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Abstract. Traditional ice hockey statistics are inherently biased to-
wards offensive events like goals, assists, and shots. However, successful
teams in ice hockey require players with skills that may not be captured
using traditional measures of performance. The adoption of puck and
player tracking systems in the National Hockey League (NHL) has sig-
nificantly increased the scope of possible metrics that can be obtained.
In this paper, we compute recently proposed passing metrics from 1221
NHL games from the 2021-2022 season. We analyze the distributions of
values obtained for each player for each metric to understand the vari-
ance between, and within, different positions. We find that forwards tend
to complete fewer passes with smaller passing lanes, while defensemen
pass to forwards significantly more than their defensive partners . Addi-
tionally, because these new metrics do not correlate well with traditional
metrics (e.g., assists), we believe that they capture aspects of players’
abilities that may not appear on the game sheet.

1 Introduction

The idea of using quantitative evidence to understand player tendencies and
performance to inform management and strategic decisions has existed in sports
for several decades [9]. In sports classified as “striking games”, such as baseball,
analytics has transformed team operations and strategies [4]. This influence has
lagged behind in “invasion games” such as football (soccer), basketball, hand-
ball, and ice hockey due to limitations in data collection and the complexities
of the sport. Traditional (publicly available) statistics captured in ice hockey
revolve around easily measurable offensive events (i.e., goals or shots) leading
to the performance of offensive players being disproportionately captured. Suc-
cessful teams in ice hockey, like all invasion games, require players with diverse
abilities that existing offensively biased metrics do not capture, such as passing.
This limited information makes constructing teams using quantitative evidence
more difficult. The recent implementation of the puck and player tracking (PPT)
systems in the National Hockey League (NHL) has led to several new metrics
to quantify player behavior [12, 13]. In this paper, we utilize a larger dataset
to study how passing metrics can be utilized to understand the variance in



2 D. Radke et al.

behavior among players and players at different positions (metrics with larger
variance may provide more opportunities to find under-valued players).

The main motivation behind the development of passing metrics in ice hockey
was to capture other player contributions that might not show up on a game
sheet [12]. Understanding how players compare to each other within the dis-
tribution of passing metrics provides valuable context for team building and
management. We perform a deeper analysis into recently proposed ice hockey
metrics from NHL puck and player tracking (PPT) data to show how passing
metrics can be used to identify diverse behaviors among individuals. The con-
tributions of this work are:

– We perform significant amounts of data cleaning to calculate passing metrics
using PPT data from 1221 games in the 2021-2022 NHL season.

– We analyze the distributions of various passing metrics for forwards and de-
fensemen. This provides insights into how much better highly-ranked players
are when compared with other players.

– We find that after normalizing for ice time, forwards tend to complete fewer
passes than defensemen and have smaller passing lanes, whereas defensemen
complete significantly more passes to forwards and overtake more opponents.

– We show that the number of players overtaken with completed passes and
the size of the passing lanes for completed passes do not correlate well with
traditional offensive-oriented statistics like assists. We believe this demon-
strates that some of the our metrics capture aspects of players’ abilities that
might not show up on the game sheet.

2 Related Work

Understanding how multiple players/agents work together most effectively is a
significant area of research in organizational psychology and AI [1, 15]. A general
finding is that group diversity, role specialization, and cohesiveness is important
for group performance [7, 1, 23, 14]. Similar results have been found in football
and sports analytics. Those analytics have focused on the performance of groups
of players together [8, 11, 3, 10]. We use football to refer to association football
(also known as soccer), not American football.

The implementation of passing metrics in football allows the analysis of a
player’s decision-making and passing ability [20, 19], ability to overtake players
with passes [21], impact on scoring probability [5], and ability to act under
pressure [2]. In a low-scoring game like football, these models provide insight
into players’ behaviors independently from offense and enables team building
with diverse skills. Similar advancements in ice hockey have analyzed passing
lane probabilities [17], as well as passing scenarios and pressure [12, 13].

Despite the development of models that use PPT data in ice hockey, no previ-
ous work has analyzed passing models to help understand general distributions,
trends, or differences among players in the NHL. In this paper, we calculate
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various passing metrics from recent work [12, 13] for 1221 games of the 2021-
2022 NHL season. We analyze the distributions of each metric among players
at different positions and within each position. Furthermore, we cross-reference
related metrics to gain insight into how individual players behave with respect
to multiple metrics.

