41]|1.56 [1.53,1.59]|1.11 [1.09, 1.13]
Defence 1.32 [1.30, 1.34]{1.50 [1.47,1.53]{1.33 [1.31, 1.35]|0.95 [0.94, 0.97]

Table 4. Avg. Possession Duration (seconds) by Zone for Different Positions in 5v5 Situations.

On average, players hold the puck for 1.29 seconds. In the defensive zone, this av-
erage increases to 1.43 seconds and again to 1.47 seconds in the neutral zone. However
in the offensive zone, the mean average possession duration decreases to 1.05 seconds.
On average, players hold the puck for significantly less time when in the offensive zone.
Table 4, also shows that for all zones, defencemen have a slightly higher average pos-
session duration. However, on average per possession, forwards hold the puck longer in
the neutral and offensive zones than defencemen.

Possession Count Table 5 shows the top 10 forwards (left) and defencemen (right),
ranked by possession count per 20 minutes (Possession Count in the table). Clayton
Keller and Jack Hughes top the list for forwards, while Quinn Hughes and Jake Sander-
son have the highest possession counts among defencemen. Comparing the two groups,
the average possession count for defencemen is higher than the average possession
count for forwards and since the 95% confidence intervals do not overlap ([36.6, 37.5]
versus [30.9, 31.7]), this difference is statistically significant [5].

5.2 Distance Travelled Per Possession

We now introduce a new metric, average distance travelled per possession. The intent
of this metric is to identify puck carriers, which in addition to indicating puck carry-
ing skill, could be useful in constructing lines and defensive pairings. For this metric
we only consider possessions longer than one second to capture “puck-carrying” pos-
sessions. Table 6 shows the top 10 forwards (left) and defencemen (right), ranked by
average distance travelled per possession.

The 95% mean confidence interval for average distance travelled per possession
is [37.9 feet, 38.9 feet] for forwards, and [32.5 feet, 33.5 feet] for defencemen. This
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Rank||Name Team| Possession Name Team| Possession
Count Count
1||Clayton Kellert ARI [43.4 [41.3, 45.2]||Quinn Hughesti | VAN [48.9 [47.0, 50.6]
2||Jack Hughest+ NID (43.0 [40.1, 44.4]||Jake Sanderson¥ OTT [46.9 [45.1, 48.5]
3||Artemi Panarint |NYR [42.3 [40.6, 43.6]||Adam Fox NYR |46.4 [44.8, 48.1]
4||Kevin Fiala LAK |42.2 [40.3, 44.3]||Cale Makari COL |45.6 [44.0, 47.4]
5||Leon Draisaitl{f |EDM |41.8 [39.8, 43.6]||Erik Gustafsson NYR |45.5 [43.3, 47.1]
6||Jordan Kyrou STL [41.6 [39.5, 43.4]||Zach Werenski CBJ |44.8 [42.7,46.7]
7||Nikita Kucherov | TBL |41.5 [39.4, 43.0]||Ryan Johnson BUF |44.5 [42.0, 47.1]
8||Connor McDavid{|EDM |41.5 [39.4, 43.2]||{Rasmus Dahlin BUF |43.7 [41.9, 45.2]
9||Jack Eichelf¥ VGK |41.0 [39.3, 42.7]||MacKenzie Weegar| CGY |43.2 [41.2, 44.9]
10{{Matt Boldy MIN [40.9 [39.1, 42.6]||Erik Karlssont PIT [43.2 [41.4,44.7]
+||Forwards Avg. 31.3 [30.9, 31.7] || Defencemen Avg. 37.1 [36.6, 37.5]

Table 5. Top 10 forwards (left) and defencemen (right) ranked by possession count in 5v5 situ-
ations. Numbers in square brackets are the low and high of the 95% confidence interval for the
by-game mean. t indicates this player appears in another top 10 table in this section, and t7
indicates they appear in two other tables (i.e., all three tables).

Rank||Name Team Distance || Name Team Distance
Travelled per Travelled per

Possession (ft.) Possession (ft.)

1|{|Mathew Barzal NYI|53.8 [51.5, 56.0]||Samuel Girard COL|43.2 [41.0,45.4]
2||Denis Gurianov | NSH|53.2 [45.3, 61.2]||Quinn Hughes VAN |42.9 [41.4,44.3]
3||William Nylander| TOR|51.4 [49.1, 53.7]||Cam Fowler ANA[42.0 [40.2, 43.8]
4||Jack Hughes NJD|51.4 [49.1, 53.6]||John Klingberg TOR|41.6 [37.7, 45.6]
5||Paul Cotter VGK|51.3 [48.2, 54.5]||Nikita Zadorov CGY|[41.6 [39.1, 44.1]
6||Jack Eichel VGK|50.9 [48.5, 53.4]||Cale Makar COL|41.5[39.9,43.1]
7||Noah Gregor TOR|50.3 [46.7, 53.8]||Wyatt Kaiser CHI|[41.3 [37.9, 44.8]
8||Julien Gauthier NYI|50.0 [42.8, 57.2]||Mike Matheson MTL|41.3 [39.6, 43.0]
9||Connor Bedard CHI|49.8 [47.4, 52.1]||Michael Kesselring| ARI|40.8 [38.5,43.1]
10|| Adam Fantilli CBJ|49.8 [46.3, 53.2]||Charlie McAvoy BOS|40.6 [38.8, 42.3]
+||Forwards Avg. 38.4 [37.9, 38.9]||Defencemen Avg. 33.0 [32.5, 33.5]

Table 6. Top 10 players ranked by Distance Travelled per Possession. The numbers in square
brackets are the low and high of the mean 95% confidence interval.

is a statistically significant difference since the confidence intervals do not overlap. It
indicates that, on average, forwards tend to travel further with the puck per possession.

All the top 10 players in both tables have overlapping confidence intervals, indicat-
ing little difference in average distance travelled per possession among them. However,
it is noteworthy that the top 10 defencemen have significantly higher average distance
travelled than the league mean among defencemen of 33.0 feet. Likewise, the top 10 for-
wards greatly exceed the league mean among forwards of 38.4 feet. The very top player,
Mathew Barzal, averages 15.4 feet more than the league average among forwards.
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5.3 Offensive Zone Possession

In Table 7, we list the top 10 players (all forwards) ranked by offensive zone (0Zone)
possession time per 20 minutes (0Zone Pos20 in the table). We are particularly inter-
ested in forwards here so we choose to not include separate table for defencemen. We
also include columns for offensive production metrics, (normalized per 20 minutes of
5v5ice time) including points (P20), goals (G20), assists (A20) and shots on goal (SOG
per 20). Additionally, we include GP%, which refers to the number of games used for
that player after filters were applied. Notice that the 95% confidence intervals for the
mean overlap for the top 8 players. This indicates that there may not be a statistically
significant difference in offensive zone possession time between the top players. Inter-
estingly, several top players in terms of offensive zone possession rank fairly low in
term of points (per 20 minutes of 5v5 ice time). So, we can infer that more goes into
accruing points than just offensive zone possession.

Rank||Name Team [Pos.|GPx«| oZone Pos20 |[P20| P20/G20/A20| SOG
(min.:sec.) Rank per 20

1{{Connor McDavid |EDM| C | 68 |0:38 [0:35, 0:41]{1.20 1{0.31{0.89 4.4
2||Leon Draisaitl EDM| C | 72 [0:37 [0:34, 0:41]]|0.89 14]0.25|0.64 3.5
3||Nathan MacKinnon| COL | C | 79 [0:36 [0:33, 0:38]|1.10 210.5210.58 5.8
4||Jack Eichel VGK| C | 58 |0:36 [0:32,0:39](0.80| 32|0.36|0.44 6.7
5||{Mathew Barzal NYI| C | 72 |0:35[0:32,0:39]]0.66| 110]0.23|0.44 3.8
6||Clayton Keller ARI | R | 73 ]0:34 [0:31, 0:38]|0.66| 113]0.33]0.33 4.0
7|| Artemi Panarin NYR| L | 77 |0:34 [0:31, 0:36]|0.99 510.54|0.45 5.0
8||William Nylander |TOR| R | 75 |0:33 [0:30, 0:35]|0.81 27(0.41]0.40 5.6
9||Luke Evangelista |[NSH| R | 71 [0:31 [0:28, 0:33]|0.59| 171|0.30/0.30 3.7
10||Matt Duchene DAL | C | 73 |0:31 [0:28, 0:34]]0.67| 107(0.24(0.43 3.2
+||League Avg. 58 [0:15 [0:14, 0:15](0.45 0.17(0.28 2.5
+||Forwards Avg. 60 [0:18 [0:18, 0:19]]0.56 0.24/0.32 3.1
+||Defencemen Avg. 54 10:09 [0:09, 0:09]/0.28 0.06/0.22 1.6

Table 7. Top 10 Players ranked by 5v5 0Zone Pos20 (metrics are normalized to 20 minutes of 5v5
ice time). The numbers in square brackets are the low and high of the 95% confidence interval
for the per game mean.

Figure 1 plots the relationship between offensive zone possession and points, split
by position. Defencemen are largely clustered in the bottom left of the plot. However,
there are defencemen who have offensive zone possession and points numbers compet-
itive with forwards. The top defenceman in terms of offensive zone possession, Quinn
Hughes, has 0:29 of offensive zone possession time and 0.54 points (per 20 minutes
of 5v5 ice time). Table 8 shows more details examining correlations between offen-
sive zone possession time and some traditional measures of player success (Offensive
Production). We see that offensive zone possession has a strong correlation with points
when players of all positions are considered (r = 0.70). We note that when considering
all strengths (i.e., not just 5v5 situations) the correlation is even stronger (r = 0.78).
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Fig. 1. Offensive Zone Possession vs Points (r = 0.70).

Offensive Production Metric|Forwards r-value | Defencemen r-value Combined r-value
Points per 20 0.45 0.49 0.70
Goals per 20 0.30 0.30 0.64
Assists per 20 0.40 0.42 0.54
SOG per 20 0.42 0.55 0.69

Table 8. Correlations between 5v5 0Zone possession per 20 minutes and offensive production.

5.4 Possession in Different Game Situations

We now turn our attention to special teams situations. Figure 2 plots CDF’s of player
possession time per 20 minutes for shorthanded, even strength, and power play situa-
tions, separated by position. Note that even strength differs from 5v5 as it includes 3v3,
4v4, and empty net situations. We can see that, as expected, players have less posses-
sion when shorthanded than during even strength situations, and much more possession
time when on the power play. We can also see that possession time on power plays is
dominated by a small number of players and that there is a larger difference among
players playing the power play than in short handed or even strength situations.
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Fig. 2. Possession by strength CDF (DEF refers to defencemen and FWD refers to forwards).

Table 9 shows the correlations between offensive zone possession per 20 minutes
and player offensive production metrics in both even strength and power play situations.
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Offensive Production Metric| Even Strength r-value| Power Play r-value
Points per 20 0.72 0.42
Goals per 20 0.66 -0.09
Assists per 20 0.57 0.57
SOG per 20 0.61 0.14

Table 9. Correlations between oZone possession per 20 and offensive production by strength.

The correlation with shots on goal and goals goes from a moderate correlation in even
strength to no correlation on the power play. However, the correlation with assists is
moderate in both even strength and on the power play. Perhaps average player posses-
sion lengths is less important for scoring goals on the power play than in even strength
situations. For even strength offensive zone possessions, we found that the average du-
ration was 1.15 seconds for all possessions and 0.99 seconds for those that resulted in a
goal. In contrast, power play offensive zone possessions averaged 1.32 seconds for all
possessions and 0.84 seconds for possessions that resulted in a goal. This indicates a
greater difference in duration, for the power play, between all possessions and posses-
sions resulting in a goal, which may explain why there is no correlation between total
offensive zone possession time and goals on the power play.

6 Metric Evaluation

We now evaluate the possession metrics using the “Meta-Analytics” framework intro-
duced by Franks et al. [4], which can be used to determine the usefulness of the metrics
in terms of their discriminatory power, stability over time, and independence from ex-
isting metrics. Unless otherwise stated, all metrics are for Sv5 situations and normalized
per 20 minutes of ice time.

Discrimination: The discriminatory power of a metric tells us how well that metric
is able to differentiate between players. We calculate discriminatory power using the
method introduced by Franks et al. [4]:

Average Intrinsic Variation

D=1-
Total Between Player Variation

(D

Stability: The stability of a metric tells us how stable a metric is over a period
of time. We study stability by examining the correlation between the first and second
halves of the season. This method differs from that proposed by Franks et al. [4] but
maintains the philosophy of the metric.

Independence: The independence score of a metric tells us how much new infor-
mation is provided by the metric compared to the others existing metrics. We compute
independence scores for our metrics using the method proposed by Franks et al. [4].
Note that possession metrics are only included if they are the metric of interest. For ex-
ample, we do not include possession metrics when calculating the independence score
for points and other preexisting metrics. In addition, when computing the independence
score for each possession metric we do not include any other possession metrics.

Table 10 shows the discriminatory power, stability, and independence scores for our
and several other metrics. All of the possession metrics have very high discriminatory
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power, roughly equal to the discriminatory power of time on ice. This indicates that the
possession metrics are very good at differentiating between individual players. There is
a strong correlation for all possession metrics between the first half and second halves
of the season. These metrics are therefore stable and could be used for predictions. Ta-
ble 10 also shows that possession metrics provide quite good independence scores. For
example, possession duration has a score of 0.60 indicating that only 40% of the vari-
ation in possession duration can be explained by the other metrics. This indicates that
possession metrics provide information not available from the other metrics examined.

Metric Disc. [Stab. (Ind. Metric Disc.|Stab.|Ind.
Possession Duration| 0.97 | 0.92 |0.60 Giveaways 0.7310.55(0.80
Possession Count |0.96 | 0.90 |0.50 Missed Shots 0.87(0.7910.48
o0Zone Possession | 0.98 | 0.93 |0.44|Shot Attempts Blocked| 0.89 | 0.79 {0.56

nZone Possession | 0.95|0.87 |0.60 Takeaways 0.81]0.64 [0.66
dZone Possession |{0.99 | 0.97 (0.53 Plus Minus 0.48 10.33 |0.77
Hits 0.9710.90 [0.70 Time On Ice 0.97]0.61 [0.39
Corsi Against 0.7910.65|0.17 Points 0.730.55|0.07
Corsi For 0.86|0.68 |0.14 Goals 0.7210.551(0.18
Fenwick For 0.85]0.68 |0.15 Assists 0.5310.30|0.15

Fenwick Against |0.74 | 0.56 |0.19 Shots on Goal 0.95]0.8910.36

Blocked Shots  [0.920.82 |0.62|  Penalty Minutes 0.73]0.57 |0.46
Table 10. 5v5 Discrimination, stability, and independence score of the metrics in our metric set.
Time On Ice and Plus Minus are not normalized. Notice that points, goals, and assists all have
very low independence scores. This is expected as they are all dependent on one another. Points
has an independence score of 0.50 if we exclude goals and assists from the metric set.

7 Conclusions

In this paper we introduce and analyze individual possession metrics across differ-
ent zones and game situations. We find a statistically significant difference between
forwards and defencemen in regard to possession time per zone, average possession
length, and total possession duration. Additionally, we find that offensive zone posses-
sion time is strongly correlated with points (r = 0.70) and that the correlation with
goals is moderate in even-strength situations (r = 0.67) but disappears on the power-
play (r = —0.09). Finally, we find that all of these possession metrics are able to
effectively discriminate between players, are stable across the season, and introduce
new information not captured by existing metrics.

In the future we hope to study outcomes of individual possessions (e.g., success
rates) and to determine which players begin or create new possessions for their team.
Additionally, we hope to examine relationships between our possession metrics and
other metrics not already considered in this paper. Examples include drawn penalties,
expected goals (since goals may depend somewhat on luck), zone entries, and zone
exits. Computing some of these metrics requires access to per player game data that
may not be available in the PPT data or via the NHL API. This data is needed to ensure
that same subset of games are used when computing all metrics (due to our data cleaning
and filtering process).
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Abstract. In this position paper, we define two new metrics: net visibility (the
fraction of the net that can be seen from the perspective of the puck) and net
reachability (the fraction of the net that could be reached by the puck). Reach-
ability is slightly different from visibility because even though there might be a
small portion of the net visible in a certain area (a hole), that hole may not be large
enough for the puck to pass through and reach the net. We describe a framework
for computing our metrics using a combination of puck and player tracking (PPT)
data and video analysis (image processing). We use data and video from an NHL
game to provide a proof of concept for computing net visibility and reachability.
We also describe areas where more work can be done to improve the accuracy
of the results and allow the computations to be fully automated. Our position
is that these metrics would be valuable in studying shooter decisions and skills,
goaltender and player locations and that the technologies could be used to create
virtual reality images or videos.

1 Introduction

Ice hockey players often score by shooting through small spaces that appear for only
a fraction of a second. We propose that one way to characterize this space is through
the concept of net visibility which we define to be the fraction of the goalmouth that is
visible from the perspective of the puck. We define net reachability to be similar to net
visibility with the difference being that it accounts for the size of the puck and the fact
that the puck may not be able to reach all areas of the net that are visible. For example,
the goaltender may expose a hole that is visible but smaller than the puck.

The key insight in this paper is that we can use a combination of puck and player
tracking (PPT) data from devices embedded in the players’ sweaters and the puck, and
video analysis to detect player locations and poses to construct a 3D-model of players
and the net. Once that model is constructed, we can generate a projected image of the
players onto the goalmouth (from the point of view of the puck). That resulting image
can be used to determine which parts of the net are visible and which parts are ob-
structed. From that image we can calculate the portion of the net that is visible and,
considering the size and shape of the puck, determine which portion of the net is reach-
able. Additionally, because we have a 3D-model of the players and net we can generate
images or videos from any point of view. Two views that we think are particularly use-
ful are the shooter’s view (which can be quite different from the puck’s view) and the
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goaltender’s view. The goaltender’s view allows one to understand the impact of traffic
on their ability to locate and track the puck. We believe these metrics could help with
coaching and player development.

2 Related Work

To our knowledge, we are the first in any sport to propose metrics that determine and
quantify how much of the net is visible and reachable.

Prior work in football (soccer) examines the impact of defensive players positioned
between the shooter and the goal (sometimes called traffic). That work often incorpo-
rates such information into shot prediction, or expected goals (xG) models [11] [9].
Loépez-Valenciano et al. [12] examine the goaltender’s perspective during free kicks.
Using virtual reality to simulate and study the impact of occlusions, they found that de-
fensive walls during free kicks impair goalkeeper performance. In contrast, we calculate
metrics for shots in actual game situations, enabling realistic analysis.

Recent work in hockey analytics uses puck and player tracking (PPT) data to de-
termine the amount of traffic in front of the net and study the impact of that traffic
on shot attempts [15]. After controlling for shot angle and distance from the net, this
work shows that traffic has a significant impact on the number of blocked shots and
as a result, the likelihood of the shot being on goal, and the shot resulting in a goal.
Interestingly, they find that most goals are scored when there is no traffic and that when
shooting through traffic, the chances of scoring increase if the shot makes it through the
traffic. That work uses the location of all players on the ice to determine if they would
be considered in the traffic lane and does not consider how players that are closer to
the puck may have a more significant impact. Additionally, the PPT data does not pro-
vide information about player orientation or pose. In contrast, our work in this paper
recovers player locations and poses and can produce images to show what the traffic
looks like. This includes the larger impact of players that are closer to the puck. Most
importantly, we quantify how much of the net is visible and reachable.

For us to construct a 3D model of the scene, players must be detected in the video
image and their stance (or pose) must be determined. Player pose estimation has been
extensively explored with applications to player performance analysis and game under-
standing. A variety of sports, including ice hockey [2], [19], [13], [14], baseball [4],
[3], and soccer [20], [21], [1], have used human pose estimation techniques. For ice
hockey, GoalieNet [19] and HyperstackNet [14] are two monocular 2D techniques to
estimate the poses of goaltenders and players. Recently, TokenCLIPose [2] examines
pose estimation methods for players and their stick. 3D parametric human models are
widely used for robust 3D human reconstruction and understanding [8], [6].

We utilize parametric human models to estimate the 3D position and shape of play-
ers, enabling the identification of the visible region of the net from the puck’s perspec-
tive. These and related future contributions (e.g., more accurately recognizing player
and goalie poses and equipment) could improve the accuracy of our metrics.
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3 A Framework for Computing Net Visibility and Reachability

Our framework computes net visibility and reachability by explicitly reconstructing the
scene at the time of the shot. We first utilize the PPT data to determine when the shot
occurred and then obtain the puck and player on-ice locations and align this with the
video frame in which the shot occurs. The PPT data contains X, y, and z coordinates at
high frequencies (60 times per second for the puck and 12 times per second for each
player on the ice). Additionally, it contains information about shots and other events that
are derived from physics-based algorithms. We then construct a 3D parametric model
of all the players, scaled and positioned according to the PPT data. We use the 3D scene
to simulate a virtual camera to position it at the puck and then compute visibility via
rasterization and reachability by simulating direct trajectories to the net.

Figure 1 shows the four main steps in our framework, each containing several sub-
steps. Below, for each sub-step we: provide a description, explain how that step can be
implemented (labelled Current State), and point out areas where more work could either
improve the accuracy of the techniques or help in automating the computations (labelled
Opportunities). Opportunities are omitted if existing approaches seem sufficient.

Although we use some manual intervention in our proof of concept computation
in Section 4, technologies exist to fully automate all of these steps. Mature technolo-
gies exist for camera calibration, 3-D body pose recovery from images and video, 3-D
garment modelling and recovery, and 3-D scene rendering from an arbitrary viewpoint.
However, these technologies would benefit from fine-tuning for this particular appli-
cation. We have not found open source solutions for all steps so we have not yet fully
automated the framework. Additionally, we believe that the fine-tuning required for this
application is an important consideration before publishing metrics that might be used
to evaluate and compare teams and players.

1) PPT Data
Processing \
PPT Data 3)3D Scene |__y, | 4) Visibility and
Construction Reachability
2) Video LA
Processing

Game Video

Fig. 1. The framework for computing net visibility and reachability.