3 Puck and Player Tracking Data

In the NHL, hockey is played on an ice surface that is 200 feet long and 85 feet
wide. Tracking data is collected by SportsMEDIA Technology [18] (a partner of
the NHL). They then derive event-level data (including completed passes) from
the location tracking data. These event labels contain information about the time
of the event and the identities and locations of the players involved. This paper
focuses specifically on completed pass events. We have been granted early access
by the NHL to the first full season for which the NHL used the PPT system (2021-
2022). The PPT data and our resulting metrics are considered unofficial by the
NHL, as the models used for creating event labels continue to be validated and
improved. Additionally, the process of making statistical data official requires
approval in the collective bargaining agreement, an ongoing process that has
not been completed at this time. As a result, we do not provide information
about individual player’s metrics. Also note that this data may differ from other
datasets that contain complete and/or incomplete passes (e.g., a hand labeled
dataset). We have processed 1221 of the 1312 regular season NHL games.1

Location data is collected through tracking technology that is embedded into
pucks and inserted into the sweaters of each player (on the back of the sweater,
slightly right of the center of the shoulders). Location information contains x,
y, and z-coordinates to record locations in 3-dimensional space. The x and y
locations are relative to center ice (which is 0, 0). It is our understanding that
when tested, the margin of error for the x and y coordinates is about 3 inches (the
diameter of the puck) and very often as little as 1 inch. This is accurate enough
for our purposes, as a puck traveling at speeds between 30 and 100 MPH would
travel between 8 inches and 28 inches, respectively between readings. Further,
our metrics are not overly sensitive to small changes in the puck’s location. The z
coordinates (not used in this paper) are relative to the surface of the ice. Location
data is recorded 60 times per-second for the puck and 12 times per-second for
each player on the ice, resulting in a total of about 734,400 location readings
of interest in a 60-minute game. Additionally, location data is obtained once
per-second for players that are determined to be off of the ice. We interpolate
all puck and player locations to 100 readings per-second to more easily identify
the positions of all on-ice entities at precisely the same time.

1 Some games could not be processed due to issues with the data sets and/or some
special cases that our code hasn’t yet handled.
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4 Background of Metrics

We briefly discuss the passing models used to derive the metrics in this paper.
We refer the reader to the original paper [12] for further passing model details
and to [13] for extensions and improvements to the original passing lane model.
To ensure comparisons of different players are fair and are not simply a measure
of ice time, we normalize our metrics by time on ice and/or games played, where
appropriate (e.g., as is done in Section 6).

4.1 Passing Lane Model

The passing lane model we use in this paper is originally proposed in [12] and
enhanced in [13]. The model uses the spatial locations of players in PPT data
to estimate the available space between a passer p and any receiver r.

Figure 1 (adapted from [12]) shows the passing lane shape for a direct pass
from p to r with three opponents. For each passing event, the model constructs
a teardrop-like passing lane shape around the passer p and extending beyond
the location of the receiver r (shaded regions). The size of the passing lane
is determined by the nearest opponent to the pass and assigns a non-negative
real-numbered value γ to be the openness of the pass. Figure 1 shows three
passing lanes with respect to each of the three opponents. The γ value of this
pass is γ = 0.6, since o1 restricts the passing lane the most. We use the enhanced
version from [13], where the expected locations of the receiver r and all opposing
players based on current velocities are used to determine the passing lane. The
enhancement also considers indirect passes off the boards. We developed a new
constant-time algorithm to directly calculate γ instead of the previous binary
search method. Refer to our previous paper [13] for more details.

4.2 Pass Overtaking Model

Previous work proposed and implemented models to understand progressing the
puck beyond opponent players with passes [12]. At a high level, this model is
represented as a zero-sum game, where a passer p gains a positive value for
overtaking opponents with passes, and each opponent overtaken o receives a
corresponding negative value. Formally, for a completed pass from p to r, if
δ(x, y) is Euclidean distance between location x and y and NET is the center
of the entrance to o’s net, o is considered overtaken if δ(p, NET) > δ(o, NET)
and δ(o, NET) > δ(r, NET).2 Because defensemen have greater opportunities to
overtake more players, the model uses the fraction of players that are possible to
be overtaken as the allocated credit. For example, if there are 3 players between
p and the net (not counting the goalie) and the pass overtakes 2 opponents, the
pass overtake value is 0.67. The passer p receives a positive value of +0.67 and
each of the two overtaken players receives a negative value of −0.33 while the
remaining non-overtaken player is unchanged.
2 See Section 8 for variations we plan to consider in future work.
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Fig. 1: Passing Lane.

Fig. 2: Adapted from [12]. The passing lane model for direct passes. The passing
lane (shaded regions) surrounds the passer p and receiver r. The size and shape
of this lane scales to the nearest opponent o (we show three examples of passing
lanes with respect to three opponents). We use an expanded version that incor-
porates expected movement and indirect passes [13].

These values are aggregated into various metrics, including OVT (overtake
total), BTT (beaten total), and PPM (passing plus-minus), calculated as PPM =
OVT - BTT. We also calculate OVA, the average fraction of players overtaken
with each pass ( OVT

num_passes). Because there can be significant differences in
the number of games played by different players, we use average values per
game where appropriate. This ensures a fair comparison when examining and
comparing different players.

5 Data Cleaning

When beginning our analysis we found several anomalies that needed to be
corrected. Specifically, when using the timestamps associated with a fair number
of completed passes, the puck was located at a relatively large distance from the
passing player (e.g., significantly outside the reach of the player). To mitigate
this issue, we performed a pass timestamp correction phase to better identify
and adjust the time at which the event occurred. Adjusting these timestamps
is also important to correctly identify the locations of all players on the ice at
the time of the event. This is critical to obtain accurate passing metrics. All
results in this paper are computed after adjusting the timestamps, which has
significantly improved our metrics.

Our adjustment process begins by finding the timestamp for an event t in the
PPT data. At a high level, our approach is to find a more accurate timestamp
t′ where the puck is sufficiently close to the passing player (i.e., within reach of
the player).We determined a threshold of δ(p, puck) ≤ 4 feet to be a reasonable
value, based on discussions with people at the NHL and personal measurements.
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Metric Description

avgOVT_20 The sum of the fraction of opponents overtaken by a player’s passes.
We scale to 20 minutes of ice time and average per-game.

avgBTT_20 The sum of the fraction a player was overtaken by opponents’ passes
We scale to 20 minutes of ice time and average per-game.

avgOVA The average fraction of opponents overtaken by a pass in a game.
We average this value per-game.

avgPAA Average γ (passing lane) value for completed passes. We average
this value per-game.

Table 1: Summary of passing metrics discussed in this paper. Additive metrics
(totals; end with “T”) are averaged over players’ games played (“avg”) and scaled
to 20 minutes per-game if necessary (“_20”).

Any passes that could not be corrected using this technique are omitted from
our dataset. This was only about 2.6% of the total number of completed passes.
There are several possible ways to improve the accuracy of this approach in-
cluding examining changes in the direction and speed of the puck. However,
determining the accuracy of various techniques requires knowing ground truth,
as a result this is a topic for future research.

6 Distribution Analysis of Passing Metrics

In the original work where we proposed these passing models we only had access
to smaller PPT datasets so we did not conduct a detailed analysis for players [12].
In this paper, we analyze 1221 games and examine whether or not there are
differences in passing metrics between forwards and defensemen and study the
differences among individual players within the same position. We provide a
summary of the metrics we analyze in Table 1. Our dataset includes 1000 players.
To ensure that we have a sufficient sample size for various metrics we exclude
players that did not play in at least 10 games and average at least 10 minutes
of ice time per game. This reduced our dataset to 750 players (478 forwards and
272 defensemen). Because our work in this paper focuses on passing , we do not
include goaltenders in any of our metrics or player counts.

To allow for fair comparisons among players that receive different amounts
of ice time (since some metrics correlate with ice time) we normalize metrics
(where appropriate) to 20 minutes per game. For each of the metrics in Table 1
we average over a player’s games. Thus, a metric such as OVT, the total frac-
tion of opponents a player overtakes with their passes, will be represented as
avgOVT_20 : averaged over a player’s games (“avg”) and scaled to 20 minutes
of ice time per-game (“_20”), where appropriate.
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6.1 Distributions of Metrics Based on Position

We perform the Welch t-test [22] to analyze how the distributions of metrics
vary between forwards and defensemen. When rejecting the null hypothesis for
the mean values of a metric being equal between forwards and defensemen at a
p-value of 0.05, we find that the mean between forwards and defense for both
traditional statistics (e.g., goals, assists, points, shots, and shots blocked) and
the new passing metrics in Table 1 are sufficiently different for every metric
except for hits (which we do not consider in this paper). As a result, we analyze
forwards and defensemen separately and use cumulative distribution functions
(CDFs) to analyze the variance of distributions at each position.