As a running example, we use the shot from Alex Ovechkin’s 856" career goal
(scored at 16:37 of the 1% period on October 29t 2024). The frame in the broadcast for
the beginning of the shot is shown in Figure 2. We use a video sequence of the goal,
along with puck and player tracking data as input, to compute net visibility and reacha-
bility. For our example computation, some sub-steps were performed manually (where
noted) because either existing techniques are insufficient or we were not able to find
open source software that could be easily used. Note that we selected this shot from
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publicly available game video based on the ability of existing technologies to recog-
nize players and poses. While existing technologies work in many cases, scenes where
players are heavily obstructed can be more challenging. The steps in our framework
are:

1) PPT Data Processing The first step in our framework is to process the puck and
player tracking (PPT) data (unofficial data from the NHL) for the game of interest.

(a) Determine the time of the shot in the PPT data (call this 7). Description: To
determine what parts of the net are visible and reachable, we need to know the precise
time of the shot, Ts. Current State: Shot events and precise UTC times are labelled in
the PPT data, however, some shots are undetected and for some shots adjustments to the
shot time is required (to ensure that the puck is not too far from the shooter at the time
of the shot) [17]. Opportunities: Automating shot detection and precise release times
are continually being improved.

(b) Obtain on-ice location for players in the PPT data. Description: To correctly
place the 3D models on the rink we need their precise on-ice locations. Current State:
The on-ice (x,y, z) coordinates of all players at the time of the shot is available from
PPT data. Opportunities: Although the precision of the PPT location coordinates, is
typically within a few inches, improving that fidelity could increase the accuracy of our
metrics, as could the use of tracking devices on sticks or improved optical tracking.

2) Video Processing The second step involves finding the exact frame of game video
that corresponds to the shot release time and then identifying players in the video.

(a) Find the frame of the shot in the game video (call this F). Description: We need
to synchronize the PPT data for the time of the shot, T, with the frame of the shot in the
game video. There may be some ambiguity here because the PPT data contains data for
every one-hundredth of a second (interpolated), while game video is typically recorded
at 30 frames per second. Current State: In our example, we manually determine F by
looking for the last frame where the puck is touching the stick before release. Oppor-
tunities: For our approach to scale, we require a method to automatically determine F
and to synchronize T and Fj.

(b) Identify the players in the game video. Description: We need player identifica-
tion to place each player’s pose at the correct on-ice coordinates. We also use Player
identifications to appropriately scale players using their height from the PPT data. Cur-
rent State: In our example, we use a player tracking algorithm developed by Prakash
et al. [16] to get approximate on-ice locations of players using the game video. These
approximate locations are then matched to our precise PPT locations by calculating the
Euclidean distance between the video-based estimates and the PPT coordinates. Player
matching allows us to scale each player properly and provides a check that T and Fj
are matched. We believe that this step can be automated to find the appropriate frame
in the game video using the time of the shot event in the PPT data. The player tracking
algorithm also generates bounding boxes for each player, which we later match with the
bounding boxes provided by the 3D player modelling software, allowing us to assign
the proper mesh (i.e., player model) to each player. Opportunities: Player tracking is an
active area of research and new techniques are being developed to better handle player

Linkdping Hockey Analytics Conference 2025 46



New Views of Shots - Towards Measures of Net Visibility and Reachability

occlusions in the game video. 3D models could be tailor-made for each player. Placing
the player’s model in their on-ice location, in the proper pose, could eliminate scaling.

3) 3D Scene Reconstruction In the third step, we utilize our processed PPT and game
video data to reconstruct a 3D representation of the scene.

(a) Build a 3D model of players and the goaltender. Description: The idea of net
visibility relies on the assumption that we can reconstruct accurate 3D models of the
players and goaltenders using game video. These models capture the full shape of the
body, which is crucial for determining occluded parts of the net from the puck’s per-
spective. Current State: Using the game video frame at the time of the shot (Fs) and
an image recognition tool, we retrieve players and their poses. In our example, we use
open-source software called 4DHumans [8]. This provides us with a 3D model for all
players in the frame, including the goaltender. Figure 2(a) shows the original game
video frame and Figure 2(b) shows the estimated 3D model of all the players. Players
shown in grey do not impact net visibility or reachability. We currently omit the play-
ers’ sticks since, to our knowledge, the only work in pose reconstruction for hockey
sticks has been in 2D [2]. Opportunities: Human 3D pose reconstruction is an active
area of research. The inclusion of stick positions would also benefit our metrics. Due to
constraints on how sticks can be held, and because we have information about whether
a player is a left or right handed shot (in the PPT data), we believe that this should not
be too difficult.

- ; g & ,
1 = 7 0 g
n L E ,’: i :
| | - - ') 2 | | -

(a) Original video image (b) Image with player and pose recognition

Fig. 2. (a) Alex Ovechkin’s 856" career goal. (b) approximate meshes of the players and goal-
tender overlaid. The goaltender is coloured in red, the defender in blue, and Ovechkin in orange.
These players reappear in later visualizations as the same colour. NHL EDGE visualization for
this goal: nhl.com/ppt-replay/goal/2024020151/172.

(b) Scale the players. Description: The reconstructed player models are not properly
scaled relative to the size of the rink. As a result, the size of the players needs to be
scaled. Current State: We scale each player mesh using the z-coordinate (the distance
from the ice surface), from the PPT data. This value is relative to the player’s right
shoulder. 4D-Humans outputs each player as a SMPL mesh [10] allowing us to ob-
tain coordinates for the right shoulder. SMPL stands for “Skinned Multipurpose Linear
Model” and it produces models that include bodies with clothing, rather than stick fig-
ures. We then scale the mesh so that its right shoulder aligns with the height of the
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player’s in-sweater device in the PPT data. Each player’s height is available in the PPT
data. Opportunities: Systems like SMPL could be fine-tuned to include player’s equip-
ment (including goaltenders).

(c) Determine the camera parameters. Description: The reconstructed 3D human
models generate 3D meshes (of each player) relative to the camera model (using the an-
gle of the camera used to capture the video). To correctly orient players on the rink, we
need to determine several camera parameters (some examples include the focal length,
as well as the angle and height relative to the ice surface). Current State: In our ex-
ample, we approximate these camera’s parameters manually. However, techniques to
calibrate sports broadcast cameras do exist [5][7][18]. See Figure 3 for a comparison
of the broadcast video image with players and poses recognized and the view from the
puck’s perspective with orientations corrected. Opportunities: Sports broadcast camera
calibration is an active area of research.

(a) (b)

Fig.3. (a) The view from the broadcast camera’s perspective. (b) The view from the puck’s
perspective with orientations corrected.

4) Net Visibility and Reachability In the final step of our framework, we compute
measures of net visibility and reachability using the reconstructed 3D scene.

(a) Add the net to the 3D model. Description: To determine which parts of the net are
visible and reachable we need to place the net into the 3D scene. Current State: The
net’s size and location are known, making it straightforward to add the net to the scene.
For the purpose of visibility and reachability, we only need to construct the net open-
ing. In our proof-of-concept implementation, the net opening is comprised of 10,000
non-overlapping, equal sized polygons, which are used to compute visibility and reach-
ability. Figure 4(a) provides an example of how a smaller number of polygons could be
mapped to the net opening.

(b) Adjust the camera view to that of the puck. Description: To determine net visi-
bility, we need to be able to view the scene from the perspective of the puck (using the
centre of the puck). Current State: We position the camera in 3D space at the location
of the puck. We then perform perspective projection using a pinhole camera model with
the optical axis aligned with the centre of the net opening.

(c) Determine the Visibility of the Net. Description: We want to calculate the percent-
age of the net that is open from the perspective of the puck. Obstructions between the
puck and the net, like players and the goaltender, reduce net visibility. Current State:
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Our proof-of-concept implementation uses perspective projection to map polygons to
the puck’s view of the plane formed by the net opening. We perform rasterization to
convert these polygons into pixels. By examining the resulting image we can determine
which pixels are the open net and which pixels are obstructions. Net visibility is the
number of net polygons mapped to unobstructed pixels, divided by the total number of
net polygons.

(d) Determine the Reachability of the Net. Description: We recognize that there can
be areas of the net that are visible but too small for the puck to fit through. Therefore, we
introduce a new metric, net reachability, defined as the fraction (or percentage) of the net
that the puck can pass through unobstructed. Current State: We construct an algorithm
to determine net reachability by dividing the net into 10,000 non-overlapping, equal
sized polygons. For each polygon, we calculate the puck’s trajectory when aimed at the
polygon’s centre, assuming a linear path with no puck tilt or flutter. If there are any
obstructions in the trajectory, we deem the polygon “not reachable”. Finally, we define
net reachability as the percentage of polygons that are reachable. See Figure 4(b) for
a visualization of net visibility and reachability calculated for Ovechkin’s goal. Notice
there is a small opening between the goaltender’s left arm and his chest (labelled R3)
which is visible but not reachable (because the puck is too small to fit through that gap).
This highlights the importance of net reachability.

Defender's R2
Hand
&

R,

Defender’s
Skate

(a) Finding reachable portions (b) Visible and reachable regions

Fig.4. View from the puck (zoomed and cropped version of Figure 3(b)). In image (b) the net
is not rectangular because the shot is coming from an angle to the left of the net and from that
perspective the right post appears shorter than the left post because it is farther away. Image (a)
has been modified to show a straight on view of the net to more easily illustrate the concept of
dividing the net into polygons of equal sizes. Green indicates unobstructed net, yellow signifies
visible but not reachable, and red denotes neither visible nor reachable. The puck entered the
net in Region IZ5. One can see the impact of the defender’s hand on reachability in ;. It has a
larger influence on reachability than the post because it is closer to the shooter. The position of
the defender’s skate may be incorrect due to inaccuracies in the pose recognition software and the
fact that it does not know that a person may be wearing skates. Additionally, the player and pose
recognition software does not handle player equipment. Research is being conducted to recognize
goaltender poses and equipment that could be used to augment current approaches [19]. Building
3D models of goaltenders with their equipment and placing the model in the 3D scene at the
specified location may be another way to improve accuracy.

Linkoping Hockey Analytics Conference 2025 49



New Views of Shots - Towards Measures of Net Visibility and Reachability

4 Example Computation of Net Visibility and Reachability

For our proof-of-concept implementation we use a simplifying assumption that if any
part of the puck hits a post or obstruction, it will not reach the net. This could be easily
modified to assume, for example, that shots with half of the puck inside the post reach
the net. Interesting future work would be to better understand and model the interaction
between the puck and a post and the impact of the puck’s spin (spinning towards the
interior or exterior of the net). Naturally one would also want to study interactions with
all types of obstructions (e.g., the crossbar, players, goaltenders, and equipment).
Figure 4(b) shows the different regions of the net that are visible and reachable,
along with labels for each of the regions. Green signifies areas that are visible and
reachable, yellow denotes visible but not reachable areas and red shows areas that are
obstructed and therefore, are not visible or reachable. Table 1 shows the results of our
computations for the percentage of the net that is visible and reachable in each region
as well as the overall values. Notice that regions R4 and Rs are separate regions for
reachability but become merged for visibility. This occurs because there is a small area
beneath the goalie’s left foot that is visible but not reachable, connecting R4 and Rs.
To provide a high-level understanding of the idea of reachability and how it could be
computed, we superimpose a grid of equal sized polygons onto the image of the net (see
Figure 4(a)). To compute reachability we count the number of polygons that are green
and compare that with the total number of polygons comprising the net. Table 1 shows
that for this shot, 65.97% of the net was visible and 50.32% was reachable (Overall).

[Region [ Ri [ Ro [ Rs [ Ri [ Rs [Ra+ Rs|Overall]
Visible  [14.97 %[0.97 %[0.03 %] — — [500% [65.97 %
Reachable| 8.82 % [0.15 %|0.00 %[22.92 %[18.43 %| — [50.32%

Table 1. Percentage of the net that is visible and reachable for each region, as well as overall.
Note: regions R4 and Rs are part of the same visible region, but form separate reachable regions.
There are two separate reachable areas in visible region R;; they are both part of R;.

5 Potential Applications

The technology required to implement these metrics, a 3D model of players along with
their and the puck’s locations, could be used to produce virtual reality video simulations
of any window of time (not just shots) from any desired point of view (or continually
changing points of view). This could be used to increase fan engagement or the con-
struction of new metrics that take advantage of the 3D scene. In Figure 5 we show the
3D scene for our running example from the point of view of: the puck (Figure 5(a)),
the shooter (Figure 5(b)), and the goaltender (Figure 5(c)). Notice the difference in
visibility between the puck’s view and Ovechkin’s view.
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The methods used in this paper to construct a 3D scene are generalizable to other
sports. We envision that our net visibility and reachability metrics could also be ap-
plied to sports like football (soccer) and lacrosse, with additional considerations such
as individual player’s ability to bend (curve) the ball.

| & Puck

(a) Puck’s view (b) Shooter’s view (c) Goaltender’s view

Fig. 5. Using the 3D model of the scene to generate different views. Note that in (c) Ovechkin (the
light orange player) is barely visible, due to the defender’s (blue player’s) position, highlighting
the value of this view.

Our position is that, given enough samples for each player and goaltender, our net
visibility and/or reachability metrics could be beneficial to players, coaches, and ex-
ecutives to improve offensive and defensive tactics and overall team performance. The
metrics provide information about how much of the net each defender is obstructing,
aiding in defensive positioning and decision making. It can be used to evaluate which
body positions (poses) are most effective for shot blocking, such as standing versus
kneeling. Metrics could even be adjusted to account for whether players are attacking
or defending. For example, one could assume that attacking players would move out of
the way of a shot, and by removing them from the scene, make the portion of the net
they are occluding reachable.

Additionally, our metric could be used to evaluate and provide insights into a player’s
shooting decisions and precision. Because hockey is dynamic and since we can con-
struct a 3D model at any point in time (and view it from any viewpoint), we could
examine whether players are shooting at appropriate times. This could be done by com-
paring the portion of the net that is reachable at instances in time prior to the actual shot
where the player could shoot with that portion of the net that is reachable from the time
of the shot. This would allow one to study, for example, if more or less of the net was
reachable if the shot had been taken sooner. Similarly, one could reposition the shooter
(and other players) to show how much of the net would have been reachable had the
shooter taken a different path, and comparing that with the reachable portion of the net
for the shot the player took. Examining whether players are shooting at smaller or larger
reachable regions would also be informative, especially if a player often shoots at and
misses smaller regions when there are larger regions that are reachable. Another possi-
bility would be to study shooting skills by determining which players are able to score
when there are only small reachable regions available (e.g., on the short side between
the goaltender’s head and the post).
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These metric could also be used to analyze goaltender positioning to identify if they
consistently leave regions of the net open and vulnerable to exploitation, determine if
they “cheat” by presenting areas where they want a shooter to shoot because they be-
lieve they can make the save, and understanding whether they are successful. A simple
but powerful example would be to show how the reachable portion of the net changes if
the goaltender more aggressively moves towards the shooter. This could provide quan-
titative insights into goaltender positioning. Additionally, generating the goaltender’s
view would permit us to compute the amount of time (or portion of the shot duration)
that the goaltender would have been able to see the puck. For example, the puck was
visible for 80 milliseconds from the time of release to the end of the shot (or 44% of
a shot that took 180 milliseconds to reach the goaltender). This would provide insights
into goaltenders’ abilities to make stops on shots through traffic or possibly absolving
them of fault for not stopping shots that they could not see.

Some simple examples of these applications are provided in the Appendix. There
we demonstrate how potential changes in goaltender positioning impact net visibility
and reachability. Additionally, we show how these metrics would be impacted if the
defender were positioned more directly in the shooting lane.

6 Discussion

We recognize that 3D human pose estimation, sports camera calibration, and video
player tracking are active areas of research. Our method of calculating net visibility
and reachability relies on the precision of these tools and their ability to generalize to
hockey. In particular, 3D human pose estimation does not identify the player’s equip-
ment or stick, which is a limitation we would like to address in future work. Moreover,
in many shots, influential players or the goaltender are obstructed from the broadcast
camera’s view or positioned outside the frame. This may hinder our ability to capture
accurate 3D poses. Furthermore, for our net reachability metric, we assume the puck’s
trajectory is linear (with no rise, fall or curve). In reality, a puck’s trajectory is parabolic,
but from close distances or with the high speed of most shots, it is likely sufficiently
close to linear. The puck may also wobble or reach the net tilted off axis, violating our
no tilt assumption used when computing reachability. There are also factors not cur-
rently captured by net visibility and reachability. One such factor is the difficulty of the
shot. For example, 5% of the net being visible from 60 feet away might be thought of
as “more difficult” than 5% of the net being visible from 10 feet away. Likewise, shots
from sharp angles may be considered differently than from the slot. Imagine an open
net from the slot and an open net from a sharp angle, both would have net visibility
values of 100%. However, from the sharp angle there may be only a small sliver of the
net opening to shoot at. In this example, the size of the net opening differs between the
two shot locations and that may not be fully reflected in our metrics. In the future, we
hope to add a metric for “scoreability” to accounts for such factors. One final challenge
is devising techniques to validate the values obtained from our computations.
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Appendix

Figure 6 is used to provide an example of one type of application for our framework and
metrics. This example focuses on one aspect of goaltender positioning, depth relative
to the net. The figure shows an example of different views from the puck’s perspective
with the goaltender located in slightly different positions. The left image, labelled “-4
feet”, shows net visibility and reachability with the goaltender moved 4 feet closer to
the net. The centre image, labelled “Original” shows the goaltender’s original position.
The right image, labelled “+4 feet”, shows the goaltender moved 4 feet closer to the
shooter. Below each image, V' denotes the portion of the net that is visible R denotes
the portion of the net that is reachable, D, denotes the distance from the goaltender
to the puck and D,,.; denotes the distance from the goaltender to the centre of the net.
Note that the -4 feet and +4 feet are changes in the x value in the x,y coordinate system,
which is why D,,.; does not change by exactly 4 feet.

As one expects, if the goaltender is positioned closer to the net they obstruct less of
the net, resulting in larger visibility and reachability values. If the goaltender is posi-
tioned closer to the puck visibility decreases as does reachability. Note that in reality, a
goaltender may change their stance when they are farther into or out of the net, which
could also alter these metrics. Note that the defender’s impact does not change as their
location remains the same in each case.
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-4 feet Original +4 feet
V=T71% V=66% V=62%
R=57% R=50% R=45%

Dpuck= 343 ft Dpuck: 30.0 ft Dpuck: 25.7 ft
D, =24 ft D, =6.5 ft D, = 10.9 ft

Fig. 6. Example application of net visibility and reachability. Comparing metrics with different
goaltender locations.

Figure 7 provides another example of a potential application. In this case we demon-
strate how net visibility and reachability would change if the defender were positioned
more directly in the shooting lane. The left image shows the original position of the de-
fender with only a part of their hand and skate seen in the left side of the image, along
with the net visibility and reachability values. The right image shows how net visibility
and reachability decrease substantially if the defender is more directly in the shooting
lane. Note that while this increases the chance of blocking the shot, it may also partially
obstruct the goaltender’s view. Since one can not see all of the goaltender’s face from
the puck, they may not have a clear line of sight to the puck with both eyes.

Original D (#55) in shooting lane
V=66% V=46%
R =50% R=26%

Fig.7. Example application of net visibility and reachability. Comparing metrics with a different
defender location.

We believe that being able see and quantify changes in net visibility and reachability
with different locations for players and goaltenders can provide valuable insights to
goaltenders, defenders, shooters, coaches and fans.
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Abstract. In ice hockey, handling and keeping control of the puck (possession)
are valued skills. In this paper we study several metrics of individual player puck
possessions from 2023-24 regular season NHL games. These metrics include
players’ speed while carrying the puck, and the distribution of puck possession
times for players within their team (i.e., does a team have a few players who
have a larger share of possession time or are times more equally distributed). Our
goal in this paper is to examine and highlight different skills and roles related to
puck possession and to design metrics that might be helpful in roster construction
and/or creating line combinations.

1 Introduction

In ice hockey, being able to possess and handle the puck is a highly valued skill. Players
with possession of the puck may advance the puck towards the opponent’s end, set up
plays, and prevent their opponents from making plays. We believe that understanding
which players are able to obtain and maintain possession of the puck and what they
do when they have the puck can provide critical information for valuing players and
creating line combinations.

Using puck and player tracking data obtained from the National Hockey League, we
utilize data from regular season games from the 2023-24 season and study individual
player possessions. While puck handling skills are important for goaltenders, the types
of metrics we consider are not designed to evaluate goaltenders. As a result, we do
not include goaltenders in any of the analyses conducted in this paper, and henceforth,
when the word “players” is used it is referring to skaters. We begin by examining the
speeds with which skaters are able to carry the puck. Since many players are capable of
reaching high top speeds we focus on which players are able to consistently reach high
speeds while carrying the puck.

We later examine, on a per game basis, the distribution of the amount of time in-
dividual players possess the puck within their team. The objective it to understand the
degree to which a smaller number of players dominate team possessions or whether
possessions are distributed more equitably across players on the team. We believe that
these new metrics provide insights into individual player’s skills and/or roles and that
these insights may be valuable when constructing rosters and/or line combinations.

From the analyses described above we make the following key contributions:

— We devise a methodology for preparing, cleaning and filtering games as well as
(when appropriate) devising filters to exclude some players who may not have suf-
ficient opportunities for us to obtain representative metrics.
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— We find that, per 20 minutes, some players have significantly more bursts of 20
miles per hour (29.3 ft/s) or greater while carrying the puck (Bursts20), than others.
For instance, Nathan MacKinnon averages more than 7 times as many 20+ MPH
bursts per 20 minutes (3.35) than an average forward (0.44). We also find a large and
significant difference between forwards and defencemen and believe that Bursts20
is a good indicator of players’ roles.

— We evaluate individual contributions to team possessions by using Jain’s Fairness
Index to measure the distribution of possessions across all skaters within each team.
For example, we find that the Florida Panthers have the most equitable distribution
(index=0.85), while the Vancouver Canucks have the least equitable distribution
(index=0.70). We observe significant differences between teams and believe this
offers insight into roster structures and offensive styles.