(a) avgPAA. (b) avgOVA. (c) avgOVT_20.

(d) avgPassesMade_20. (e) avgPassesReceived_20.

Fig. 3: CDFs plots for passing metrics separated by position, including (a) avg-
PAA: the average γ value for completed passes (lower indicates smaller passing
lanes). (b) avgOVA: the average fraction of opponents overtaken by a pass (larger
is better). (c) avgOVT_20: the total fraction of opponents overtaken by a pass
(larger is better). Metrics for each player are averaged over the number of games
they have played (“avg”) and when appropriate scaled to 20 minutes of playing
time per-game (“_20”). (d) The average passes made by players per 20 minutes.
(e) The average passes received by players per 20 minutes.

Passing Metrics Figure 3a shows the CDF for avgPAA, the per-game average
γ value (passing lane size) for completed passes. Our results show that forwards
and defensemen have distributions with similar shapes; however, the median
defensemen tends to complete passes with slightly larger passing lanes. The for-
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wards with the lowest avgPAA complete passes with about 47% smaller passing
lanes than the forwards with the highest avgPAA.

Figure 3b shows the CDF for avgOVA, the average fraction of opponents a
player overtakes per-pass, per-game. Higher values of avgOVA suggest the player
overtakes a higher fraction of opponents with each pass (i.e., a stretch pass
beating four of five players gives 4

5 = 0.8, while beating only the last defender
gives 1

1 = 1). The 30th percentile values of each position are similar (about
0.35). Defensemen have lower variance in avgOVA with the range from the 20th
percentile to 80th percentile being from 0.34 to 0.37 per-pass (34% to 37%)
of the possible players per-pass. Comparatively, forwards have over double the
variance than defensemen in avgOVA and the forwards with the highest avgOVA
have over double the overtake value per-pass compared to the lowest forwards
(0.45 compared to 0.21). The 20th percentile of forwards overtake an average of
33% of the possible players per-pass and the 80th percentile forwards overtake
and average of about 40% of the possible players per-pass. The larger variance
among forwards is likely caused by forwards typically having fewer opponents
to overtake (2 or 3) compared to defensemen (4 or 5). We note that lowest
percentile forwards are players that tend to make fewer than five passes per 20
minutes. We acknowledge that there may exist some players within our dataset
that circumvent the intent of our filter and if they have a low number of passes,
that could skew the distributions of some metrics. Future work could consider
filtering techniques to remove players with too few passes.

Figure 3c shows the CDF for the avgOVT_20, the per-game average of the
total fraction of opponents overtaken with passes normalized for 20 minutes
of ice time. Higher values of avgOVT_20 suggest the player overtook a large
fraction of opponents with their passes throughout a game. Our results show
that the median defenseman achieves 2.8 times higher avgOVT_20 than the
median forward (comparing 3 for forwards to 8.5 for defensemen). This difference
of 5.5 avgOVT_20 increases to about 6 at the 80th percentile of forwards and
defensemen (comparing 3.9 for forwards to 9.5 for defensemen). This change
in the differences means the top defensemen for avgOVT_20 overtake more
opponents compared to other defensemen than the top forwards compared to
the rest of the forward population. Since the median avgOVA value for forwards
is 4% higher than the median defensemen (see Figure 3b), we can conclude that
higher values of avgOVT_20 for defensemen indicate that they complete more
passes than forwards. This is confirmed in Figure 3d which shows the distribution
of completed passes per 20 minutes. The shapes of the distributions among each
position are almost identical, but defensemen tend to complete about five more
passes than forwards at every percentile. The median forward completes about
12 passes per 20 minutes, whereas the median defenseman completes about 17.
The forwards that complete the most passes complete up to 23 passes per 20
minutes 92% more than the forward median) and the defensemen that complete
the most passes complete up to 27 passes (59% more than the defense median).

On average, despite defensemen completing roughly five more passes each
than forwards, both positions tend to receive about the same number of passes
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(Figure 3e). Comparing Figures 3d and 3e allows us to draw an interesting
conclusion: defensemen complete passes to forwards significantly more often than
to their defensive partner.