2 Related Work

Much of the research studying possession in sports has focused on team possessions
[1] [2][9][16][11]. Studies examining individual possessions have mainly concentrated
on basketball [3][14][15] and football (soccer) [8]. These studies focus on how many
times a player possesses the ball per game and how long they possess the ball.

One ice hockey study manually tracked the possession time of top players (e.g., Joe
Sakic and Mike Modano) during the men’s 2002 Olympic Ice Hockey games [4]. The
results showed that the top players averaged one minute and seven seconds with the
puck per game. Similarly they found that top players in the USA Tier 1 Youth National
Championships averaged one minute and six seconds per game. They use these results
to argue that youth hockey should place more emphasis on practice rather than games,
to provide more opportunities for players to develop puck handling skills.

In Part I of this study, Iaboni ef al. [5] examine the average time of each player’s
possession, the average time of possession per game and the average number of pos-
sessions (all in 5v5 situations). They normalized all metrics to 20 minutes of ice time
because the metrics were strongly correlated with ice time. They found that the top
player had possession for 1:37 (one minute and thirty seven seconds) per 20 minutes,
with the league average being 0:43. They found that when considering players by po-
sition group (by grouping defencemen separately from forwards) there were only weak
correlations between a player’s possession time per 20 minutes and traditional mea-
sures of success per 20 minutes, measured by offensive production metrics (e.g., goals,
assists, points and shots). They also examined the distance players travel with the puck
during possession, finding that the top player averaged 36 feet per possession which is
significantly greater than the league average of 20 feet.

In addition, they also studied offensive zone (OZ) possession time per 20 minutes
and found that when considering all players combined, OZ possession time correlates
strongly with points per 20 minutes (r = 0.70). However, this correlation may be
mainly capturing differences by position group as there were only weak correlations
among forwards (r = 0.45) and among defencemen (r = 0.49). The top eight players
in terms of OZ possession time were statistically similar with 95% mean confidence in-
tervals ranging from [0:35, 0:41] for the top player to [0:30, 0:35] for the eighth highest
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ranked player. League averages were [0:14, 0:15]. So top players averaged more than
twice the OZ possession time, in 5v5 situations, than the average player.

In this paper we build on and extend the complementary work in Part I by Iaboni et
al. [5], described above. We examine an additional set of metrics that includes the speed
at which players carry the puck and we study whether a team’s time of possession is
concentrated among a few players or is more evenly distributed across all players.

3 Background

3.1 Definition of Individual Puck Possession

The NHL defines two types of individual puck possession. The first occurs when a
player touches the puck consecutive times, with at least one of those touches occurring
when the puck is on the ice. For the second type, one-touch actions are also considered
possession (e.g., one-touch passes and one-timers). Each possession is credited to an in-
dividual. The time between individual possessions, such as when the puck is travelling
from one player to another during a pass, is not considered part of an individual’s pos-
session. Instead, an individual possession is deemed complete: at the end of the player’s
final touch (e.g., a shot, pass, or area-play), when another player establishes possession
(e.g., a steal), or when the puck travels a substantial distance away from the possess-
ing player (e.g., a puck loss). We utilize these types as the definition of individual puck
possessions in this paper. In prior work we studied team possessions, defining team pos-
session as the period of time players on the same team have consecutive possessions,
including the time for a pass to reach another player [11]. See that work for a more
precise description of how individual and team possessions are defined.

3.2 Dataset Overview

Our research is conducted using the NHL'’s proprietary puck and player tracking (PPT)
data, which records puck and player locations at high frequencies (60 Hz and 12 Hz,
respectively). Along with the PPT data, the NHL provides individual possession mod-
els, equipped with possession information using the definitions provided in the previous
section. Moreover, these datasets also include automated event detection and labelling
information. These event labels include but are not limited to: shots, passes, and area
plays (e.g., dumps-ins and dump-outs), This data is interpolated by the Delayed Inter-
polated Smoothed Hundred-Hertz (DISH) stream to provide information about puck
and player locations every one-hundredth of a second. Note that this data is considered
unofficial by the NHL. We also use data from the NHL API for the games included in
our analysis to get official player statistics, like goals, assists and points (which are used
to examine correlations between our metrics and those statistics).

4 Dataset Cleaning and Filtering

4.1 Preparing, Cleaning, and Filtering Games

In previous work we devised techniques for analyzing puck possessions by individuals
and teams and examined relationships between team possession and team success [12].
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We utilize the data cleaning and filtering methods in our previous work on team pos-
sessions to conduct our analysis of individual possessions [12]. This includes merging
individual possession data with game information to provide additional game context
and details such as power play information, score differential, and puck and player lo-
cations. We then we address several issues with that data that include: adjusting the
start and end times to account for time clock resets (e.g., plays where the clock is reset
due to a video review like an offside), ensuring that possessions adhere to active game
play intervals, removing duplicate possessions, fixing abnormal data entries (e.g., out of
sequence data) and adjusting some possessions that contain excessive distance between
the puck and the possessor.

After cleaning and filtering, we found a few issues that compromised game infor-
mation and data accuracy. As a result, we removed games with erroneous data for more
than 4% of the game duration, or 4% of a team’s possession time. After this filtering
(118 games) we were were left with 91% of the league’s regular season games.

4.2 Filtering Individual Players

We apply filters to the remaining 1,194 games to exclude players for which there was
insufficient data. From these 1,194 games, players are excluded if they played fewer
than 10 games or had less than 10 minutes of 5v5 ice time per game. In the 1,194
games studied, 921 players participated in one or more games and 250 were excluded,
leaving 671 players remaining. We believe these 671 players capture a representative
sample of regularly participating players since the expected number of players (i.e.,
excluding goaltenders) given no roster changes throughout the entire season would yield
576 players (32 teams x 18 players per team).

5 Speed with Possession

In this section we study player speeds during possessions with the goal of identifying
players that carry the puck at high speeds. We focus exclusively on play during 5v5
situations because it is more indicative of regular play and avoids giving an advantage
or disadvantage to players who spend more time in short-handed, power play, 4v4, 3v3,
or empty net situations. We evaluate puck-carrying speeds using three metrics, inspired
by the data available on the NHL EDGE website [10] that reports players top speeds and
bursts of speed. Our metrics only consider player speeds when they have possession of
the puck and we report all speeds in feet per second (ft/s) as we believe that this allows
one to envision how much on-ice distance is being covered, given that NHL rinks are
200 feet in length and there are 50 feet between the two blue lines. Specifically, the
metrics that we examine are the average number of 20+ MPH (i.e., 29.3+ ft/s) bursts
reached by a player per 20 minutes (referred to as “Bursts20”), top speed across the
entire season, and an average (across all games) of the top speed obtained in each game
(Avg. Top Speed).

Note that Bursts20 is different from 20 MPH+ bursts reported on the NHL EDGE
web site [10]. According to that site, “bursts measure the number of times a skater
achieved a sustained speed above a given threshold”. As noted, for Bursts20 a player

Linkdping Hockey Analytics Conference 2025 59



Individual Puck Possessions Part 1I: Speed Bursts and Possession Times within Teams

must possess the puck for one second or more and we normalize the number of bursts
to 20 minutes, to ensure that values are not skewed towards players with more ice time.

5.1 Data Cleaning

To capture possession speeds and draw fair comparisons, players must have enough
opportunity within a possession to generate high speeds. Moreover, a player must have
sufficient opportunity within a game and across the season to record high speeds. There-
fore, we only consider possessions of one second or longer to capture “puck-carrying”
possessions. Furthermore, we only consider games in which a player has five or more
such possessions, and players with ten or more such games. Collectively, these filters
exclude short possessions with insufficient puck-carrying time, and players that may not
have had enough opportunites to reach high speeds in a game or over the season. After
applying these filters, we are left with 663 players and an average of 53 games used per
player. The PPT data provides speed computed using 12 readings per second and then
“smoothed” to account for missed readings and the volatile movement possible with the
tracking device over short time intervals [13]. Note that Bursts20 and average game top
speed are calculated by game and then reported as an average. Also note that we record
at most one burst per possession, thus if a player reaches 20+ MPH then their speed
drops below and speeds up to 20 MPH (or more) during the same possession, we count
this as a single burst.

5.2 Player Speeds

Table 1 shows the top 10 forwards and top 10 defencemen each sorted by Bursts20
during 5v5 situations. We sort by Bursts20 as this provides insights into which players
carry the puck at high speeds more often. The ability to consistently carry the puck
at high speeds (Bursts20) seems, to us, more valuable and more informative than top
speed and average top game speed. When examining the data we notice that there are
many well-known, highly-regarded players who average very few or zero puck carrying
bursts of 20+ MPH. This is likely because those players have different roles and/or skill
sets (e.g., play makers, goal scorers, or defensive-oriented players, to name a few). For
example, Alex Ovechkin (WSH), Mitchell Marner (TOR), Rasmus Dahlin (BUF), Jason
Robertson (DAL), and Adam Fox (NYR) have low Bursts20 averages but provide value
to their respective teams in other ways. We believe that Bursts20 provides insights for
teams and coaches looking to find and leverage players who can consistently carry the
puck with speed when considering roster management and line combinations, however
it is by no means a requirement for players to contribute to their teams (as different
players may fill different roles). In addition to average Bursts20 and 95% confidence
intervals for the average, Table 1 also shows the number of games used after filtering
(GPx: Games Played and not filtered), top speed, average per game top speed, as well
as league and position averages (the bottom rows).

Top speed and average game top speed both suggest that defenders can carry the
puck at fairly similar speeds to forwards (see the averages shown at the bottom of the
table). We find that forwards average more Bursts20 than defencemen, with a statisti-
cally significant difference. We also observe overlapping confidence intervals among
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Rank|Name Team| Pos. | GPx Bursts20 Top Avg.
20+ MPH Speed | Top Speed

(29.3+ ft/s) (ft/s) (ft/s)

1|Nathan MacKinnon COL| C 79 |3.35[2.87,3.83]| 35.1 31.7
2|Denis Gurianov NSH| RW | 11 |2.53[1.59,3.48]] 32.6 30.3
3|Julien Gauthier NYI| RW | 13 |2.53[1.59,3.47]| 34.6 30.0
4|Connor McDavid EDM| C 68 (2.18 [1.73,2.62]] 35.5 30.8
5|Noah Gregor TOR| C 51 [1.91[1.44,2.38]| 33.5 29.8
6|Mathew Barzal NYI| C 72 (176 [1.32,2.19]| 34.5 30.2
7|Jack Eichel VGK| C 58 [1.71[1.32,2.10]| 34.0 30.3
8|Martin Necas CAR| C 68 [1.61[1.16,2.05]| 34.5 30.0
9|Andreas Athanasiou CHI| C 24 |1.58 [0.93,2.24]] 329 29.4
10|Ryan McLeod EDM| C 70 |1.55([1.13,1.97]| 334 29.3
1|Cale Makar COL| D 74 10.70 [0.50, 0.90]| 33.1 28.6
2|Jake Sanderson OTT| D 71 (0.67 [0.44,0.89]| 33.9 28.6
3|Spencer Stastney NSH| D 19 10.61[0.28,0.95]] 31.8 28.4
4|Luke Hughes NID| D 74 10.61 [0.41,0.81]| 32.7 28.9
5|Nick Leddy STL| D 73 10.59 [0.44,0.74]| 34.6 28.9
6|Sean Walker PHI | D 77 10.59 [0.38,0.79]| 32.0 28.1
7|Quinn Hughes VAN| D 69 [0.58 [0.41,0.76]| 33.1 28.8
8|Colton Parayko STL| D 73 10.58 [0.42,0.74]| 31.9 28.6
9|Jalen Chatfield CAR| D 62 [0.52 [0.31,0.74]| 32.1 27.1
10{Jamie Drysdale ANA| D 32 10.49 [0.26,0.72]] 32.6 28.0
+|League Avg. 53 10.32 [0.29,0.35]| 31.2 26.8
+|Forwards Avg. 54 10.44 [0.39,0.48]| 31.5 27.3
+|Defensemen Avg. 53 [0.14 [0.12,0.15]| 30.7 26.1

Table 1. Top 10 players ranked by average 5v5 20+ MPH Bursts per 20 minutes. GPx denotes
the number of games used (i.e., after applying filters).

the top 3 forwards, when comparing forwards ranked 2 to 10, and between the top 10
defencemen. This suggests that many of the top players in Table 1 are not significantly
different from one another. However, we point out that the differences between all 20
players in the table and their respective position averages are statistically significant.

Notably, Nathan MacKinnon ranks 1% with 3.35 Bursts20 in comparison to the for-
ward average of just 0.44 (7.6 times more). Cale Makar ranks first among defencemen
with 0.70 Bursts20, compared to the defencemen average of 0.14 (5 times more). We
note that a few players in Table 1 have had relatively low numbers of opportunities to
obtain high speeds in possessions of one second or longer (GPx). As a result, these
players typically have wider 95% confidence intervals than the rest of Table 1. This
illustrates that Bursts20 may be useful for identifying players in smaller roles that have
demonstrated an ability to consistently carry the puck at high speeds (although with a
limited sample size).

Figure 1 plots, separately, the cumulative distribution function of Bursts20 for all
forwards and all defencemen. This graph shows the clear and large difference between
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forwards and defencemen. Namely, it shows that nearly 19% of defencemen average
zero Bursts20, compared to roughly just 7% of forwards, further illustrating that many
defencemen may not be expected to carry the puck at high speeds. It also shows a large
disparity between top forwards, like MacKinnon, with very high Bursts20 and other
middle-ranked forwards. Players with an average of 1.0 or more bursts per 20 minutes
represent fewer than 10% of all forwards and about one half of the forwards average
fewer than about 0.3 bursts per 20 minutes.
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Fig. 1. CDF of Bursts20 for defencemen and forwards.

In future work, it would be interesting to consider possessions of shorter durations
(e.g., half a second rather than one second) and examining the sensitivity of the results
to that choice. It would also be interesting to consider bursts relative to each player’s top
speed. For example, studying bursts that are within p percent of a player’s top speeds
throughout the season. This could be useful in understanding a player’s bursts relative
their capability and how a player’s speed changes over time. Such possibilities might
include examining differences as a player ages, as their fitness level changes, or while
they recover from an injury.

6 Individual Contributions to Team Possessions

In this section, we study the distribution of individual possession times across players
on each team. The goal is to understand whether a team’s possession time is concen-
trated among a few players or more evenly distributed across all players. While previous
sections used individual possession data to gain insights into player roles and styles, this
section focuses on how those possessions collectively shape each team’s overall posses-
sion profile. However, we find a strong correlation between a player’s possession time
and their time on ice (TOI) (r = 0.73), thus our findings may also reflect underlying
patterns in TOI distribution. While fairness has been used to study talent distribution
in the NHL (in the context of strong-link and weak-link team structures [6]), to our
knowledge, it has not previously been publicly used to study puck possession or TOI.
To examine how evenly teams share puck possession across their lineup, we com-
pute an “equity score” based on ranked possession contributions. For each game, play-
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ers on a team are sorted by their total possession duration (for Sv5 situations) and as-
signed a rank from 1 to 18. In this analysis, each player’s possession duration is taken
as-is, without normalizing for ice time. The filters described in Section 4.2 are not ap-
plied, so all players who appear in a game are included. This allows us to capture the
full distribution of possession time across the entire lineup for each game.

For each team, we aggregate the possession durations across all games by rank.
We sum the total time held by the top-ranked player across all games, then repeat this
for ranks two through eighteen. This rank-based approach avoids bias from injuries
or roster changes over the season. Each rank’s total is divided by the team’s overall
possession time to obtain a share vector. This vector describes the proportion of total
possession held by each rank from 1 to 18. We then compute Jain’s Fairness Index on
this vector to determine the team’s equity score [7]. The equity scores range from 0
to 1 with higher values indicating a more even distribution. The Equity score (Jain’s
Fairness Index) is defined as:

E(t) _ (Z?:l xi) (1)

on Z:‘L:l 1712

Where t is the team, F(¢) is its equity score, x; is the proportion of possession time
held by rank ¢, and n is the number of ranks (18).

Table 2 ranks teams by their equity score with 95% confidence intervals computed
by bootstrapping (resampling each team’s games with replacement). Despite differences
at the extremes, many teams have overlapping 95% confidence intervals, suggesting that
possession distribution is similar across many teams.

[Rank|Team| Equity Score [[Rank|[Team| Equity Score |

1| FLA|0.85[0.84, 0.86] 17| MIN|0.80 [0.79, 0.82]
2| VGK|0.85 [0.84, 0.86] 18| TBL|0.80 [0.79, 0.81]
3| DAL|0.84 [0.83, 0.85] 191 STL|0.80 [0.78, 0.81]
4| NSH|0.83 [0.82, 0.85] 20| BUF|0.79 [0.77, 0.80]
5| DET|0.83 [0.82, 0.84] 21| CBJ|0.79 [0.78, 0.80]
6| SEA|0.83[0.82, 0.84] 22| WSH|0.79 [0.78, 0.81]
7| CAR|0.83 [0.82, 0.84] 23|EDM|0.78 [0.77, 0.79]
8| ARI|0.83 [0.82, 0.84] 24| NYR|0.78 [0.77, 0.79]
9| PHI|0.83 [0.82, 0.84] 25| NJD|0.78 [0.77, 0.80]

10| LAK|0.82 [0.80, 0.83] 26| ANA|0.77 [0.75, 0.78]
11| WPG|0.82 [0.81, 0.83] 27| MTL|0.77 [0.76, 0.79]
12| TOR|0.82 [0.80, 0.83] 28| NYI|0.76 [0.74, 0.77]
13| SJS|0.82[0.81, 0.83] 29| PIT|0.75[0.73, 0.76]
14| CGY|0.81 [0.80, 0.82] 30( OTT|0.73 [0.71, 0.74]
15| BOS|0.81 [0.80, 0.82] 31| COL|0.72 [0.70, 0.73]
16| CHI|0.81 [0.80, 0.82] 32| VAN|0.70 [0.68, 0.72]

Table 2. Equity score (Jain’s Fairness Index) in 5v5 situations for all teams in the NHL.
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Figure 2 plots each team’s equity score against their average Sv5 goal differential.
We use goal differential as the primary measure of team success because it is adaptable
across game situations (e.g., 5v5). Interestingly, the results show that both balanced
and unbalanced possession strategies can lead to strong team performance. The Florida
Panthers (FLA) rank first in equity score, while the Vancouver Canucks (VAN) rank
last, yet both are among the top four teams in average goal differential. This lack of
relationship is reflected in the near-zero correlation between equity scores and average
goal differential (r = 0.02).
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Fig. 2. Equity score versus average 5v5 goal differential (r = 0.02).

To illustrate how possession is distributed differently among successful teams, Fig-
ure 3 compares the Florida Panthers (FLA, 1st in fairness), Boston Bruins (BOS, 15th),
and Vancouver Canucks (VAN, 32nd), who all rank in the top four in average goal dif-
ferential but differ significantly in equity score. The figure shows that, on average, a
smaller number of players account for a larger share of possession time on Vancouver
compared to Florida and Boston (this can be seen by the steeper rise in Vancouver’s
curve over the first few players). This is primarily due to the top individual player on
Vancouver averaging approximately 18% of the team’s possession, while the top indi-
viduals for Florida and Boston each accounted for about 11%.

While fairness is computed per game and the specific top ranked player may vary,
Vancouver’s curve reflects a pattern of consistently high concentration at the top rank.
In 64 of Vancouver’s 69 games included in our dataset (92.8%), Quinn Hughes led the
team in possession time. He had one minute and thirty-seven seconds of possession time
per 20 minutes in Sv5 situations (the top ranked player in the league in that category [5]).
The remaining five games were led by Filip Hronek (4) and Tyler Myers (1). Notably,
no players from Boston or Florida rank among the top 15 in that category. Florida’s top
player, Mike Reilly, had 1 minute and 7 seconds of possession per 20 minutes, while
Boston’s top player, David Pastrnak, had 56 seconds of possession per 20 minutes.

After the top player, the rate of possession accumulation across subsequent ranks is
comparable across all three teams, and in fact, the jump from the first to second player
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is slightly smaller on Vancouver than on Florida. This confirms that Vancouver’s lower
fairness score is mainly driven by Quinn Hughes high possession time in most games.
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Fig. 3. Cumulative share of team possession held by players ranked 1-18 in 5v5 situations, ag-
gregated across all games. Florida (1st in equity), Boston (15th), and Vancouver (32nd) all rank
top-4 in goal differential but significantly differ in how evenly possession is distributed among
team members.

7 Conclusions

In this paper we utilize unofficial NHL puck and player tracking data to introduce and
analyze metrics related to player speed while in possession of the puck. We determine
the number of times per game a player carries the puck for one second or more at a
speed of 20+ MPH, normalize that value to 20 minutes of ice time and compute each
player’s per game average. We call this metric Bursts20 and find that top ranked players
significantly outperform their position group averages. We believe this metric can be
useful for studying and identifying players with different skills, playing styles, or roles,
and that they may be useful for constructing line combinations and rosters.

We also devise a method for analyzing possession distributions within a team using
Jain’s Fairness Index to compute an “Equity Score”. This measures how equally puck
possessions are spread among players on the same team in each game. We believe that
this metric provides information about team structures and playing styles and that it of-
fers value in team analysis and scouting. We find no evidence that equitable distribution
of possessions within a team influences average goal differentials.

An interesting direction for future work would be to investigate which players create
or begin new possessions for their team. Additionally, we plan to examine the outcomes
of individual possessions. For example, possessions that end in a pass, dump-in, shot
on net, or whistle, how the outcomes vary across players, as well as the success rate
of a player’s possessions. Finally, we hope to examine relationships between Bursts20
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and other metrics. Some examples include: zone entries, zone exits, drawn penalties,
expected goals (since goals may somewhat depend on luck) and other possession out-
comes. For some of these metrics it requires access to individual game data from al-
ternative sources (i.e., data that is not available in the PPT data or via the NHL API).
This is needed to ensure that only the same set of games used to compute Bursts20 are
included (due to the cleaning and filtering process).
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Dropping the Gloves, Driving the Play?
Reassessing the Role of Fighting
in Modern NHL Games
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Abstract. This paper investigates the evolving role of fighting in NHL
hockey by analyzing over one million play-by-play events from the 2021-22
to 2023-24 seasons. Using Corsi as a proxy for offensive activity, we
find that fights are associated with short-term increases in game inten-
sity—particularly for trailing teams. A logistic regression model further
shows that fights are more likely in games with more hits and when score
differentials are large. These findings suggest that fighting continues to
shape game momentum and fan experience in subtle and measurable
ways.

Keywords: Fighting, Possession, Corsi

1 Introduction

Fighting in hockey has long been a polarizing and enduring topic within the
sport. Passionate arguments exist on both sides of the debate. Opponents of
fighting often cite the significant health risks—both immediate and long-term—that
players face, while also questioning whether fighting influences the outcome or
momentum of a game. On the other hand, supporters argue that fighting serves a
protective role, particularly for star players who may be targeted by cheap shots
and point out that fans appear to respond positively to fights during games.

Historically, research supported the idea that fans enjoy fighting, with several
studies showing a positive relationship between the number of fights and game
attendance in both the NHL [1]-[4] and minor leagues [5]-[7]. However, more
recent findings challenge this perspective. Fortney [§], for example, reported
a negative and significant relationship between fighting and NHL attendance,
suggesting a potential shift in fan preferences. Yet, public reaction to the highly
publicized fights during the 2025 4 Nations Hockey Tournament indicates that
fan appreciation for fighting may still be alive and well.

One complicating factor in assessing the relationship between fighting and
attendance in the NHL is the use of dynamic ticket pricing, where prices fluctuate
based on demand. This can obscure the effect of game-specific factors—such as
fighting—on attendance, as the pricing models may already account for these
elements. In contrast, minor league hockey, where ticket prices remain static,

Linkdping Hockey Analytics Conference 2025 68



Dropping the Gloves, Driving the Play?

continues to show a positive relationship between fighting and attendance [5]-
[7].

Given the overall decline in fighting in the NHL, the shift toward more skilled
players (over a more physical “enforcer” role, and the growing uncertainty about
whether fans are still influenced by fights when deciding to attend games, it is
worth reevaluating the role of fighting in modern hockey. Several recent stud-
ies, such as those by Goldschmied [9], Leard [10], and Coates et al. [11], have
failed to find any significant link between fighting and positive team outcomes,
including winning games or scoring the next goal. These findings suggest that
fighting may contribute little to competitive success in today’s game. However,
previous research has not examined the effect of fighting on in-game possession
metrics. It is possible that fights may indirectly contribute to increased game
activity—measured via possession statistics—even if they do not lead directly
to goals. With access to detailed play-by-play and possession data, it becomes
feasible to test whether fights result in tangible changes in game flow that fans
might find exciting.

Using data from the 2021-22 through 2023-24 NHL seasons, this paper in-
vestigates the short-term effects of fighting on offensive activity using Corsi (shot
attempts) as a proxy for possession. Our findings show that fighting is followed
by an increase (decrease) in offensive activity, particularly for trailing (winning)
teams by as much as 16% (-30%). This suggests that fights may act as catalysts
for more dynamic gameplay with more shot attempts —an aspect that could
help explain continued fan interest.

In addition, we construct a predictive model of fight occurrences based on
in-game factors. Our model reveals that fights are more likely to occur when
there is a two-goal or greater score differential (by a factor of 1.6), and they
tend to happen earlier in games. The likelihood of fighting also increases with
the number of hits and penalties in a game.

The remainder of the paper is organized as follows: Section II presents a re-
view of the relevant literature. Section IIT analyzes changes in Corsi and other
variables following fights. Section IV outlines our predictive model of fight oc-
currence. Section V discusses the implications of our findings, and Section VI
concludes the paper.

2 Related Literature

This literature overview synthesizes existing academic work on fighting in the
National Hockey League (NHL), with a focus on its ethical implications, impact
on attendance, strategic utility, and relevance within the modern context of sport
analytics. A particular emphasis is placed on empirical findings and methodolog-
ical approaches that inform current debates surrounding the role and value of
fighting in professional hockey.

Ethical critiques of fighting are central to the discourse. Lewinson [12] evalu-
ates fighting through a universal code of athlete conduct derived from the NHL,
the International Olympic Committee (IOC), and the Canadian National Minor
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Hockey Association (NMHA). He argues that fighting largely contradicts core
sporting virtues such as discipline and integrity, even while acknowledging that
some defend it under the virtues of courage and loyalty. Drawing on both utili-
tarian and deontological frameworks, Lewinson concludes that fighting ought to
be banned in order to reduce harm and promote a morally consistent code of
conduct for athletes.

This ethical framing intersects with ongoing questions about the appeal of
fighting from a spectator standpoint. Historically, fighting was believed to drive
fan engagement, with several early studies indicating a positive relationship be-
tween fighting frequency and game attendance [1]-[4]. However, more recent
evidence challenges this assumption. Fortney [8], using data from 2000 to 2020,
finds a significant negative correlation between fights per game and average at-
tendance. His results suggest that fans may now prefer high-scoring games over
violent ones, signaling a shift in fan preferences that mirrors the league’s own
emphasis on speed and skill.

Attendance research has also historically considered the role of outcome un-
certainty. Rottenberg [13] first proposed the Uncertainty of Outcome Hypothesis
(UOH), suggesting that fans are more likely to attend games between evenly
matched teams. However, Coates and Humphreys [14] critique the UOH in the
NHL context, proposing a behavioral model centered on reference-dependent
preferences and loss aversion. Paul et al. [7] found no significant support for
outcome uncertainty influencing attendance in junior hockey leagues, and sim-
ilar inconclusive results have been reported across European leagues, including
those in Finland, Sweden, and Russia [15]. These mixed findings indicate that
factors such as competitive balance and entertainment value—of which fighting
is a debated component—may interact more dynamically with attendance than
previously assumed.

The relationship between fighting and attendance appears to differ across
league contexts. In Europe, where fighting is strictly penalized or banned, penalty
minutes have a limited or inconsistent impact on spectators’ interest. For in-
stance, in Germany’s DEL, penalty minutes were positively associated with at-
tendance, while Finland’s SM-Liiga showed no such effect [15]. In Canada, fight-
ing did not significantly impact attendance in the Quebec Major Junior Hockey
League, though it did in the broader Canadian Hockey League. In North Amer-
ican minor leagues—such as the American Hockey League (AHL), ECHL, and
Southern Professional Hockey League (SPHL)—fighting continues to be posi-
tively associated with attendance [5]-[7], suggesting that its draw may be more
pronounced in smaller markets or lower-tier professional contexts.

While fighting is often assumed to energize teams or sway game momentum,
empirical evidence undermines this belief. Goldschmied [9] and Leard [10] both
find no significant correlation between winning a fight and winning the game
or scoring the next goal. Coates et al. [11] further demonstrate a negative rela-
tionship between fighting and team success, adding strategic doubt to its on-ice
utility.
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Research by Sirianni [16] supports this by illustrating how the role of the
“enforcer” has evolved into a niche function, where players who fight do so in
highly structured, often premeditated scenarios—typically against one another
in controlled contexts. From a behavioral standpoint, Goldschmied [17] analyzes
fight timing and concludes that players are significantly less likely to fight late
in games or during the postseason, suggesting that the decision to engage is
calculated rather than impulsive. Part of this is due to the instigator rule and/or
the possibility of demotion if the decision to fight hurts the team.

This calculated nature, however, does not translate to tangible momentum.
Studies by Steegar [18] using entropy analysis, and Kniffin [19] in collegiate
hockey series, find little evidence for momentum between or within games, even in
situations where teams achieve blowout victories or short-term winning streaks.
Vesper [20] adds that perceived “hot hands” are not statistically supported in
hockey and may, in fact, lead to decreased shot selectivity and efficiency.

The cultural normalization of violence in hockey has also drawn concern from
injury prevention researchers. Cusimano [21], through qualitative interviews with
youth players, finds that aggressive behavior is socially reinforced by parents,
coaches, and teammates, particularly as a demonstration of loyalty or retaliation.
Hutchinson [22] connects this culture of contact to concussion rates, reporting
that 88% of diagnosed concussions in NHL games involved direct player con-
tact, often occurring along the boards and early in games. Still, Goldschmied
[23] reports no significant association between frequent fighting and reduced life
expectancy among players from 1957 to 1971, suggesting that the most serious
health effects may be short-term or not easily measurable via mortality.

Referee behavior further complicates the picture. Schuckers [24] finds that
referees are less likely to call penalties in close or late-game situations, and that
visiting teams are penalized more frequently than home teams. Guerette [25]
expands on this by studying games without fans during the COVID-19 pandemic,
showing that the typical home-ice advantage in penalty calls disappeared in
empty arenas, indicating the influence of crowd pressure on officiating.

From a methodological standpoint, these studies draw on a wide range of
tools. Researchers have used logistic regression [24], survival analysis [23], en-
tropy modeling [18], exponential graph networks [16], and time series forecasting
[26, 27] to explore fighting’s place in the game. Metrics such as Fenwick% and xG
are increasingly applied to study game flow and momentum, though their pre-
dictive power on short-term outcomes remains limited. The broader takeaway is
that while fighting may be calculated and deeply entrenched in hockey’s cultural
history, it has little effect on outcomes, waning influence on attendance, and is
increasingly at odds with the ethical and safety priorities of modern sport.

Recent scholarship has continued to refine our understanding of fighting’s
strategic role and broader effects. Farrington [28] presents a paradox in NHL dy-
namics, showing that increased fighting correlates negatively with team success,
suggesting that rather than serving as a motivator, frequent fighting may hinder
performance. Rockerbie [29] extends previous attendance models and finds that
fighting has a small but statistically significant negative impact on NHL atten-
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dance, casting further doubt on the assumption that violence is a profitable fan
draw. Meanwhile, Goldschmied and Espindola [30] explore whether hockey fights
are driven by impulse or strategy. Their analysis reveals that fights occur sig-
nificantly less often late in games or during the playoffs—supporting the notion
that these confrontations are calculated decisions rather than spontaneous acts,
with timing influenced by potential penalties and team tactics. Pitassi, Brecht,
and Xie [31] contribute further by showing that a novel possession-based met-
ric—Average Offensive Zone Possession Time Differential—strongly correlates
with goal differential, outperforming traditional shot-based statistics. Despite the
volume and diversity of existing research, several gaps remain. For instance, a few
studies have incorporated real-time player tracking or high-resolution event data
to evaluate the immediate tactical implications of fights. Moreover, while fan
sentiment is often implied through attendance data, qualitative or survey-based
studies on contemporary fan attitudes toward fighting are sparse. As the NHL
and other leagues move toward data-driven player evaluation and league gover-
nance, there remains substantial room for new research that integrates ethics,
fan behavior, and advanced analytics to better understand fighting’s evolving
role in the sport.

3 Data and Methodology

We scraped play-by-play data for every game played over three recent NHL
seasons (2021-22, 2022-23, 2023-24) from api-web.nhle.com. Play-by-play data
contain timestamped events throughout a game with additional game details
and event descriptors. Each event contains details such as the score of the game
at the time of the event, the number of skaters on the ice and whether the
goalie is on the ice for both teams, and x- and y-coordinates for where the event
took place (if applicable). The different events that get recorded throughout
a game include starts and ends of periods, ends of shootouts, faceoffs, hits,
stoppages, takeaways, giveaways, penalties, delayed penalties, shots, failed shot
attempts, and goals. Shots are broken up into three categories: blocked, missed,
and on-goal. Additionally, there are details given as to what type of penalty is
committed. Across the three seasons of data and all games, there are 1,324,038
total events.
The Effect of Fighting on Offensive Production
We first conduct an exploratory analysis of the impact that fighting has on team
offensive production post-fight. Since goals are infrequent events in hockey (~2%
of all recorded events), measuring offensive production in terms of goals scored
paints an incomplete picture. Instead, goal scoring opportunities, measured by
shot attempts, can be a better proxy for how well a team is performing. We
use Corsi, which sums all shot attempts taken by a team, to measure offensive
production for each team in a game.

To analyze the impact of fighting on offensive production, we create post-
fight windows of time and compare offensive production within these windows
to offensive production from the start of the game to the time of the fight.
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Table 1. Summary of Fights Per Game Across Seasons.

[Games with:[ 2021-2022 | 2022-2023 [ 2023-2024 |

0 Fights 1,037 (79%)[1,037 (79%)[1,047 (30%)
1 Fight | 228 (17%) | 233 (18%) | 227 (17%)
2+ Fights | 47 (4%) | 42 (3%) | 38 (3%)

The post-fight windows include: two minutes post-fight, five minutes post-fight,
10-minutes post-fight, and the duration of time from the fight occurring and
the end of the period. For each occurrence of a fight, we compare the offensive
production of both teams during the windows after the event to their offensive
production before the event occurred. The pre-fight window that is compared to
all post-fight windows encompasses all events from the start of the game to the
time of the fight.

We restrict the sample to regular season games and regulation periods as
overtime periods are played with fewer players on the ice. Initially, our sample
includes 972 fights. To allow for enough time to pass, we only analyze fights that
occur at least two minutes into the game and at least two minutes before the end
of the game, reducing the sample to 877 fights. Additionally, we only analyze
fight occurrences which resume play at even strength immediately post-fight to
avoid entangling results with the impact of a team having a power play, which
further reduces the sample size to 630 (~65% of all fights).

In the before and after windows, we calculate Corsi rate by summing shot
attempts during the window and dividing by the duration of the window in
seconds. If there was not enough time after the event occurring until the end of
the game to cover the calculated duration range (e.g., a fight happening with
three minutes left in the game would not have a complete five-minute post-fight
window), we divide the Corsi sum by the actual time elapsed. Equation one
displays Corsi rate where t is the duration of the window in seconds (e.g., 120
seconds for the two-minute window for a fight that occurs before the last two
minutes of a game):

CorsiRate — (Goals+Shot50nGoal+MztssedShots+BlockedShots) (1)

Table 2 provides an array of paired Welch’s t-test results comparing the
post-fight Corsi rates to the pre-fight rates for fights. We do not assume equal
variance across the compared post-fight and pre-fight windows, hence the choice
of Welch’s t-tests. Since each fight has post-fight windows that correspond to a
pre-fight window, we use paired tests. The rates were multiplied by 60 before
conducting the tests for interpretability, and the rates represent Corsi per minute.
Eight t-tests were specified for fights that occur during each of the following
game score scenarios: all scenarios, tie games, home team losing by one goal,
home team winning by one goal, home team losing by two or more goals, and
home team winning by two or more goals. The eight t-tests include four for both
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the home and away teams for their rates in the four post-fight windows. For each
test, the mean difference in Corsi rate is reported with t-statistics in parentheses.

Table 2. Summary of Fights Per Game Across Seasons.
The *-notation notes statistical significance of t-test at 1% (***), 5% (**) and

10% (*) levels.

N | After 2 After 5 After 10 |Until EOP
All scores 630
Home -0.010 0.019 0.020 0.017
(-0.296) (0.869) (1.115) (0.789)
Away -0.027 -0.031 -0.029 -0.017
(-0.892) (-1.390) (-1.611) (-0.753)
Tie game 197
Home 0.033 0.058 0.054 0.042
(0.514) (1.324) (1.470) (1.056)
Away 0.035 -0.016 -0.028 0.009
(0.660) (-0.416) (-0.826) (0.225)
Home losing by 1 101
Home 0.117 0.158 0.099 0.108
(1.459) [ (2.722)*%FF | (2.251)** | (1.899)*
Away -0.180 -0.192 -0.088 -0.073
(-2.380)** | (-3.804)***| (-2.269)** | (-1.547)
Home winning by 1 111
Home -0.079 -0.041 0.000 0.019
(-1.007) (-0.798) (0.001) (0.322)
Away 0.146 0.136 0.129 0.091
(2.069)** | (2.952)*** | (3.511)*** | (1.916)*
Home losing > 2 99
Home -0.001 0.042 0.079 0.036
(-0.014) (0.842) (1.949)* (0.795)
Away -0.283 -0.234 -0.208 -0.260
(-4.440)***| (-4.210)**%*| (-4.600) ***| (-5.455 ) ***
Home winning > 2 122
Home -0.127 -0.121 -0.129 -0.115
(-1.803)* |(-2.782)***|(-3.561)***| (-2.357)**
Away 0.052 0.093 0.022 0.090
(0.750) (1.748)* (0.556) (1.463)

Table 2 provides an array of paired Welch’s t-test results comparing the
post-fight Corsi rates to the pre-fight rates for fights. We do not assume equal
variance across the compared post-fight and pre-fight windows, hence the choice
of Welch’s t-tests. Since each fight has post-fight windows that correspond to a
pre-fight window, we use paired tests. The rates were multiplied by 60 before
conducting the tests for interpretability, and the rates represent Corsi per minute.
FEight t-tests were specified for fights that occur during each of the following
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game score scenarios: all scenarios, tie games, home team losing by one goal,
home team winning by one goal, home team losing by two or more goals, and
home team winning by two or more goals. The eight t-tests include four for both
the home and away teams for their rates in the four post-fight windows. For each
test, the mean difference in Corsi rate is reported with t-statistics in parentheses.

Results of the t-tests suggest that teams might benefit from fighting. In
scenarios where the game is not tied, there appears to be evidence the losing
team at the time of the fight benefits from either or both an increase in offensive
production themselves and a decrease in offensive production for the winning
team. These results might suggest that it can be strategic to fight in certain
game scenarios. While the reported mean differences might appear miniscule,
mean Corsi rates per minute in the dataset are roughly 0.98 and 0.95 for home
and away teams, respectively. Therefore, a result such as the 0.158 increase for
the home team and -0.192 decrease for the away team in the five minutes post-
fight window when the home team is losing by one goal is rather substantial.
For this example, approximate percentage changes of Corsi rate in the post-fight
window are +16% for the home team and -20% for the away team. Coupling
these results suggest a major post-fight advantage for the home team.

4 Fighting Probability Model

We model the occurrence of a fight in an NHL game based on game character-
istics. Namely, whether the score differential, time remaining in the game and
period number, Corsi differential, and hit and penalty running totals impact the
probability of a fight breaking out. We specify logistic regression models with
a dependent variable of a game event being a fight (y = 1). Regressors include
score differential (Home — Away), time remaining, period number, Corsi differen-
tial (Home — Away), Hit count, and Penalty count. Corsi differential is measured
using the cumulative sum of Corsi for each team at the time of the event while
hit and penalty counts are the cumulative sum of these events across both teams.

Without any transformations, the functional form of the models shows issues
with heteroskedasticity and autocorrelation. We correct these issues in two ways.
First, in Model I, we present results using clustered standard errors, clustered by
the individual game. In Model II, results are presented using heteroskedasticity-
consistent standard errors. We attempted using heteroskedasticity- and auto-
correlation- consistent standard errors, but alas, the methods utilized in R were
computationally costly and did not converge due to the sample size and com-
plexity of the regressors.

Models T and II are presented in Table 3. The robust standard errors cal-
culated for Model II are consistently smaller compared to those for Model I,
increasing the significance of the explanatory variables across the board. The
lack of correction for autocorrelation in Model II is likely leading to a misspec-
ification of the model. However, the only difference between the two models is
ScoreDiff; is significant in Model II but not in Model I. The results of Model I
suggest that fights are more likely to occur when the score differential in a game
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is two goals or greater in either direction. The time remaining and period number
variables suggest that fights are more likely to occur earlier in the game. Lastly,
the number of hits and penalties increases the likelihood of a fight occurring,
which is to be expected, as these variables control for overall aggression.

Table 3. Results of Models I and II.
The *-notation notes statistical significance of t-test at 1% (***), 5% (**) and
10% (*) levels.

Variable 1 Odds Ratio 11 Odds Ratio
Intercept -8.009*** -8.009***
(0.361) (0.273)
ScoreDiff-1 0.022 0.022

(0.112) (0.076)

ScoreDiffi 0.117 0.117* 1.124
(0.101) (0.070)

ScoreDiff—o 0.404*** 1.498 0.404*** 1.498
(0.108) (0.077)

ScoreDiffs 0.470%** 1.600 0.470** 1.600
(0.101) (0.070)

Time Remaining 0.001%** 1.001 0.001%** 1.001
(0.0001) (0.0001)

Corsi Differential 0.030 0.030

(0.035) (0.021)

Second Period -0.955%** 0.385  [-0.955%**|  0.385
(0.118) (0.077)

Third Period -2.427FF* 0.088  [-2.427***|  0.088
(0.201) (0.126)

Hit Count 0.015%** 1.015 0.015%** 1.015
(0.005) (0.003)

Penalty Count 0.220%** 1.246 0.220%** 1.246
(0.015) (0.005)

Home Team Fixed Effects| Yes Yes
Away Team Fixed Effects| Yes Yes

Table 4 presents the results of models using score differential as a continuous
variable and its squared term. Again, Model IIT uses clustered standard errors
and Model IV uses heteroskedasticity-consistent standard errors. Operational-
izing score differential as a continuous variable with its squared term in Model
III-IV provides the same suggestions as Models I-II: fights are more likely to
occur as the score differential grows, regardless of whether the home team is
winning or losing.
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Table 4. Results of Models IIT and IV.
The *-notation notes statistical significance of t-test at 1% (***), 5% (**) and
10% (*) levels.