To understand this insight, consider that at even strength, the players that
a forward can pass to are the two other forwards and the two defensemen. As-
suming each of the other players is equally likely to be chosen (which may not
be true), the probability of passing to a forward or defensemen is equal at 0.5.
However, for defensemen there are three forwards and one defensemen to choose
from. Again assuming the probability of passing to each of the other four players
is equally likely (i.e., 0.25), the probability of passing to a forward is 0.75 and
their defensive partner is 0.25. For the average pass reception curves for defense-
men and forwards to be similar (as seen in Figure 3e) defensemen must complete
passes to forwards three times more often. Considering that defensemen typi-
cally complete about five more passes than forwards (Figures 3d), defensemen
must pass to forwards even more. Since these passes are likely up-ice, the higher
frequency of passes from defensemen to forwards must be the main reason for
high values of avgOVT among defensemen (Figures 3c).

Takeaways: We find that forwards make passes with slightly smaller passing
lanes than defensemen. The variance among forwards for overtaking opponents
with a pass (avgOVA) is significantly larger than with defensemen; however,
the median forwards are only 4% higher than the median defensemen in av-
gOVA. Despite slightly lower median avgOVA, defensemen accumulate signifi-
cantly higher totals for overtaking opponents (avgOVT_20) and complete about
5 more passes each game compared to forwards. Using Figures 3d and 3e, we
find that defensemen pass to forwards significantly more than to their defensive
partners.

6.2 Analyzing Player Differences

In this section we analyze individual players across a variety of metrics to gain
insights into differences among players. One of the main passing metrics derived
in our previous work [12] and discussed in Section 4 is passing plus-minus (PPM),
defined as PPM = OVT - BTT. PPM gives insight into if a player overtakes
more opponents than they are overtaken themselves; however, the metric removes
additional context that may be important when understanding player behaviors.
For example, a player that rarely overtakes opponents while also never being
overtaken could have the same PPM value as a player that overtakes many
opponents but often gets overtaken.

Figure 4a compares the two components of PPM to analyze the distribution
of players along these two dimensions. The x-axis shows avgOVT_20, the total
fraction of opponents that a player overtakes with their passes (per-game aver-
age, higher is better) and the y-axis shows avgBTT_20, their total fraction of
being overtaken by opponents (per-game average, lower is better). Red triangles
represent forwards and blue triangles represent defensemen. Players in the lower
right corner overtake more opponents while not being overtaken by many op-
posing team passes. Analyzing where players are in these distributions may be
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important when constructing forward lines or defensive pairings as a coach, or
a roster as a manager.

(a) avgOVT_20 vs. avgBTT_20. (b) avgPAA vs. avgPassesMade_20.

Fig. 4: (a) The two components of passing plus-minus (PPM; presented in Sec-
tion 4.2). The avgOVT_20 metric (overtake total; x-axis), the total (per-game
average) fraction of opponents a player overtakes with their passes and avg-
BTT_20 (beaten total; y-axis), the total (per-game average) fraction that play-
ers are overtaken by opponents. (b) The average γ value (passing lane) for a
player’s completed passes (avgPAA; x-axis) compared to players’ average com-
pleted passes per 20 minutes.

Figure 4a shows that there is diversity (or variation) among forwards with
respect to both avgOVT_20 or avgBTT_20. Table 2 shows the avgOVT_20
and avgBTT_20 values with 95% confidence intervals for the forwards and de-
fensemen with the highest, median, and lowest values for each metric. None of
the confidence intervals for the three forwards intersect for either metric; thus,
we can confirm that there exist forwards with differences that are statistically
significant. In comparison, Figure 4a shows that defensemen mostly vary along
the dimension of how they overtake opponents with passes (avgOVT_20). Ta-
ble 2 confirms that the confidence intervals for defensemen do not intersect for
avgOVT_20 but do intersect for avgBTT_20. Therefore, we conclude that de-
fensemen mostly distinguish themselves from their peers by overtaking more
opponents with their passes (avgOVT_20).

Figure 4b compares the per-game average value of γ (passing lane size) for
a player’s completed passes (avgPAA_20; x-axis) and the average number of
passes made by that player (avgPassesMade_20; y-axis). For both forwards and
defensemen, players that complete the most passes (higher on the y-axis) tend
not to have the lowest or highest values of avgPAA (x-axis) compared to the
other players within their position. This implies that the players who complete
a large number of passes do so in situations that are not anomalous (i.e., they
are not mostly passing in easier situations).