Variable 1 Odds Ratio 11 Odds Ratio
Intercept -7.979%** -7.979***
(0.362) (0.274)
Score Differential 0.006 0.006
(0.020) (0.013)
Score Differential? 0.024%** 1.024 0.024** 1.024
(0.005) (0.003)
Time Remaining 0.0017%** 1.001 0.001%** 1.001
(0.0001) (0.0001)
Corsi Differential 0.040 0.040* 1.041
(0.036) (0.021)
Second Period -0.868%** 0.420  |-0.868*** 0.420
(0.115) (0.075)
Third Period -2.343%** 0.096  [-2.343***|  0.096
(0.197) (0.125)
Hit Count 0.014%** 1.014 0.014%** 1.014
(0.005) (0.003)
Penalty Count 0.215%** 1.240 0.215%** 1.240
(0.015) (0.005)
Home Team Fixed Effects Yes Yes
Away Team Fixed Effects| Yes Yes

5 Discussion

The findings of this study contribute new dimensions to our understanding of
fighting in hockey, particularly in terms of its on-ice effects and contextual likeli-
hood. While earlier research has questioned the strategic value of fighting—often
concluding that it does not lead to improved outcomes such as winning a game or
scoring the next goal-—our analysis suggests that fights can serve as a catalyst for
increased offensive activity, at least in the short term. Specifically, fights appear
to boost Corsi rates (i.e., shot attempts), particularly for the team behind on the
scoreboard. These increases in offensive zone activity may not always translate
into goals, but they do indicate a measurable shift in game tempo that could
enhance the excitement and momentum perceived by players and fans alike.

This potential for fights to energize gameplay may partially explain the lin-
gering fan interest in fighting, even as its frequency declines and its role as a
performance tool diminishes. The results align with the hypothesis that fighting
can be situationally beneficial—less as a deterministic event, and more as a psy-
chological or momentum-shifting mechanism, particularly for teams attempting
to disrupt an opponent’s control or revive their own effort.

This insight complicates the narrative that fighting is purely detrimental or
antiquated, suggesting that its role is more nuanced and possibly adaptive to
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specific game states. The predictive modeling further enriches this perspective
by identifying the conditions under which fights are more likely to occur. Score
differential—particularly when it reaches two goals or more—emerges as a key
driver, suggesting that fights often occur as responses to perceived imbalance
rather than in tightly contested games. The timing of fights also matters: they
are more likely to happen earlier in games, likely due to teams’ hesitancy to incur
penalties or lose players during decisive moments. In addition, higher counts of
hits and penalties are strongly associated with fight occurrence, reinforcing the
idea that fights emerge from escalations in physicality and game intensity.

Importantly, the relationship between fighting and Corsi metrics complicates
earlier conclusions from studies such as Goldschmied [9], Leard [10], and Coates
et al. [11], which focused largely on scoring and winning. Our study highlights
that there may be more subtle, immediate effects on gameplay that are not cap-
tured by goals alone. This underscores the importance of incorporating advanced
possession metrics and high-resolution event data when assessing the tactical or
entertainment value of fighting in contemporary hockey.

From a policy standpoint, these findings walk a middle line. They neither fully
vindicate fighting as an essential tool nor entirely discredit its relevance. Instead,
they suggest that fighting continues to exert situational effects on game dynamics
that may hold residual value for teams, players, and spectators—particularly in
terms of psychological tone and energy on the ice.

6 Conclusion

This paper revisits the complex and controversial role of fighting in hockey
through the lens of modern sport analytics. Drawing on play-by-play data from
three NHL seasons (2021-22 to 2023-24), we examined both the in-game ef-
fects of fighting on offensive production and the contextual conditions under
which fights are most likely to occur. Our analysis shows that fighting is as-
sociated with short-term increases in offensive activity, especially for trailing
teams—suggesting that fights can act as momentum shifts even if they do not
translate directly into scoring outcomes.

Furthermore, our predictive modeling indicates that fights are more likely
when games are physically intense, involve higher penalty counts, or feature a
notable score differential. These insights reinforce the idea that fighting often
emerges not randomly, but as a strategic or emotional response to in-game dy-
namics.

Together, these results lead to a more nuanced understanding of fighting’s
place in modern hockey. While fighting may no longer be central to winning
games or building rosters, it retains the ability to influence gameplay inten-
sity and spectator experience. Future research should continue to explore these
short-term effects using additional tracking data, fan sentiment surveys, and
cross-league comparisons. As the NHL and other leagues continue evolving to-
ward faster, more skilled styles of play, understanding how legacy elements like
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fighting affect the game’s rhythm and perception will remain essential to in-
formed policymaking and fan engagement.
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1 Bridging the Data Gap

For the last few years, the quality of available shot data features in the public
hockey analytics sphere has really fallen behind what is being used within teams
and companies. Although the NHL provides various parameters for each shot
attempt, passes leading to them are not registered anywhere. This prevents the
use of situational expected goals to measure skills such as expected assists for
one’s playmaking strength, or expected points from entry shots for the ability
to create off the rush.

MoneyPuck (MP) does an excellent job of cleaning and formatting what the
NHL offers with precise coordinates, previous events, and their own expected
goal model attached to every shot attempt. But this still leaves room for more.
Now it does not mean that this type of tracking is entirely unavailable. Corey
Sznajder manually tracks hundreds of games every season as part of his incred-
ibly insightful AllThreeZones (A3Z) project. He records more situation context
like offence type (cycle, forecheck, rush), screen presence, and most notably, the
three most recent passes leading to a shot.

While the NHL’s unique shot ID is not present in Sznajder’s shot tracking
sheets, the MP and A3Z datasets share several features that allow for a potential
merging process. The shot time, type (backhand, slap, wrist, tip, etc.), outcome
(miss, on net, goal), and shooter-goalie pair are noted in both sources. This is
enough for roughly 90% of the tracked A3Z shot attempts to be matched with
their equivalents on the other side of the data pond, taking under 25 seconds
for a roughly 400-game sample to be generated. The result is a database that
links coordinates and expected goal values from MoneyPuck to the contextual
indicators and pass tracking from AllThreeZones.

2 Network Analysis Modelling in Hockey

Network analysis concerns the evaluation of relationships within a structure
made of nodes that are connected through edges. Analyzing a passing network
within a team felt like a natural way to implement this into my work, with the
players and passes between them acting as the nodes and edges respectively.
These edges will be directed, from sender to receiver, and weighted, using sep-
aration from the play’s eventual shot (primary, secondary, tertiary assist) and
that shot’s threat level (expected goal value).
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Extensive research has focused on quantifying importance within these net-
works, using metrics known as centrality measures. And as is the case throughout
data science, there is no end-all-be-all to every solution. We will use four central-
ity measures to build an offensive puck-movement profile, capturing a diversity
of contributions and aiming to outline any given player’s inclinations with the
puck and role when on the attack.

The first is importance through flow, using Betweenness Centrality. Between-
ness is calculated by going over how often a player lies on the shortest path be-
tween nodes. Players ranking highly here are crucial facilitators who maximize
their team’s passing routes toward shots. They tend to act as the main link be-
tween any two teammates, resulting in their line’s offensive movement flowing
through them.

We can estimate a player’s influence with PageRank Centrality: an iterative
process that considers the entire team dynamics. This benefits skaters who con-
nect highly valued players, usually acting as an intermediary between central
portions of the network.

By considering all possible paths within a network, Information Centrality
finds skaters who enhance the efficiency of their team’s offensive system. This
is where offensive support pieces tend to shine. They make themselves valuable
by creating pathways that allow for flexible progression even if they are not the
most direct options, rendering possessions more robust to interruptions should
they arise.

Keeping the simplest for last, Weighted Degree Centrality favours high-
volume players as it sums the total edge weights coming in and out of a node.
Heavily involved passers stand out here even if their plays do not result in
groundbreaking connections.

3 Chemistry Interactions

Using these profiles, we can conduct a quick case study of how the different areas
of puck-moving interact with each other to establish chemistry at the line level.
We'll be taking the Ottawa Senators’ first line as an example here. All the ranks
mentioned in this section are league-wide among forwards during the 2023-24
season.

First, Brady Tkachuk is the identity piece in Ottawa. He plays a very high-
danger-centric style of game and so much of the Senators’ offence is geared
towards getting him a chance in-tight whether that is through a screened tip,
rebound, bumper play, or general net scramble. As a result, Tkachuk has a lot of
sway over how the team’s plays unfold, giving him a top 3 Influence (PageRank)
score.

Next, we have Tim Stiitzle, who is the primary carrier and dynamic mover.
Many of the Senators’ possessions are made possible by virtue of the center
connecting plays thanks to his playmaking and skating abilities. With such a
high share of Ottawa’s offensive pathways going through him, Stiitzle garners a
top 3 Flow (Betweenness) mark.
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Lastly on the right wing is Claude Giroux. He tends to play more of a ter-
tiary role here, acting as the reliable veteran piece for his younger linemates.
But Giroux goes beyond that, with his anticipation of potential passing routes
ensuring Ottawa’s puck possessions can progress towards a chance no matter
their current state. The adaptability and support he provides rank him in the
top 10 on the Efficiency (Information) side.

Each player’s distinct specialization in a different facet of play-driving and
the meshing of these puck-movement abilities allows the line to consistently pro-
duce at a high level. Interactive visualizations of these offensive puck-movement
profiles are available to all at LB-Hockey.com along with the full-length article.
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Rebounds are one of the most important aspects to any team’s success when
it comes to hockey. Scoring off of rebounds is becoming increasingly important
and starting to play a larger role in hockey every season. In an analysis by
Neil Pierre-Louis, he found that the number of rebounds per game increased
dramatically from the 2017-18 season to the 2023-24 season, rising from 3.53
rebounds per game to 6.17. The increase in rebounds highlights the fact that
teams are using rebounds more than ever in an effort to score goals where they
catch the goalie and defense off guard. To show the value of each rebound, a new
statistic, xReboundsPlus, will quantify the quality of the rebound of a given
shot. This will be calculated in three steps: first, modeling the probability of
a rebound (xRebounds); second, modeling the expected shooting angle of the
rebound (xAngle); and finally, combining xRebounds and xAngle to determine
the goal probability.

The shot data used for these models was collected from moneypuck.com;
specifically, the shot data from 2023-24 were used to train these models and
applied to the data from the 2024-25 season. The variables that were used for
this analysis were if the shot resulted in a goal, if the shot was a rebound, if
the shot generated a rebound, if the shot was on a rush, the handedness of
the shooter, the shot type, the angle of the shot, and the arena adjusted shot
distance. For this analysis, a rebound was defined using the Moneypuck standard:
a subsequent shot occurring within three seconds of the initial shot.

The first step in creating the xReboundsPlus statistic was to create an ex-
pected rebound model that outputs the likelihood that a given shot will result
in a rebound. Extreme gradient boosting (XGBoost) was selected as the model
to be used for rebound classification due to its ability to classify well and create
the model rather quickly. The dependent variable for the model was whether the
shot generated a rebound and the independent variables were the angle of the
shot, the shot distance adjusted to the arena, the type of shot, the handedness
of the shooter, and if the shot came off the rush.

K-fold cross validation with five folds was used to determine the best XG-
Boost model and the parameters were tuned to prevent overfitting. These tuned
parameters included adjusting for a class imbalance, changing the maximum
depth, and adjusting the learning rate of the model. After tuning the parame-
ters, the final xRebounds model had an area under the ROC curve of 0.9017 and
an accuracy of 0.8097. Additionally, the model had a specificity of 0.8418 and a
sensitivity of 0.8071, making this a usable piece of the xReboundsPlus model.
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The next step is creating the xAngle model, unlike the previous model for
xRebounds, this model needs to output a continuous variable: the rebound shot
angle in degrees. To account for this, multiple different types of models were
created and compared to determine the best possible fit. The models that were
considered for this expected angle prediction were a neural network, another XG-
Boost model, a random forest model, multiple linear regression, and Bayesian
regression. A switch to Bayesian regression was made after the other methods
failed. Using Bayesian regression allowed the model to be able to make predic-
tions based on prior events and is better for modeling uncertainty. The Bayesian
regression model did converge with all Rhat values being 1 meaning there were
no signs of divergence or sampling issues. The selected Bayesian regression model
had a low Bayesian R-Squared value of 8%, but this was comparatively better
than the other models.

Once the models were created for xRebounds and xAngle, the xReboundsPlus
model was ready to be created. Before the model was created, additional data
manipulation was needed to bring in the xAngle and xRebound predictions for
each shot. Additionally, if the next shot was a goal and the distance of the next
shot were brought over to each shot observation as well. Finally, the data was
filtered to only shots that generated rebounds to have the proper sequencing for
the training.

XGBoost was selected as the machine learning method with K-fold cross-
validation. The independent variable were xRebounds, xAngle and the distance
of the rebound shot. After tuning, the model had an area under the ROC curve
of 0.9242, which means that it was able to classify well but was not at risk
of overfitting as the original model. A confusion matrix was created as well
achieving an accuracy of 80.99%.

After fully creating xReboundsPlus, the model was implemented on shot
data for the 2024-25 NHL up until the morning of March 26, 2025. Since there
was no actual distance that could be used for each individual shot, the average
distance of a rebound was used for each calculation. Once the statistic was
applied to each shot, rankings were created based on the sums of xReboundsPlus,
xRebounds, and shots. Brady Tkachuk led the league in the statistic with 94.85
xReboundsPlus, followed by Matt Boldy and Nathan Mackinnon with 89.39 and
86.09 respectively.

This metric provides a framework for measurement of rebound opportunities,
but there are still many ways to improve the model. With data that is able to
track where the shot would hit the net and the positioning of the goalie, the
prediction could become even more accurate as the likelihood of a rebound and
the expected angle could both become more accurate as the model will more
accurately depict hockey in three dimensions. Additional shot velocity or goalie
specific data would improve the model as well due to differences in reaction time.
Overall, the project was able to meet the original goal by creating a new rebound-
based statistic, but still has room for improvement. The full code used to create
this project can be found on my Github, https://github.com/elawing40.
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Abstract. Within the competitive sport of ice hockey, coaches are in-
strumental in motivating, communicating with and supporting players to
reach their full potential. To enhance coaching skills and training to meet
the needs of an evolving sport, many minor and professional associations
examine various professional development types necessary to respond to
culture and diversity. This study examined ice hockey coaches’ coaching
leadership and cultural training experiences in the province of Nova Sco-
tia, Canada. Leadership is a fundamental factor influencing the perfor-
mance of sports teams. Leadership can be provided by coaches, assistant
coaches or other staff on sports teams. This leadership capability is es-
sential for hockey coaches who are tasked with providing cohesion and
effective communications within the team unit, thus impacting overall
performance. In many cases, this team unit may comprise players repre-
senting two or three languages, various skill abilities, and interest or mo-
tivation to play hockey. This qualitative study (n=25) included 19 male
and 6 female coaches. Participants coached youth aged 5 to 18 years. The
study aimed to investigate the leadership and cultural training experi-
ences of minor hockey coaches who volunteered with Hockey Nova Scotia,
a member of the national association, Hockey Canada. Participants com-
pleted semi-structured, in-person and/or online interviews, consisting of
5 open-ended questions. The findings indicated that participants did not
recall receiving professional training specific to leadership and cultural
development. Results demonstrated specific areas of training need, such
as supports for behaviour, communication and disability may enhance
performance. Additionally, results indicated that a preferred format of
leadership and cultural training would be in-person sessions compared
to online delivery. These interventions could potentially support over-
all team performance, communication and engagement. Findings were
analyzed using a thematic approach, and the research team assisted in
developing gaps in training to prepare and implement future professional
development opportunities for coaches with Hockey Nova Scotia.
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Keywords: Leadership, coaching, ice hockey, culture, professional develop-
ment training, performance

1 Introduction

Youth sports participation such as hockey has been shown to correlate with
many developmental assets in youth, including physical, cognitive and social
competencies (Hansen et al., 2003). In addition, research within the participation
in youth sports has documented such benefits as healthy self-esteem, higher rates
of pro-social engagement and academic achievement, and the development of
character and life skills (Horn, 2008).

2 Related work

Professional development training is necessary to maintain skillsets, enhance per-
sonal growth, continuous learning and involves expanding one’s expertise within
their field. However, evidence indicates that very few training programs teach
staff to integrate cultural assets, beliefs or values (Gomez-Hurtado, 2021). Fur-
thermore, managing cultural diversity is therefore both a necessary and an essen-
tial task, particularly for management and coaches who must oversee a greater
number of tasks, roles, and responsibilities (Ronnstrom & Scott, 2019). Youth
program staff have the potential to have a positive and lasting impact on youth.
As such, high-quality professional development for staff is vital to youth pro-
grams’ success (Rana et al., 2013). Hockey Canada explained that coaches are
caring & enthusiastic, and that a well-trained coach can be a positive influence
on the experience of players, parents and other coaches (Hockey Canada, 2025).
Hockey coaches play a pivotal role within youth ice hockey players and can
impact players and overall team performance.

Exploring the terminology of leadership and coaching several common el-
ements exist, such as a one-on-one relationship, raising self-awareness, perfor-
mance, learning and development, and behavioural change (Grant et al., 2019).
Additionally, research conducted by Jones et al.( 2016), revealed core features
of coaching, which included providing a supporting relationship, setting per-
sonal development objectives, achievement of these objectives through focusing
on inter- and intra-personal issues, and helping the player develop and be more
effective by providing the player with the tools, skills and opportunities they
need (de Haan et al., 2023).

3 Methods

A qualitative research design was deliberately chosen with the aim of facili-
tating open and engaged discussion through semi-structured interviews. This
methodological structure involves qualitative methods that are accommodating
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and flexible, allowing for the combination and adjustment of different qualita-
tive approaches to fit the sample, phenomenon, context, and epistemological
paradigm of the researcher (Denzin & Lincoln, 2017).

Number of Interviews: 25; Youngest Participant: 20; Oldest Participant: 63,
Average Age of Participants: 40.4, Minimum Number of Coaching Years: 1,
Maximum Number of Coaching Years: 50, Average Number of Years Coaching: 11.35

4 Findings

The preliminary findings are categorized within a thematic analysis approach.
Using Atlas Ti, several themes emerged from the data and are summarized to
represent common ideals within ice hockey coaching leadership and cultural di-
versity. The themes were identified as coach training, coaching barriers to pro-
fessional development for cultural diversity and leadership, mentoring opportu-
nities, and formats for leadership training and hockey performance.

The topic of mentorship was another emerging theme from our data. The
critical importance of obtaining leadership development skills, communication
skills, growing personal coaching abilities and understanding the impact of coach-
player relationships are vital for team performance. As participant 10 explained:
“For me personally, a leadership piece maybe like a mentorship program, and
that would be great. .. here you can have like a like a senior hockey Nova Scotia
Rep come around and, you know, once a month or whatever and, go through
the with the individual coaches and maybe give them some kind of like tips on
what they can change”.

5 Discussion

The aim of the current study was to examine the leadership and cultural training
experiences of ice hockey coaches in Nova Scotia, Canada. Results revealed that
some coaches utilized a mentoring process with experienced coaches to support
additional informal training practices, many faced challenges or barriers regard-
ing accessibility in receiving formalized training programs to support cultural
diversity or leadership and the lack of access to training may have impacted
player and team performance. Coaches noted that communication with players
about personal issues could support how they played and how their confidence
was impacted by the communication. These results compliment findings from
research conducted by Athletic Insight Research (2025) who determined that
“effective communication is crucial in team sports. It directly impacts perfor-
mance, morale, and cohesion” (p.1). The current study strengthens previous
literature within coaching, communication and leadership training needs.
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6 Conclusion

The aim of the present research study was to explore cultural leadership train-
ing experiences of minor hockey coaches. This study was limited by gender, as
19 of 25 participants were male, thus providing disproportionate numbers of
male responses, the study also was limited as it was conducted within a smaller
province in Atlantic Canada. Suggestions for future study within the realm of
culture and diversity training for hockey coaches and delivery of training types
would be recommended. Embracing leadership opportunities to support diver-
sity can assist minor hockey coaches to create a more equitable mindset and
environment which can foster deep connections and relationships with players,
families and caregivers. Finally, the current study reinforces the need to pro-
vide support for volunteer coaches who require additional training to improve
knowledge of culture, diversity and leadership within hockey.
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Bearmind is a Swiss sports technology company
dedicated to protecting athletes
and advancing performance.

We think that helmets can be more than protection.
Qur sensor technology is developed by athletes for athletes
to prolong careers, reduce healthcare costs for sporting
bodies, and improve quality of life.

Bearmind head impact monitoring & analytics platform
helps teams and organizations:
to understand and manage
head impact exposure,
enhance athlete safety
through data-driven insight,
and optimize athlete performance.

Read more: www.bearmind.tech
Contact: infolmbearmind.tech
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49ing

Vertical AI for Ice Hockey: from raw video to decisions
that move the scoreboard

49ing builds AI systems that turn multi-angle game video into coaching-grade
insights in minutes. Our Data Cockpit ingests venue and broadcast feeds, auto-
tracks players and puck, detects events, and surfaces actionable clips with
context. Coaches, scouts, and refereeing departments use 49ing daily for game
prep, player development, opposition scouting, and post-game review.

What’s new

— Natural-language video search: “Show all controlled DZ breakouts with
possession exit that lead to OZ entries”

— Attack Scenarios library: Off the rush, forecheck, OZ faceoffs, sustained
OZ possessions—each with KPIs and teachable clips.

— Goalie intelligence: xG/xGOT shot maps with pre-shot movement, traffic,
and rebound control.

— Mobile coaching assistant: On-bench retrieval of tagged sequences and
set-play reminders.

— AI Officiating support (pilot): Multi-angle incident triage to speed up
review workflows.

Why teams choose 49ing

Speed: Seconds to minutes from ingest to indexed video with auto-tags.

— Precision: Multi-camera tracking + event models trained on elite-level data.
— Workflow fit: Exports to common video tools; shareable playlists.

Trust: Transparent definitions, versioned models, and human-in-the-loop
review.

What we’re studying next

Possession value under different forecheck schemes, chain-of-events causality (en-
try — OZ time — shot quality), and load-to-fatigue links that predict execution
late in games.

Contact: andreas.haenni@49ing.ch — 49ing AG, Ziirich, Switzerland
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The magic of Hat-TriQ

Hat-TriQ is a unique analysis platform assisting elite teams with detailed player analysis.
How the players practice, how the players play the game, and the player’s well-being are all
gathered on one platform. Focused on empowering decision-makers with data, Hat-TriQ
gives you detailed player and team analysis so your organization can make decisions based
on true facts. As we combine all systems into one, you will reach your full potential for your
entire organization. With Hat-TriQ, there are no silos. IT’s one platform.

Hat-TriQ — The sports analytics’ Spotify
Before Spotify, iTunes, and even Napster, we listened to music on a CD player.

If you wanted to listen to Bruce Springsteen’s Born To Run, the song, not the whole album,
you needed to buy that CD. If you wanted to listen to Glory Days from the album Born in the
U.S.A,, you needed to buy a second album from Bruce Springsteen. In that case, you now
have 20 songs, but you only wanted to listen to 2 songs. You have too much music for your
appetite and desire, which you also can compare to too much unfiltered data.

With Spotify, you have one platform with all artists, bands, and songs from the past, and
what’s fresh today and what will be cool and fresh tomorrow. You can choose one song
from one album and quickly switch to a new artist and song. You can access all the music in
the world and easily filter and listen to what you like.

With Hat-TriQ, you have the same option. We offer you all the systems on the market into
one platform, and we can easily be the filter of your choice. We customized Hat-TriQ for
you as Spotify creates your playlists.

@ HAT-TRIQ

‘ STRETCH
- ON SENSE

Qlik
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Miika Arponen, Assit Pori.

Who are you and what is your connection to hockey analytics?

I am Miika Arponen and I work as a data analyst for Assit Pori in the Finnish
Liiga. I have been doing this for four seasons now, and before that I worked as a
hockey journalist for over a decade. My background is in software development.

How do you use hockey analytics in your job?

As a data analyst, hockey analytics pretty much are my job. I gather the data
from multiple sources, research and analyze them and then provide conclusions
to the GM and the coaching staff.

How do you communicate hockey analytics findings to your
customers/viewers/players/coaches?

Mostly just verbally in conversations, but I have also created some dashboards
and tools for the GM and the coaches to use, and occasionally I also produce
written reports and graphs.

What hockey question would you like hockey analytics to answer next?

Anything related to tactics and playing formations, like “what is the most effi-
cient and secure way to bring the puck up the ice on the power play”. Obviously
no one conclusive answer will ever be found, but that is the interesting next step
I think.

Which hockey analytics method/notion is the most important/influential in
your job?

While being a bit boring, I'd still say the expected goals as a lot of the more
complicated and complex methods and models are ultimately based on them
after all one way or another.

Where is the hockey analytics field going? What do you envision for the next
10 years?

In 10 years the Al will very probably be a lot more relevant than it already is. 'm
fairly sure human analysts can focus more on the interpretation and innovation
and less on how to get the numbers and how to transform them.

What was your main take-away from LINHAC 20257

As always, the people are by far the biggest asset the conference has. Getting to
know the brilliant minds in the business is very valuable and interesting.
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Robert Bandemer, d-fine.

Who are you and what is your connection to hockey analytics?

As a member of the Sports Analytics team at d-fine, I specialize in leveraging
sports data for various applications in my daily work. Having a background in
Football Analytics, transitioning to projects with sports clubs and federations
in the world of ice hockey was a natural progression. In this space, we utilize
available data for use cases in the areas of match analysis, scouting and more.

How do you use hockey analytics in your job?

In my role, hockey analytics involves leveraging data to provide actionable in-
sights across various areas of the game. We analyze large datasets collected from
matches, tracking data, and player performance to identify patterns, trends, and
key performance indicators. For example, in match analysis, we dive deep into
data to assess team strategies, measure puck possession, shot quality and zone
entries/exits. This helps teams evaluate their performance and prepare for future
opponents.

How do you communicate hockey analytics findings to your
customers/viewers/players/coaches?

When communicating hockey analytics findings, I prioritize keeping things sim-
ple, clear, and actionable. I focus on delivering easy-to-understand, tangible in-
sights rather than overwhelming them with overly detailed or technical expla-
nations.

What hockey question would you like hockey analytics to answer next?

There are still many fundamental questions in hockey analytics left to explore,
but one area I'm particularly interested in is understanding player decision-
making. Gaining deeper insights into why players make certain choices (whether
it’s passing, shooting or positioning) could provide a new dimension to analytics.
However, this is incredibly challenging to measure, as the data required to truly
capture decision-making is still quite limited.
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Where is the hockey analytics field going? What do you envision for the next
10 years?

The hockey analytics landscape, particularly in Furope, needs to grow and es-
tablish itself further before fully unlocking its potential. Over the next 10 years,
I see tracking data becoming more widely utilized and skeleton data playing
a larger role, providing deeper insights into player movements and mechanics.
With advancements in data infrastructure and acceptance of analytics, the field
will drive significant improvements in player development, strategy, and perfor-
mance optimization.

What was your main take-away from LINHAC 20257

My main takeaway from LINHAC 2025 was the variety of use cases and inno-
vative approaches in hockey analytics, particularly the growing application of
skeleton data and computer vision. I also found it fascinating to see how hockey
analytics is being combined with insights from other sports, like football, to
share knowledge and learn from each other’s advancements.
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AJ Bernstein, San Jose Sharks.

Who are you and what is your connection to hockey analytics?

AJ Bernstein, Strategy and Data Analyst at the San Jose Sharks.

How do you use hockey analytics in your job?

Analytics act as a piece of the puzzle in our larger evaluation process, providing
insights that may not be captured by our other information sources.

How do you communicate hockey analytics findings to your
customers/viewers/players/coaches?

The way coaches and management use data differs, so we tailor our delivery
accordingly. Sometimes a simple PowerPoint is best; other times a detailed dis-
cussion is necessary.

What hockey question would you like hockey analytics to answer next?

I am particularly interested in leveraging detailed tracking data to better mea-
sure individual skills.

Which hockey analytics method/notion is the most important/influential in
your job?

The most important analytic method in my job is not solely data-related, but a
disciplined, evidence-based approach to problem-solving.

Where is the hockey analytics field going? What do you envision for the next
10 years?

We are in a transitional phase in the growth of hockey analytics. The value of a
data-driven approach is established, and the task now is to determine which data
is truly useful. As access to and demand for data expand, it will become even
more important to identify and prioritize the information that actually matters
for each organization.

What was your main takeaway from LINHAC 20259

I really appreciated the ability to discuss the similarities and differences among
all the teams present on my panel.
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Andreas Hanni, 49ing.

Who are you and what is your connection to hockey analytics?

49ing is a Swiss sports-tech company focused on vertical Al for ice hockey. We
combine computer vision, tracking, and sequence modeling to turn video into
decisions for coaches, scouts, players, and officials.

How do you use hockey analytics in your job?

Day-to-day we: (1) ingest track multi-angle video; (2) detect events; (3) value
sequences; and (4) deliver searchable clips, reports, and dashboards in our plat-
form Data Cockpit and our mobile app Hockey AI.

How do you communicate hockey analytics findings to your
customers/viewers/players/coaches?

Three layers:

— Clips-first: short, labeled videos with “why it matters” overlays.

— Dashboards: scenario KPIs (rush vs. forecheck vs. OZ), goalie shot maps,
and matchup drill-downs.

— Narratives: auto-generated scouting notes that coaches can edit.

Which hockey analytics method/notion is the most important/influential in
your job?

Reliable multi-camera tracking & re-identification (foundation), plus sequence
models that score chains of actions rather than single events. For coaches, ex-
plainability (transparent definitions, comparable baselines) is just as important
as model accuracy.

Where is the hockey analytics field going? What do you envision for the next
10 years?

From post-hoc reporting to real-time, agentic assistants: on-bench retrieval, au-
tomated between-period prep, opponent-specific set-play suggestions, and offi-
ciating triage - underpinned by standardized data schemas, privacy-by-design
pipelines, and cross-league video exchange.
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What was your main takeaway from LINHAC 20259

The gap between research prototypes and coach-ready workflows is nar-
rowing fast - especially around possession modeling and tracking.

Anything else the LINHAC audience should know?

We're open to research collaborations (method benchmarks, shared definitions,
and evaluation datasets). If you're building methods that need video + ground
truth events, we’re happy to explore structured access under the right agree-
ments.
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Martin Lundholm, Skelleftea AIK.

Who are you and what is your connection to hockey analytics?

My name is Martin Lundholm, and I work as an Analyst and Scout for Skelleftea
AIK Hockey in the Swedish Hockey League (SHL).

How do you use hockey analytics in your job?

Hockey analytics is the foundation and core of the work I do for the club. I
use analytics - data analysis to gain insights and make decisions, both at the
team and individual player level. This includes improving our own play, scouting
opposing teams and players, and generally providing data-driven support to
decision-makers in the organization, such as the GM and coaching staff.

How do you communicate hockey analytics findings to your
customers/viewers/players/coaches?

Communication varies depending on the role within the organization. With
the GM, I use verbal discussions and reports/dashboards, along with numbers,
graphs, tables, etc. With the coaching staff, the messaging is more simplified,
concise, and to the point.

Each year, I've focused more on how the message is delivered and less on the
details themselves. A coach is probably not interested in knowing whether we
had 30.7 or 32.4 controlled zone entry attempts - they care more about whether
we're following the system we agreed to play.

What hockey question would you like hockey analytics to answer next?

Measuring actions by players without the puck - such as positioning and its im-
pact on performance on the ice. This includes defensive presence, backchecking,
and pressuring puck-carrying opponents etcetera.
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Which hockey analytics method/notion is the most important/influential in
your job?

There isn’t a single best method - it depends on who you’re communicating with.
The key is turning raw data and numbers into visually accessible dashboards and
reports, preferably with color, images and video to enhance understanding. It’s
also crucial to adapt the language from overly technical terms or numbers into
familiar hockey terminology.

Where is the hockey analytics field going? What do you envision for the next
10 years?

I believe analytics is becoming integrated into every part of a hockey club’s
organizational structure - not just with the men’s senior team, but also in data-
driven decision-making for women’s and junior teams, as well as in non-sporting
departments like communications and sales.

What was your main takeaway from LINHAC 2025%

Unfortunately, there’s still a significant gap between academia, public work, and
professional hockey clubs. We need more accessible data for the general public
and the average hockey enthusiast to explore, experiment with, and learn from
- "trial and error”.

Another takeaway is that there’s a lot of interesting knowledge and inspira-
tion to be drawn from other sports, such as football (soccer).

Is there something else related to hockey analytics that you would like the
LINHAC audience to know?

If you're truly passionate about hockey analytics, there is a path to a role within
the field. Educate yourself, learn, dive deep - and don’t be afraid to show what
you can do. Whether through your X (Twitter) account, a personal website,
published reports, or simply by reaching out to your local club and offering your
knowledge and services. Learn, and then don’t hesitate to raise your hand and
get involved!

It doesn’t need to be perfect, just start doing it.

I wish you all good luck.
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Albin N Maelum, Stretch On Sense.

Who are you and what is your connection to hockey analytics?

We are a sports analytics company specialized in transforming hockey data into
actionable insights. Our connection to hockey analytics is direct — we work with
professional leagues and clubs to help them leverage data for decision-making
both on and off the ice.

How do you use hockey analytics in your job?

We use hockey analytics to identify patterns, measure performance, and provide
clear recommendations to teams, coaches, and organizations. That means every-
thing from game analysis and tactical insights to organizational reporting and
fan engagement.

How do you communicate hockey analytics findings to your
customers/viewers/players/coaches?

Communication is key. We focus on making complex data simple, visual, and tai-
lored to the audience. Coaches and players get actionable performance insights;
managers and directors receive clear reports for decision-making; fans see the
bigger picture in an engaging way.

Which hockey analytics method/notion is the most important/influential in
your job?

Contextualization. Numbers alone don’t create value - it’s when data is put into
the right context, whether tactical, physical, or financial, that analytics truly
influences decisions.

Where is the hockey analytics field going? What do you envision for the next
10 years?

We see hockey analytics moving toward real-time, integrated solutions. In 10
years, teams will rely on live data during games, predictive models for player
development and health, and fully connected systems that align sporting perfor-
mance with business outcomes.

Linkdping Hockey Analytics Conference 2025 106



What was your main take-away from LINHAC 20257

The main takeaway was that collaboration across research, technology, and the
hockey community is stronger than ever. Analytics is no longer just a niche —
it’s becoming a central part of how hockey is played, coached, and managed.

Is there something else related to hockey analytics that you would like the
LINHAC audience know?

Yes — that the future of hockey analytics isn’t only about better models or bigger
datasets. It’s about accessibility. If we want analytics to make a real impact, it
must be presented in ways that players, coaches, executives, and fans can all
understand and use.
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Josh Pohlkamp-Hartt, Boston Bruins.

Who are you and what is your connection to hockey analytics?

Josh Pohlkamp-Hartt, Associate Director Of Hockey Analytics with the Boston
Bruins.

How do you use hockey analytics in your job?

I work primarily as an analyst and data scientist in my role with the Bruins.
These 2 roles directly use hockey analytics: designing models and metrics, then
evaluating them to help our team make better decisions.

How do you communicate hockey analytics findings to your
customers/viewers/players/coaches?

The key is to find common language and focus on actionable information. We
usually convert our analysis from being numerical to more descriptive then pro-
vide examples through video of past experiences. An example might be to con-
vince a player to shoot more from dangerous areas, we could talk about their
XG created with their shots on ice but that will not resonate. Instead when
talking with them, we are better suited to provide some video examples of low
danger shot patterns they take and situations where they did not act to take
more dangerous shot opportunities.

Additionally, it is important to build trust by working collaboratively and
being open to feedback. Feedback from hockey experts is invaluable in improving
analytical quality.

What hockey question would you like hockey analytics to answer next?

Defensive attribution and injury prevention are my biggest interests. The quality
of a defensive specialist is tough to measure and most metrics fail to account for
the opportunities they suppress by occupying space correctly. Injuries, especially
non-contact ones, can be reduced with smart training and deployment. I believe
that there are improvement that can be made through the evaluation of the
biomechanics of a player with more detailed pose data.
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Which hockey analytics method/notion is the most important/influential in
your job?

Opportunity is more repeatable than execution. If as a team you have an effective
strategy to optimize your share of the offensive opportunities, you can more often
repeatably win this battle. Whereas, if you rely on goaltending and shooters to
save and score above expected, you have a smaller set of events (there are less
shots than puck possession touches in a game) and are more susceptible to
randomness. The true NHL contenders are tuned for opportunity.

Where is the hockey analytics field going? What do you envision for the next
10 years?

Our data detail is growing at a rate that is outpacing the research community
and over the next 10 years we will see some exciting growth in terms of team-side
financial commitments and public analysis to fill in the gaps. This should open
up exciting areas of research into decision making and multi-player strategies
like we have seen in soccer.

What was your main takeaway from LINHAC 20259

The concept of Al is an accepted norm now and we should be using this to
our advantage by pushing the envelope on the ways we can integrate hockey
analytics into our decision making and improve the easy of use for our users.

Is there something else related to hockey analytics that you would like the
LINHAC audience to know?

No, they seem well informed!
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Freddie Sjogren, Freddie Sjogren Consulting AB.

Who are you and what is your connection to hockey analytics?

I am the founder of Performance Facilitator, a service that helps elite hockey
clubs build and optimize their performance departments. My background com-
bines sports science, applied performance, and research in how physical tracking
data can be connected to tactical and technical Al-generated data. My focus is
to raise the standard in hockey by making data more meaningful and actionable
for decision makers, players, and organizations.

How do you use hockey analytics in your job?

I use analytics to identify patterns that link physical performance with tactical
behavior and technical execution. This means combining tracking data with
video and contextual factors to better understand availability, readiness, and
ROI on player investments. Analytics are not just numbers for me - they are
tools to help performance staff, coaches, and executives make smarter, evidence-
based decisions.

How do you communicate hockey analytics findings to your
customers/viewers/players/coaches?

I translate complex data into clear, actionable insights. For executives and GMs,
that often means ROI-focused dashboards and reports that connect performance
data to financial impact. For coaches and players, it means practical visuals, clips,
and simple metrics that can guide training, recovery, and game preparation. The
key is always to adapt the language of analytics to the audience.

What hockey question would you like hockey analytics to answer next?

I would like to better understand the true connection between physical load,
tactical decision-making, and technical execution. For example, how fatigue or
intensity in a certain shift directly affects passing accuracy, puck battle efficiency,
or tactical choices. This integration would allow teams to manage players more
precisely and improve both performance and longevity.
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Which hockey analytics method/notion is the most important/influential in
your job?

Contextualized tracking data — not just raw skating metrics, but tracking that is
tied to tactical situations and technical skills. When analytics are layered with
context, they shift from being descriptive to being predictive and prescriptive,
which is where the real value lies.

Where is the hockey analytics field going? What do you envision for the next
10 years?

I believe we are moving from siloed analytics (physical, tactical, technical, med-
ical) toward integrated performance ecosystems where AI helps combine all
streams. In 10 years, hockey organizations will rely on connected data platforms
that allow real-time decision-making on player availability, tactics, and invest-
ment strategies. The clubs that embrace this holistic, evidence-based approach
will be the most successful.

What was your main takeaway from LINHAC 20259

The main take-away for me was the need to bridge the gap between cutting-
edge analytics research and real-world application. There is so much innovation
happening, but the key challenge is implementation — making sure that the
insights actually improve decision-making in the daily environment of clubs and
players.

Is there something else related to hockey analytics that you would like the
LINHAC audience know?

Yes — that analytics should not only be about performance enhancement but
also about sustainability. Player health, career longevity, and smarter financial
decisions are equally important outcomes of analytics. If we want hockey to
evolve, analytics must serve the bigger picture of availability, well-being, and
return on investment.
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Erik Wilderoth, Farjestads BK.

Who are you and what is your connection to hockey analytics?

I’'m the assistant general manager and hockey analyst for Farjestad BK. My role
is to translate raw data and statistical insights into practical, strategic decisions
that improve our team, from player recruitment to game preparation. I serve as
a bridge between the world of numbers and the daily operations on the ice.

How do you use hockey analytics in your job?

I use hockey analytics in several ways: Player Recruitment, Opponent Analysis,
Evaluating and developing our own players.

How do you communicate hockey analytics findings to your
customers/viewers/players/coaches?

Communication is key as Lignell talked about at the 2024 conference. I avoid
overwhelming coaches and players with complex terms or numbers with decimals.
Instead, try to use a common language. Story telling is in most cases a better
way to get facts to stick.

I use visualizations, such as graphs and video clips with overlays, to strengthen
the narrative. Our goal is to give the players and coaches tools and insights to
get better, not just numbers.

What hockey question would you like hockey analytics to answer next?

Defense is still the hardest part to quantify in my opinion. How good the players
are with the puck, that’s easy. But some players have the puck like < 1 minute
per game. What does he spend the rest of the time and to what success rate?

Which hockey analytics method/notion is the most important/influential in
your job?

For me, the most influential method is Expected Goals (xG), especially when
combined with individual player performance. xG gives us a much more nuanced
picture of chances created than traditional shot metrics. By looking at xG, we
can measure performance. Performance leads to results.
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Where is the hockey analytics field going? What do you envision for the next
10 years?

In Europe I must say that it’s on a plateau for the moment. The software com-
panies are good at convincing teams that the software is of such ease to use that
analysts don’t get hired. This is a trend we need to break and much is up to
teams to understand the potential of building stuff on our own.

I would love to say that all top leagues in Europe have at least one analyst
hired in 10 years and we in SHL have at least 2, but that feels like utopia today.

What was your main take-away from LINHAC 20259

My biggest insight from LINHAC 2025 is that North America is moving fast.
Europe slower. We need to step up. The student competition gets better for
every year and also the research papers.

Linkdping Hockey Analytics Conference 2025 113



Morgan Zeba, Spiideo.

Who are you and what is your connection to hockey analytics?

I'm Director of Sales Europe at Spiideo, focused on ice hockey. I work with
leagues, clubs, and federations worldwide, helping them implement video and
analytics solutions. Our ambition is to be the global leader and natural
choice for hockey.

How do you use hockey analytics in your job?

Spiideo delivers a full ecosystem:

Spiideo Replay for officiating, coach’s challenge, and player safety re-
views

Spiideo League Exchange so leagues can seamlessly share video between
teams and, referees/officials

Spiideo Perform for every team to develop their players with video and
analytics

Spiideo Play so every league can stream their games fully automatically
and in multiple angles.

By combining automated capture with integrated data, we help organizations
improve decisions, increase safety, and create long-term value.

How do you communicate findings?

Always by connecting analytics to real workflows:
Coaches — player development with Perform
Referees — clear decisions with Replay (our VAR solution)
Safety staff — evaluate hits, head contact, and return-to-play
Leagues — collaboration through League Exchange
Broadcasters — richer storytelling with synchronized video + metrics

What’s next for hockey analytics?

The future lies not only in moving from “what happened” to why it happened,
but also in making data easier to access and work with. With AI, complex
insights will become intuitive so that coaches and players can seamlessly use
analytics every day. At the same time, analytics will play a growing role in
reducing risks and strengthening player safety.
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Where is the field going?

We already provide real-time analytics today, uniquely with multiple camera
angles synchronized live — something no one else can deliver at this scale. What’s
next is to offer live player tracking into games, adding a new dimension for
coaching, officiating, and player safety. Combined with AI that identifies patterns
automatically, this will transform how the game is understood and managed.

Final note

With Replay, League Exchange, Perform and Play, Spiideo offers an automated,
multi-angle, cost-efficient, and high-quality solution for leagues, referees,
and teams. We are committed to being the global leader in hockey video,
analytics, and player safety.
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Ola Lidmark Eriksson,
Football Analytics Sweden AB.

Who are you and what is your connection to football analytics?

Ola Lidmark Eriksson, first and foremost working as CTO at Football Analytics
Sweden AB where I am CTO and responsible for our analytics platform used by
61 of 64 elite football clubs in Sweden. I also have a long history as a pundit on
Swedish TV focusing on data and analytics within football.

How do you use football analytics in your job?

I use analytics every day and have done so for the last 8 years. All the best
insights and know-how I have collected over the years we try to incorporate
into our analytics platform. It can be new KPIs, how to aggregate data, or a
new visualization. The idea is always to make it accessible for everyone using
our platform - no coding needed. Honestly, it is also for my own convenience
sometimes - not having to use Jupyter notebooks or some Python script. It
should be easier and faster.

How do you communicate football analytics findings to your
customers/viewers/players/coaches?

We have our website where we try to post news and insights. But apart from
that I'd say that the main area for myself is that I hold presentations on several
courses and seminars held by the league organisation and the federation every
year in Sweden.

What football question would you like football analytics to answer next?

T am very interested in football’s pretty rigid idea about forwards, midfielders and
defenders. And goalkeepers, of course. What I would like to work more on is how,
using data, one could start to question why we must have these denominations
of players. Shouldn’t everyone on the pitch collectively attack and defend and
hence not be called different things? I'd like to see the same being discussed
in hockey. PP, for instance, is a moment where I really cannot understand any
other concept than that all 6 players on the PP side all attack.
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Which football analytics method/notion is the most important/influential in
your job?

In football I’d say that over the years, as our modelling has improved as well as
the data collection, I more and more lean towards all-in-one methods/KPIs. It
can be clustering based on players’ playing styles, but even more the “value” ones
measuring players’ abilities as unabstract as possible with simple 1-5 grades.

Where is the hockey analytics field going? What do you envision for the next
10 years?

I hope it will catch up with football, as I right now definitely can see that football
is ahead, especially when it comes to actually being used in organisations.

What was your main takeaway from LINHAC 2025%

I think that was my main takeaway - the former statement. That hockey is
behind football right now. At least in Europe.

Is there something else related to football analytics that you would like the
LINHAC audience to know?

Maybe that I have started to try to take our football platform to hockey.
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Pieter Robberechts, KU Leuven.

Who are you and what is your connection to football analytics?

I’'m Pieter Robberechts, currently a PhD researcher within the DTAI research
group at KULeuven, specializing in data science and machine learning applied
to sports (especially football).

How do you use football analytics in your job?

I do research in data science and machine learning, where football often serves
as an application domain. In some projects, we start from a concrete problem
in football (e.g., Can we quantify how a player performs under high mental
pressure?) and develop AI methods to solve it. In other cases, we use football
data as a rich, real-world use case to explore and validate new AI and machine
learning techniques developed in our group.

How do you communicate football analytics findings to your
customers/viewers/players/coaches?

Our work focuses more on methodological development than on directly deliv-
ering insights to practitioners. However, we place strong emphasis on making
our methods understandable and accessible to non-technical audiences. We do
this in three ways: First, we try to design our models around concepts that
make sense within the context of the sport. For instance, when creating fea-
tures for a model, we prioritize domain-specific variables rather than relying
on abstract, auto-generated features or deep learning. This makes the out-
puts easier for coaches and analysts to interpret. Second, we maintain a blog
(https://dtai.cs.kuleuven.be/sports/blog/) where we translate our research into
more accessible content for a broader audience. Third, beyond building models,
we often take a step back to critically assess how these models should be inter-
preted. As such, we try to contribute to a more thoughtful and transparent use
of Al in sports.

What football question would you like football analytics to answer next?

One key question I'd like football analytics to tackle is: “How would the model’s
prediction change if we replaced one player with another?” This kind of counter-
factual reasoning is often the first thing practitioners ask when presented with
model outputs. It highlights a major challenge in current models: their lack of
player- and team-specific understanding. Most models today struggle to capture
the differences between, say, building an attack around Kylian Mbappé versus
Robert Lewandowski. This limits both the trust practitioners place in the mod-
els and the insights we can derive. I hope the next big step will be developing
models that better disentangle individual player characteristics.
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Which football analytics method/notion is the most important/influential in
your job?

I hate to give the obvious answer, but it’s probably still xG. It fundamentally
changed how we think about evaluating actions in context. It introduced a prob-
abilistic, data-driven way to assess the quality of actions and most new metrics
that we develop today are still based on the same core idea. Also, even though
xG has been around for over a decade, we're still discovering better ways to
model, apply, and interpret it.

Where is the football analytics field going? What do you envision for the next
10 years?

The evolution of football analytics is closely tied to the evolution of data: from
basic statistics to event stream data, and more recently to tracking data. Looking
ahead, I believe the next major shift will be driven by the increasing availability
and use of 3D pose tracking data, which captures detailed full-body movement.
This type of data opens the door to a much deeper understanding of decision-
making, biomechanics, and physical performance. Also, we’ll likely see analytics
evolve more from analyzing what happened to explaining why and how it hap-
pened. Furthermore, over the next decade, I believe we’ll see analytics become
more personalized and grounded in the physical, technical and perhaps cognitive
capabilities of players.

What was your main takeaway from LINHAC 20259

The presentation that stood out most to me was by Mikael Svarén. The main
thing I took from it is that there’s still a lot of untapped potential in collabo-
ration between sports scientists and data scientists, particularly around the use
of 3D pose tracking data. Also, as Devin Pleurel mentioned during one of the
panels: this is by far the largest dataset ever in biomechanics. To fully realize its
potential, we need much tighter collaboration between the domain expertise of
sports scientists and the methodological tools of data scientists.

Is there something else related to football analytics that you would like the
LINHAC audience to know?

Yes - one of the key drivers of progress in football analytics in recent years has
been the increasing availability of open-source data and software packages, which
have made the field far more accessible and collaborative. The availability of
open datasets has significantly lowered the barrier to entry, and the availability
of high-quality community-driven tooling (e.g., kloppy, mplsoccer) accelerates
the development of new methods. I believe hockey analytics could really benefit
from a similar push.
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Identifying and Analyzing SHL Ice Hockey
Match Styles Based on Event Data Aggregation
and K-Means Clustering

Yanjie Lyu, Qingxuan Cui, Huaide Liu, Han Xia, Yi Yang

Linkoéping University, Linképing, Sweden

1 Introduction

As a high-speed and dynamic team invasion sport, ice hockey’s game strategy
and tactical choices have a crucial impact on the result of the game [1]. While
traditional post-match statistics such as goals, assists, +/- values, etc., provide
information about the result, they often fail to reveal the overall strategic ten-
dencies adopted by the team during the game, the so-called ”game style” [2].
Understanding the game styles of different teams not only helps to assess team
characteristics and prepare for games, but also provides a reference for player
recruitment and roster construction [3].

With the development of data collection technology, detailed event data
makes it possible to quantitatively analyze the style of the game [4]. At present,
relevant institutions or organizations have begun to explore the use of these
data for analysis. For example, clustering based on the positioning of players
during the game to distinguish player roles and styles [5], research that focuses
on specific behaviors such as passing networks or space utilization patterns [6],
or dedicated to evaluating the value of players or actions through machine learn-
ing models [7]. In recent years, a promising direction has been to draw on the
experience of other team projects (such as field hockey), and utilize clustering
algorithms to process statistical data so that macroscopic game styles can be
identified [2].

This paper aims to apply and extend this methodology to SHL hockey game
data with the following contributions:

1. Identify distinct playing styles in the SHL by applying a K-Means cluster-
ing algorithm to game-level aggregated event statistics, where styles are
characterized separately for the two teams participating in each match, thereby
capturing the variability of tactical patterns across individual games rather than
season-level aggregates.

2. Characterize the identified styles using statistical metrics and visualization
techniques, such as radar charts and spatial heatmaps.

3. Rigorously validate the effectiveness of these styles and their matchup
dynamics through statistical testing, including Bootstrap resampling and Chi-
squared tests, while correcting for sample size imbalances using Bayesian aver-

aging.
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4. Introduce a game-theoretic framework to model the strategic interactions
between styles, identifying dominant strategies and the resulting Nash Equilib-
rium within the league’s tactical meta.

2 Background

The data basis for this paper is the Swedish Ice Hockey League (SHL) detailed
game event data provided and licensed by Sportlogiq Inc. This kind of refined
event data records the details (such as time, player, team, coordinates, result,
etc.) of every pass, dribbled, shot, zone transition, etc., during the game. How-
ever, it is challenging to extract meaningful patterns from high-dimensional,
time-series event data, especially macro team tactical styles [8].

Subsequently, K-Means clustering, a widely used unsupervised algorithm, is
employed to partition matches into distinct tactical style clusters [9]. To clearly
interpret and present these tactical styles, the study utilizes visualization meth-
ods: radar charts illustrate the multi-dimensional performance profiles of differ-
ent styles, and heatmaps visualize the winning rates between competing tactical
styles, revealing potential interactions and constraints among them.

3 Methodology

This study adopts a multi-stage analysis process, aiming to identify, quantify
and interpret the game styles at the team level from the SHL match event data,
and ultimately evaluate the relative effectiveness of different styles. This process
integrates methods such as data processing, feature engineering, unsupervised
clustering, supervised learning interpretation, and adversarial analysis.

3.1 Data Preparation and Feature Extraction

The research data is derived from the SHL race event log provided by Sport-
logiq. The original data was first preprocessed and sorted by ‘gameid‘ and ‘com-
piledgametime*. This was followed by meticulous feature engineering designed to
translate discrete match events into continuous or count-type variables capable
of capturing a team’s tactical intent and execution efficiency. The key steps in-
clude: (a) Created numerical or categorical identifiers for core game events such
as passing, shooting, puck possession entering, blocking, clearing, etc.; (b) Com-
bined the event outcome field to quantify the successfully executed actions such
as the number of successful passes and the number of successful area entries; (c)
For the carry event, by calculating the spatio-temporal differences between adja-
cent events, the carry_duration and carry_distance were extracted to reflect the
mode of advancing with the puck. The goal of this part is to build a rich feature
set to lay the foundation for the subsequent aggregation of team performances.
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3.2 Team Performance Aggregation and Metric Construction

To achieve the transformation of the analytical scale from micro events to macro
team performance, aggregating the variables extracted by feature engineering
according to team (teamid) and game (gameid) is a proper way. In order to
be able to calculate the key efficiency indicators and capture the performance
in other dimensions, the aggregation strategy is determined based on the na-
ture of the variables: the number of event occurrences (such as num_passes,
num _successful_passes, which are the basis for calculating the efficiency indica-
tors) can be obtained by summation the corresponding indicator variables, The
expected goals (xg_allattempts), stick handling time and distance, etc. can be
calculated as the average value of a single game. Subsequently, using these ag-
gregated results, efficiency indicators such as pass_success_rate were constructed
by calculating the corresponding ratios.

3.3 Game Style Identification using K-Means Clustering

To explore and discover the potential, data-driven game style in the SHL com-
petition, K-Means clustering algorithm was adopted. Given that K-Means is
sensitive to the scale of input features, 13 aggregated features covering aspects
such as puck control, offense, defense and efficiency were selected , and they were
standardized to ensure that each feature has zero mean and unit variance. The
optimal number of clusters was determined by assessing the performance of var-
ious k values using the Silhouette Score in conjunction with the Elbow Method.
Although all Silhouette Scores for k were below 0.2, indicating relatively weak
cohesion and separation, such results are common in clustering tasks involving
complex, multi-dimensional behaviors such as team playing styles. The results
showed that the Silhouette Score peaked at k = 3, and the Elbow plot of within-
cluster sum of squares also exhibited a noticeable inflection at k ~ 3 — 4. In
the case of k = 3, the three resulting styles—High-Pressure Offense, Defensive
Counterattack, and Puck Control Play—demonstrated clear tactical semantics
and presented distinct visual separations. This structure simultaneously balances
the mathematical optimization of the clustering algorithm and the interpretabil-
ity of ice hockey tactical analysis. Consequently, k = 3 was identified as the
optimal number of clusters.

3.4 Evaluation of Inter-Style Effectiveness

Finally, in order to preliminarily evaluate the effect of the identified game styles
in actual confrontations, the competition results under different style combina-
tions were analyzed. By matching the two opposing teams in the same match
and their style tags and combining with the game results, the average winning
rate (scoring rate, win=1, draw=0.5, loss=0) of each style when facing the spe-
cific opponent’s style was calculated. This pairwise comparison helps to reveal
the underlying restraint relationship among styles.
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4 Results and Discussion

Through K-Means clustering method in this study, three game styles with sig-
nificantly different characteristics were successfully identified. An evaluation of
the win rates between these styles allows for a detailed characterization of each,
an identification of key driving factors, and an exploration of their practical
effectiveness.

4.1 SHL Game Style Profiles and Key Features

The three main game styles discovered by K-Means clustering have been initially
named " Defensive Counterattack”, ”High-Pressure Offense” and ”Puck Control
Play”. Figure 1 visually presents the average performance differences of these
three styles on 13 standardized aggregated features.

Team Style Feature Radar Chart (Clipped No "Defensive Counterattack
num_blocks High-Pressure Offense

Puck Control Play

num_entries_against

xg_allatterkpts.

Fig. 1. Team Style Feature Radar Chart (Clipped Normalized)

By synthesizing the information from Figure 1, the profiles of the three play-
ing styles are clearly depicted:

(a) Defensive Counterattack This style excels in defensive metrics, while
scoring low on most offensive and possession metrics. This highlights its strategy
of prioritizing solid defense and relying on quick transitions.

(b) High-Pressure Offensive This style leads in offensive outputs, with
a notably high number of passes, reflecting its aggressive approach of high-
frequency pressing and creating numerous shooting opportunities.

(¢) Puck Control Play This style is distinguished by exceptionally high
average carry distance and average carry duration, as well as the highest entry
success rate, with number of passes being the most significant differentiating
factor for this style (Figure 2). This indicates its core strategy of controlling the
tempo of the game through long periods of possession and high success rate in
advancing the puck. However, its relatively low number of shots and expected
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goals from all attempts (Figure 1) suggest potential limitations in converting
possession advantage into concrete offensive threats.

4.2 Discovery and Validation of Style Matchup Dynamics

The performance of different playing styles was evaluated in this study, and the
results show significant differences in their win-loss outcomes.

A preliminary analysis reveals a potential counter-relationship between play-
ing styles (Figure 2):(a)The Defensive Counterattack style not only effec-
tively suppresses the Puck Control Play style(win rate 82%), but also slightly
outperforms the High-Pressure Offensive style(win rate 55%); (b) The High-
Pressure Offensive style, while strongly dominating the Puck Control Play
style(win rate 86%),is at a disadvantage when facing the Defensive Counter-
attack style (win rate 45%); (¢)The Puck Control Play style struggles against
both other styles, with win rates of 18% and 14%, respectively.

Win Rate by Team Style vs Opponent Style

Defensive Counterattack

High-Pressure Offense -

Team Style

Puck Control Play - 018

Defensive Counterattadtigh-Pressure Offense Puck Control Play
Opponent Style

Fig. 2. Win Rate by Team Style vs Opponent Style

Subsequently, a series of rigorous statistical tests and model adjustments were
performed, adhering to a “validate—correct-revalidate” framework, to ensure the
robustness of the key findings and to mitigate potential biases arising from data
imbalance.

4.2.1 Validation of Cluster Distinction in Tactical Features

To further validate the distinctiveness of the clustering results in the tactical
dimension, we conducted Welch’s independent samples t-tests on key tactical
features (e.g., number of passes, number of shots, puck-carrying distance, and
entries against), with the significance level set at 0.05. Welch’s t-tests revealed
that the majority of tactical features exhibited statistically significant differences
between the identified playing styles (p < 0.05), with only a few indicators (e.g.,
dump-outs, entry success rate, and average carry distance for certain style pairs)
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showing no significant variation. This supports the robustness of the clustering
results in differentiating teams in the tactical feature space.

4.2.2 Statistical Test of Key Findings

Before proceeding with model correction, we first conducted statistical tests on
our two most central findings. First, to verify that the three playing styles identi-
fied in this study have explanatory power for match outcomes, rather than being
arbitrary labels, we performed a Pearson’s Chi-squared test. This test aims
to determine whether an association exists between the two categorical vari-
ables: ”combination of playing styles” and ”"match outcome (win/draw /loss).”
The test yielded a highly significant p-value (p < 0.0001), leading to a strong
rejection of the null hypothesis that ”the two variables are independent.” This
fundamentally proves that our style clustering is effective and has a genuine
statistical relationship with match results. Second, to address the most notable
finding—the 82.14% win rate of the ”Defensive Counterattack” style against the
”Puck Control Play” style—we employed the Bootstrap resampling method
to test whether this was a statistical artifact of a small sample. After 1000 re-
samples, we constructed a 95% confidence interval for this win rate, which was
[69.64%, 92.86%)]. This result is highly persuasive, as the lower bound of the
interval (69.64%) is substantially higher than the 50% chance level, confirming
that the strong tactical counter-relationship we observed is statistically robust.

4.2.3 Model Correction Considering Sample Imbalance

Although the aforementioned tests confirmed the validity of our core findings, a
deeper examination of the data revealed a potential issue that could affect the
fairness of the win-rate matrix: a significant imbalance in the sample sizes of
style matchups. The data shows that while there were as many as 95 matches
between ”Defensive Counterattack” and ”High-Pressure Offense,” there were
only 7 matches between ”High-Pressure Offense” and ”Puck Control Play.” This
imbalance poses a risk: a raw win rate calculated from only 7 matches (calculated
to be 85.7%) could lead to misleading and extreme conclusions, as it is unlikely
to represent the true long-term competitive relationship between the two styles.
To systematically correct for this estimation bias caused by small samples, we
introduced Bayesian Averaging to smooth the raw win rates. This method
calculates a weighted win rate using the following formula:

C - prior_mean + N - original rate (1)
C+N

Here, N is the actual number of matches, original rate is the raw win rate,
prior_mean is the prior average we set (0.5), and C is the credibility constant,
representing the strength of our confidence in the prior (dynamically calculated
in this study based on the mean number of matchups). This method ”pulls” the
win rates from small samples toward the more credible 50% baseline, thereby

Weighted Rate =
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generating a more robust matchup matrix. The effect of this correction is sig-
nificant: the win rate of ”High-Pressure Offense” against ”Puck Control Play”
was effectively adjusted from the raw 85.7% to a more conservative 55.0%, while
the win rates of matchups with ample samples remained largely unaffected. The
final win-rate heatmap presented in our study (as Figure 6) is based on this
corrected and more equitable weighted win-rate matrix.

Weighted Win Rate Matrix (Bayesian Average)

Defensive Counterattack

Team Style
Weighted Win Rate

Puck Control Play

Defensive Counterattattigh-Pressure Offense Puck Control Play
Opponent style

Fig. 3. Weighted Win Rate Matrix (Bayesian Average)

4.2.4 Cross-Validation of Model Generalization Ability

Finally, to test the ultimate stability and generalization ability of the corrected
matchup model, we implemented a 70/30 cross-validatio. We randomly split
the entire dataset into a training set (70%) and a test set (30%) and inde-
pendently constructed weighted win-rate matrices on these two subsets. The
comparison revealed that the two matrices exhibit a highly consistent pattern.
For instance, the advantageous position of ”Defensive Counterattack” and the
disadvantageous position of ”Puck Control Play” were stably reproduced in both
the training set and the "unseen” test set. This series of validation, correction,
and re-validation steps forms a complete argumentative loop, ultimately proving
that the playing styles identified in this study and their interactions are effective,
robust, and possess good generalization ability.

4.3 Spatial Analysis of Possession Loss Locations

Despite the statistical corrections for sample imbalance, the Puck Control Play
style’s performance remains poor, with a low win rate that contrasts with its the-
oretical advantage in controlling game tempo. To further explore the defensive
issues it may face in practice, the spatial distribution of average goals conceded
by teams of each style during matches was analyzed. Through a heatmap visual-
ization, the differences in goal-conceding areas across playing styles are revealed,
providing a spatial perspective on the potential defensive weaknesses of the Puck
Control Play style.
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Figures 3 to 5 illustrate the spatial distribution of average puck loss locations
for teams employing the three playing styles.

In Figure 3, the Average Possession Loss for Puck Control Play style teams re-
veals that possession posses are primarily concentrated in the defensive zone and
near the neutral zone blue line. This suggests instability in puck control during
defensive-to-offensive transitions or when organizing plays through the neutral
zone. Such spatial patterns may expose Puck Control Play style teams to higher
risks of turnovers under aggressive forechecking, thereby creating counterattack
opportunities for opponents and negatively impacting overall game outcomes.

Fig. 4. Average Possession Loss Heatmap for Style: Puck Control Play

Figure 4 illustrates the Average Possession Loss for teams employing a De-
fensive Counterattack strategy. Compared to other styles, turnovers are more
concentrated and occur farther from their own goal, primarily on both sides of
the center red line. This pattern reflects the tactical focus on solid defensive po-
sitioning and swift counterattacks. Most puck losses take place during contested
plays in the neutral zone and do not directly threaten the defensive zone, which
may partly explain the higher win rate associated with this playing style.

Fig. 5. Average Possession Loss Heatmap for Style: Defensive Counterattack
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Figure 5 presents the Average Possession Loss for teams employing a high-
pressure offensive strategy. Turnovers are concentrated in the offensive zone
and around the offensive blue line. This pattern suggests that during aggressive
forechecking and rapid transitions, possession may be lost due to rushed plays
or passing errors, resulting in puck losses high up the ice. While this approach
entails a higher turnover risk, the fact that these losses occur far from the team’s
own net reduces the immediate threat of conceding goals. This reflects a tactical
trade-off between offensive intensity and tolerance for risk in puck management.

¥ Coortinate

Fig. 6. Average Possession Loss Heatmap for Style: High-Pressure Offense

4.4 Game Theory-Based Analysis of Tactical Dynamics

To reveal the deep-seated interactions between different tactical styles from a
theoretical perspective, we model a match as a strategic game. The players are
the two opposing teams, the strategies are the three playing styles, and the
payoff values are the win rates corrected by the Bayesian Averaging method.
The resulting payoff matrix is as follows:

Table 1. Playing Style Game Payoff Matrix

Team A / Team B Defensive High-Pressure Puck Control
Counterattack (DC) Offense (HP) Play (PC)

Defensive (0.50, 0.50) (0.53, 0.47) (0.63, 0.37)

Counterattack (DC)

High-Pressure (0.47, 0.53) (0.50, 0.50) (0.55, 0.45)

Offense (HP)

Puck Control (0.37, 0.63) (0.45, 0.55) (0.50, 0.50)

Play (PC)
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Analysis of this matrix reveals clear strategic dynamics: regardless of the
opponent’s strategy, ”Defensive Counterattack (DC)” always yields the high-
est expected payoff, making it the unique strictly dominant strategy in this
model. This finding leads directly to the game’s only pure-strategy Nash
Equilibrium, where both teams adopt the ”Defensive Counterattack” strategy,
resulting in a payoff of (0.50, 0.50) for both. Any unilateral deviation would
lead to a reduced payoff. Although pure-strategy analysis points to ”Defensive
Counterattack” as the theoretical optimum, in practice, a mixed strategy led
by this dominant strategy may have greater strategic value to avoid predictabil-
ity. The game theory analysis provides profound theoretical insights into the
league’s tactical ecosystem. First, ”Defensive Counterattack” is the core and
optimal choice in the current tactical environment. Second, the (DC, DC) equi-
librium point reveals a potential trend of ”involution” or a conservative "meta”
in the league, where adopting a conservative posture is the safest option amid
uncertainty. Finally, this implies that for teams using ”High-Pressure Offense”
or "Puck Control Play” to succeed, they must possess superior tactical execution
or player talent to compensate for their inherent disadvantage in macro-strategy.

5 Summary

This paper applied the K-Means clustering algorithm to identify three distinct
playing styles from aggregated event data in SHL matches: “Puck Control Play”,
“Defensive Counterattack”, and “High-Pressure Offense”.Each style was clearly
characterized through radar charts , highlighting their unique attributes in ar-
eas such as passing, shooting, dribbling, defense, and effectiveness. Preliminary
analysis of style-versus-style win rates suggests that the ”Defensive Counterat-
tack” style achieved a higher win rate within this dataset. This paper provides a
foundational framework for the quantitative understanding of playing styles in
ice hockey.

6 Future Work

This paper serves as an initial exploration and could be extended in the following
directions:

— Methodological Refinement: Determine the optimal number of clusters
K using techniques such as the elbow method; adopt more precise definitions
of match outcomes (e.g., final result); and account for stylistic dynamics
across different phases of the game (e.g., by periods or overtime).

— Incorporating Spatial Dimensions:Integrate spatial information more
thoroughly, such as computing metrics for specific pitch zones or applying

spatial clustering techniques, to provide a richer description of playing styles
[10].
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— Focus on Sequential Patterns:To better align with the LINHAC com-
petition task, future research should emphasize the analysis of event se-
quences that lead to key outcomes (e.g., goals, successful area entries) and
examine how these patterns relate to the competition styles identified in this
paper.

— Model Selection:Explore alternative clustering algorithms, such as fuzzy
clustering methods that allow for partial membership across clusters [3],
which may better capture the nuanced nature of playing styles.

— Data Expansion and Validation:Extend the analysis to additional sea-
sons or other leagues to assess the generalizability and stability of the iden-
tified playing styles.

7 Code Access Link

The code used in this paper can be accessed here:
https://github.com/lyuuuuY /Hockey Analysis.git
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An LSTM-Based Approach to Predicting Zone
Exit Success in Ice Hockey

Arun Ramji, Ethan Batiuk

University of Waterloo, Canada

Abstract. In ice hockey, successfully exiting the defensive zone with
puck possession is a critical factor in determining game outcomes, as
controlled exits have been shown to generate more subsequent offensive
entries and shot attempts than uncontrolled dump-outs [1]. Failed zone
exits and turnovers leave defenses vulnerable to counterattacks with-
out defensive structure, increasing the likelihood of high-quality chances
against them. However, limited research has explored the sequential dy-
namics of plays leading to successful exits versus turnovers. Additionally,
current methods only credit the player completing the exit, overlooking
contributions from other actions, such as puck battles or passes preceding
the final exit play. This project addresses these gaps by developing a pre-
dictive model to identify play sequences that maximize successful zone
exits, enabling us to quantify every action in the breakout sequence and
provide actionable insights for team strategies and player evaluations.
Prior work, building on Corey Sznajder’s tracking work has established
the value of controlled zone exits and transition play [2]. We build upon
this work by taking into account temporal dependencies in play se-
quences. Our approach employs a sequence-aware Long Short-Term Mem-
ory (LSTM) model, trained on event data from the SHL, to predict zone
exit outcomes.

Keywords: Zone Exits, LSTM, Ice Hockey

1 Background

A zone exit occurs when the puck is moved out of the defensive zone. Con-
trolled exits, achieved through passes or carries, are more effective than uncon-
trolled dump-outs because they produce more shots and goals [1]. Traditional
approaches, such as zone exit tracking, emphasize the final exit event but over-
look the preceding actions that shape the exit outcome. We analyzed event data
from 156 Swedish Hockey League games, sourced from SportLogic. Events in-
clude passes, shots, dump-ins, with location, outcome, timestamps, and score
state.

2 Algorithm

To model the sequential nature of zone exits in ice hockey, we selected an LSTM
network [3], which captures temporal dynamics in play sequences. Zone exit at-
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tempts consist of events, puck retrieval, passes, dekes, and exit attempts, where
success depends on their order and interaction. Unlike tree-based models that
miss chronological dependencies, LSTMs inherently account for event order, han-
dling variable-length sequences (2-30 events) effectively. The LSTM’s gating
mechanism prioritizes recent events while still considering earlier actions.

To prepare our data for training, we structured sequences to reflect play flow.
Each sequence begins when the exiting team gains possession in the defensive
zone. By default, we also include the two preceding events to provide context.
Sequences were excluded if the possession ended in a faceoff or if they occurred in
the final minutes of games to avoid score effects. Each sequence of events leading
up to either an exit or a turnover was then tagged as controlled, uncontrolled,
or failed. These processed sequences formed the dataset used to train our model.
We represented categorical information using embeddings for event and type
features, capturing similarities between them, and included five numeric features:
spatial coordinates, score state, event outcome, and player position. Finally,
our padding strategy with pack padded sequence ensured the LSTM ignored
padded tokens, maintaining efficiency across varying sequence lengths.

3 Findings

3.1 Model Performance

The dataset was split into training, development and testing sets, with the test
set comprising the following outcomes for zone exit attempts:

— Successful Controlled Exits: 17,502
— Failed Exit Attempts: 16,779
— Successful Uncontrolled Exits: 7,104

Evaluation protocol. We randomly split the dataset into training (70%), de-
velopment (15%), and test (15%) subsets using stratified sampling on the three
outcome classes (controlled, uncontrolled, failed) with a fixed random seed for re-
producibility. The split was performed at the sequence level rather than grouped
by game, since each sequence is self-contained and labeled independently. No se-
quence appeared in more than one subset, and the test set was strictly held out
from training and hyperparameter tuning.

Ground truth. Labels were derived from our preprocessing pipeline (Section
3), which tagged each sequence of events leading to an exit or turnover as a
controlled, uncontrolled, or failed exit. These labels served as the ground truth
against which predictions were evaluated.

Evaluation metrics. We assessed performance on the held-out test set only.
Accuracy was defined as the proportion of correctly classified sequences across
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all three classes. Cross-entropy loss was computed as the average categorical log
loss. ROC-AUC was calculated using a one-vs-rest approach and macro-averaged
across classes. The Brier score measured the mean squared error between pre-
dicted probability vectors and one-hot ground truth labels. Calibration was as-
sessed using reliability curves [4].

Table 1. Evaluation metrics for the LSTM-based zone exit prediction model, assessing
its ability to predict successful and failed zone exits.

[Metric | Value |
Cross-Entropy Loss|0.4567
Accuracy 0.7818
ROC-AUC 0.9328
Brier Score 0.2846

Results reporting. Alongside overall metrics, we present the confusion matrix
and per-class precision, recall, and F1l-scores to highlight strengths and weak-
nesses across classes. All reported numbers come from the held-out test set,
ensuring that performance reflects genuine generalization. The model achieved
strong performance (Accuracy = 0.78, ROC-AUC = 0.93), with calibration
curves showing close alignment between predicted probabilities and observed
outcomes (Figure 1).

Confusion Matrix Reliability Curve (All Classes)
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Fig. 1. Model performance evaluation. (Left) A confusion matrix comparing true labels
(rows: Controlled, Uncontrolled, Fail) against predicted labels (columns), with values
indicating the number of instances (e.g., 1,781 true controlled exits predicted correctly).
(Right) Reliability curves for all classes (Controlled: blue, Uncontrolled: orange, Fail:
green), plotting predicted probability (x-axis) against empirical accuracy (y-axis), with
a dashed line representing perfect calibration.
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Classification Metrics by Class. To further assess the model’s performance
across classes, we computed precision, recall, and Fl-score for each outcome
(controlled, uncontrolled, fail). Figure 2 shows that the model achieves balanced
performance, with the "uncontrolled" class having the highest scores (precision:
~0.82, recall: ~0.84, Fl-score: ~0.83), followed by "controlled" and "fail." The
slightly lower scores for "fail" (precision: ~0.78, Fl-score: ~0.76) suggest that
failed exits are more challenging to predict.

1o Classification Metrics by Class

BN Precision
s Recall

mmm Fl-Score
0.8

0.6

Score

0.4 4

0.2 4

0.0~
Controlled Uncontrolled Fail

Class

Fig. 2. Classification metrics by class. A bar chart displaying precision (blue), recall
(orange), and Fl-score (green) for each class (Controlled, Uncontrolled, Fail), with
scores ranging from 0.0 to 1.0 on the y-axis. The "Uncontrolled" class shows the highest
metrics, while "Fail" has the lowest, indicating prediction challenges.

3.2 Player Rating Metric

Our model produces, for each puck touch in an exit sequence, the predicted
probabilities of three outcomes: controlled exit, uncontrolled exit, or failed exit.
To translate these probabilities into a meaningful player rating, we draw on prior
work by Chatel & Brosseau [1|, which quantified the average number of shot
attempts generated following different exit outcomes. Their detailed categories
are collapsed into three coefficients: controlled (0.38), uncontrolled (0.16), and
failed (0.07). These values represent the expected shot attempts associated with
each outcome. For every puck touch, we compute the change in expected shot
value (AEV) by multiplying the model’s predicted probabilities of each outcome
by their corresponding coefficients and summing across outcomes. Each player is
credited with the AEV for each puck touch. Table 2 lists the top and bottom five
players by EV, adjusted for touches, with full results available in playerrating.py.
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Table 2. 5 lowest and 5 highest players for expected shots created.

[Player ID (Lowest)|AEV [Player ID (Highest)]AEV]

71713.0 -0.103|270437.0 0.022
316087.0 -0.102{548693.0 0.018
509158.0 -0.090(608705.0 0.016
464287.0 -0.087|561317.0 0.014
461057.0 -0.075|348173.0 0.012

We believe this model provides a stronger measure of player value in puck ex-
its than traditional exit counts. To compare, we also applied our shot-expectancy
framework in the traditional way, assigning the full coefficient to the player cred-
ited with the tagged exit (e.g., 0.38 for a controlled exit). Our model instead dis-
tributes credit across all touches by weighing each event according to predicted
exit probabilities. The two approaches show a moderate positive correlation,
suggesting our metric captures related information while also offering distinct
insights.

Model EV vs. Last-Touch Exit Attribution
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Fig. 3. Model EV Shift vs Last Touch EV Shift.

3.3 Event-Level Insights
Event-level analysis is another tool that can be used from this model, and it

can be found in analysis.py. Our top takeaways are that when the team in the
defensive zone has the puck, the only event that increases their expected shot
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value from an exit perspective is a pass. From an offensive team perspective, the
worst thing you can do is dump the puck in and not be the first team to get
possession, giving an average of 0.15 plus expected shot value to the opposing
team. Additional takeaways and insights can be found by running analysis.py
and reviewing the generated statistics.

3.4 Value Distribution Within Sequences

Using our shot-expectancy framework, we further examined when expected value
(EV) gains occur during a zone exit sequence. By analyzing the distribution of
EV changes across sequence positions, as shown in the table below, we demon-
strate the importance of our model by highlighting how events early in the
sequence contribute meaningfully to determining the outcome of a zone exit.
Notably, nearly 30% of EV change occurs in the middle of sequences (50-60%),
indicating that actions well before the final exit attempt often have the strongest
influence on outcomes. Sequence position here refers to the percentage of events
elapsed within a possession sequence (e.g., 50-60% corresponds to the middle
actions). While the final actions (90-100%) still account for 17% of total EV
change, the cumulative effect of earlier events is larger, underscoring the im-
portance of modeling entire sequences rather than focusing solely on the last
touch.

Table 3. : Distribution of Expected Value (EV) Changes Across Sequence Positions.

lSequence Position‘% of Total EV Change‘

0-10% +0.48%
10-20% +0.79%
20-30% +4.47%
30-40% +11.46%
40-50% +4.40%
50-60% +29.81%
60-70% +13.05%
70-80% +11.50%
80-90% +6.60%
90-100% +17.43%

4 Summary of Key Ideas

This study introduces a novel approach to analyzing zone exits in ice hockey.
Traditional metrics often focus solely on the final exit action, neglecting the
sequential dynamics of preceding events, such as puck battles and passes. To ad-
dress these gaps, the study employs an LSTM model, leveraging event data from
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SHL games provided by SportLogic to predict zone exit success with high accu-
racy (0.7818) and ROC-AUC (0.9328). Additionally, a new player rating metric
quantifies individual contributions to zone exits based on contributions of all
plays leading to a zone exit. Our analysis further shows that the probabilities
of exit outcomes (controlled, uncontrolled, failed) shift substantially through-
out the sequence, with meaningful changes often occurring well before the final
attempt.

5 Future Directions

Incorporating full player tracking data, capturing the location of every player
on the ice, would significantly enhance the quality of the model and the depth
of insight generated. This would allow for analysis of off-puck movement and
could uncover valuable insights into areas such as which forecheck schemes most
effectively reduce the odds of a successful breakout.
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A Machine Learning Approach to Score Passes
Based on Their Expected Offensive Contribution
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1 Introduction

Passing plays a critical role in facilitating high-level ice hockey performance.
Effective passing enables teams to transition from defense to offense, evade pres-
sure, and generate scoring opportunities [1,2]. Traditional hockey analytics often
quantify passing effectiveness based on assist counts or zone transitions, but these
fail to isolate the true offensive value of the pass itself.

This study introduces a machine learning model that estimates the expected
offensive value of a pass—specifically, the likelihood that a shot immediately
following the reception will result in a goal. This value, which we refer to as
Expected Primary Assists (xPA), is designed to measure the contribution
of a pass toward generating high-quality scoring chances. Importantly, xPA dif-
fers from traditional assist metrics in that it focuses exclusively on primary
assists—the pass directly preceding the shot that leads to a goal.

2 Methodology

2.1 Data Processing

The dataset employed was a proprietary event dataset from Sportlogiq, encom-
passing 156 games from the Swedish Hockey League (SHL). The raw dataset
contained 91,558 completed passes across all zones and game situations.

Each successful pass was identified from the event stream using the following
criteria: event type labeled "pass" with outcome "successful", followed by a
corresponding "reception" event with outcome "successful". Each pass-reception
pair was assigned a randomly generated unique ID for tracking purposes.

Training Data Construction: For model training, we implemented a strict
filtering process to focus on primary assist scenarios. For each reception, the
algorithm searches forward chronologically through the event stream to identify
the next action by the receiving player. A pass-reception pair was included in
the training set only if:

1. The next event by the receiving player was a shot attempt
2. No change in possession occurred between reception and shot
3. No line change occurred between reception and shot
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This filtering process yielded a training dataset of 8,247 pass-shot sequences.
Each training example was labeled with the expected goals (xG) value of the
shot immediately following the pass, representing the target xPA value.

Feature Engineering: The feature set was designed to capture both the
spatial and temporal characteristics of each pass:

Continuous features (7 total):

Pass origin coordinates: (Tstart, Ystart)
Reception coordinates: (Zend, Yend)
— Temporal difference: dt (time between pass and reception)

— Pass distance: \/(xend - mstart)z + (yend - ystart)2
Estimated pass velocity: distance / dt

Categorical features (encoded as 9 binary columns):

— Reception type (6 categories): clean reception, deflection, rebound, etc.
— Manpower situation (3 categories): even strength, power play, penalty kill

All categorical variables were one-hot encoded using R’s model.matrix ()
function, resulting in a final input matrix of 16 features.

2.2 Model Architecture and Training

A supervised learning approach was implemented using a feedforward neural
network in R via the keras package. The model architecture was designed to
handle the mixed continuous and categorical input features:

Architecture:

— Input layer: 16 features (7 continuous + 9 categorical binary)
Normalization layer: z-score standardization of continuous features using
training set statistics

— Hidden layers: 32 — 16 - 8 — 4 — 2 units, all with ReLU activation

— Output layer: single sigmoid unit producing xPA values in [0, 1] range

Training Configuration:

Optimizer: RMSProp (learning rate = 0.0005)
Loss function: Mean Squared Error (MSE)

— Evaluation metric: Mean Absolute Error (MAE)
— Training epochs: 32

Validation split: 10% (stratified sampling)
Batch shuffling: enabled

2.3 Player-Level xPA Aggregation and Evaluation

After training, the model was applied to the complete dataset of 91,558 passes
to generate xPA predictions for all completed passes, regardless of whether they
resulted in shots. This application represents an important limitation discussed
later, as the model is being applied to out-of-distribution data.

Player Aggregation Process: For each player who participated in at least
5 games, we computed:
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Z zPAfromallcompletedpasses
gamesplayed ‘
— Primary assists per game — lotalprimaryassists
gamesplayed
totalassists(primary+secondary)
gamesplayed

— xPA per game =

— Total assists per game =

The relationship between xPA per game and both primary assists per game
and total assists per game was evaluated using Pearson correlation coefficients
and linear regression analysis.

3 Results

3.1 Model Training Performance

The xPA model demonstrated strong convergence during training. Figure 1
shows the MSE and MAE metrics across 32 epochs.
In the final epoch, the model achieved:

— Training MSE: 0.002119, MAE: 0.02626
— Validation MSE: 0.001713, MAE: 0.02368

The validation metrics outperformed training metrics, suggesting effective
generalization without overfitting. Both loss curves plateaued around epoch 20,
indicating stable convergence.

Fig. 1. Training and validation metrics for the xPA prediction model over 32 epochs.
Solid black lines represent training metrics; dashed gray lines represent validation met-
rics. Convergence occurs by approximately 20 epochs.

3.2 Spatial Trends in xPA

A stratified sample of 2,000 passes was visualized on a scaled hockey rink (Figure
2). Higher xPA values were consistently assigned to passes originating from wide
areas and received near the slot, aligning with established knowledge of high-
danger shooting zones. Cross-ice seam passes and cycle plays in the offensive
zone also generated elevated xPA scores.
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Fig. 2. Visualization of a random sample of passes. Each vector is colored based on its
xPA value, with warmer colors indicating higher expected primary assist value.

3.3 Feature-xPA Relationships

Spearman rank correlations were calculated between xPA predictions and various
pass characteristics across the full dataset:

— Pass velocity: p = 0.21 (p < 0.001)

— Longitudinal movement (endX - startX): p = 0.081 (p < 0.001)
— Lateral movement (|endY - startY]): p = —0.097 (p < 0.001)

— Pass angle relative to goal: p = —0.013 (p < 0.001)

While all associations achieved statistical significance due to the large sample
size (n = 91,558), most correlations were weak in practical terms. Pass veloc-
ity demonstrated the strongest positive relationship with xPA, suggesting that
quicker passes tend to create better scoring opportunities.

Fig. 3. Scatter plots showing Spearman correlations between xPA and different pass
characteristics. Sample size limited to 5,000 random observations for visualization clar-

ity.
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3.4 xPA vs Assists Analysis

Linear regression analysis was conducted to evaluate the relationship between
player-level xPA and traditional assist metrics. Results are presented for both
comparisons:

xPA vs Total Assists:

— Pearson correlation: » = 0.70
— Linear regression: R? = 0.49
— Relationship: moderate positive correlation

xPA vs Primary Assists:

— Pearson correlation: r = 0.78
— Linear regression: R? = 0.61
— Relationship: moderately strong positive correlation

The stronger correlation with primary assists validates the model’s focus on
primary assist scenarios. However, both relationships show substantial unex-
plained variance, potentially due to factors such as teammate finishing ability,
goaltender performance, and the distribution shift between training and appli-
cation data.

y=00526+0889x R?=049

Fig. 4. Relationship between xPA per game and assists per game. Point size reflects
games played; line represents the fitted linear regression. Left panel shows total assists,
right panel shows primary assists only.

4 Discussion
This study introduces a method for evaluating the offensive contribution of indi-

vidual passes using a supervised learning approach trained on event-level hockey
data. The resulting xPA metric estimates the expected goal probability of a shot
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taken immediately following pass reception, providing a continuous measure of
passing value.
Key Findings:
— The xPA model successfully identifies spatial patterns consistent with hockey
tactical knowledge
— Player-level xPA correlates more strongly with primary assists (r = 0.78)
than total assists (r = 0.70)
— Pass velocity emerges as the strongest individual predictor of pass value
— The model demonstrates stable training with good generalization properties

Applications: xPA offers several advantages over traditional assist-based
metrics: it provides continuous value estimates for all completed passes, captures
the quality rather than just quantity of passing plays, and can be applied for
player evaluation, scouting, and tactical analysis even when passes don’t result
in shots.

Limitations and Future Work: Several important limitations constrain
the current approach:

1. Distribution Shift: The model is trained exclusively on pass-shot sequences
but applied to all completed passes. This creates a fundamental mismatch
between training and application distributions that may limit predictive ac-
curacy.

2. Information Leakage: Including reception coordinates as features may
allow the model to implicitly learn shot location, potentially inflating per-
formance metrics while reducing generalizability to truly novel passing sce-
narios.

3. Data Limitations: The analysis relies solely on event-level data. Incorpo-
rating player tracking data could capture additional context such as defensive
pressure, player positioning, and ice surface congestion.

4. Scope Limitations: The current model focuses only on passes that di-
rectly precede shots. A more comprehensive approach might model the full
sequence of events leading to scoring chances.

Future research should address these limitations through domain adaptation
techniques to handle distribution shift, alternative feature representations that
avoid information leakage, and incorporation of richer data sources including
player tracking and video analysis.

5 Code Access Link
Code: github.com/KingKobra7899/KROYE LINHAC 2025
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