Takeaways: There exists diversity among forwards with respect to over-
taking opponents with passes and being overtaken by opponent passes. Defense-
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Player avgOVT_20 95% CI avgBTT_20 95% CI
Fwd. Highest 7.28 ±1.84 4.66 ±1.09
Fwd. Median 3.16 ±0.42 3.00 ±0.19
Fwd. Lowest 1.05 ±0.43 2.05 ±0.17
Def. Highest 12.46 ±1.91 1.58 ±0.73
Def. Median 8.57 ±0.60 0.83 ±0.24
Def. Lowest 4.55 ±0.52 0.51 ±0.10

Table 2: Analyzing the mean and 95% confidence intervals for the highest, me-
dian, and lowest values for forwards and defensemen for avgOVT_20 and avg-
BTT_20. Our results show diversity among forwards with respect to both met-
rics while the highest defensemen tend to mostly separate themselves from their
peers with respect to avgOVT_20.

men mainly separate themselves from their peers by overtaking more opponents,
while there is less distinction with how defensemen are overtaken by opponents.
At both positions, players that complete the most passes tend to do so with
an average passing lane size instead of completing a disproportionate amount of
easier passes with bigger passing lanes.

7 Comparative Analysis

Inspired by the work on “Meta-Analytics” (to examine stability, discrimination
and independence of metrics) proposed by Franks et al. [6], we present a sim-
ple analysis of some of our metrics to show that avgOVT_20 and avgPAA do
not correlate well with assists (i.e., to provide some indication of independence
from a traditional offensive oriented statistic). We also compare the avgOVA,
avgOVT_20, and avgPAA metrics obtained from the first 50% of the games
with the same metrics computed across the last 50% of the games we have pro-
cessed (to examine the stability of those two metrics). We divide games using
the unique value assigned to each game (game id) which are typically ordered
by scheduled date. Note that because a small number of games were postponed
due to COVID-19, the split may not be precisely by the date games were played.
In the future we plan to conduct an in depth analysis of all of our metrics (and
other existing statistics) using the “Meta-Analytics” framework.

7.1 Comparison with Traditional Statistics

Figure 5a compares assists_82 (normalized to 82 games with 20 minutes per-
game) and avgOVT_20 (the sum of the fraction of opponents overtaken by a
player’s passes normalized to 20 minutes). Advancing the puck and overtaking
opponents is a valuable aspect in invasion games like ice hockey [16]. Figure 5a
shows there exists many players at both positions who overtake a significant
number of opponents with completed passes who do not record a large number
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of assists. These players with high avgOVT_20 values may not always show up
on a game sheet; however, they may be playing important roles on their team.

(a) assists_82 vs. avgOVT_20 (b) assists_82 vs. avgPAA

Fig. 5: (a) Assists projected to 82 games and 20 minutes per-game (assists_82)
versus the total fraction of opponents overtaken by passes (avgOVT_20; per-
game average; higher is better). (b) Projected assists (assists_82) versus the
average value of γ for completed passes (avgPAA; per-game average; lower means
smaller lanes).

Figure 5b compares assists_82 with avgPAA for players’ completed passes
in a game (avgPAA is the average γ value, or passing lane size; lower indicates
smaller lanes). Note that there are no players with both high avgPAA and high
assists_82 (i.e., no players in the top right of Figure 5b). However, many players
with the highest assists_82 values have relatively low avgPAA (between 0.59 and
0.70). This may suggest a connection between recording many assists and being
able to complete passes with smaller lanes. In future work we plan to examine
this question more closely by separating, studying and comparing passing lanes
for completed passes that result in assists. Again, we believe that considering
traditional offensively-oriented statistics for a player could reduce one’s ability
to see other potentially important skills.

7.2 Evaluating Stability

Figure 6 compares metrics computed over the first 610 games with the same
metric computed over the last 611 games. If the metrics obtained for each player
during the first half of the games were able to perfectly predict the metric com-
puted over the second half of the games, all data points would fall exactly on the
diagonal line. These graphs indicate that the avgOVA and avgPAA metrics are
well correlated across the two halves of the season (their correlation coefficients,
r, are 0.87 and 0.89, respectively). The avgOVT_20 metric is strongly correlated
with r = 0.99. For comparison we found (details and graphs have been excluded
for brevity) that the correlation coefficient for players’ points is r = 0.80 and



Passing Metrics in Ice Hockey 13

for goals is r = 0.72. This indicates that our new metrics are more stable (i.e.,
future values may be more predictable) than points and goals.

(a) avgOVA (b) avgOVT_20 (c) avgPAA

Fig. 6: Comparing different metrics from the first half of the games with the same
metric computed over the second half of the games. Points on the diagonal line
are perfectly correlated.

8 Discussion

While we perform an extensive analysis of several metrics and their distributions
across players, our work has several limitations. One limitation is that we do not
consider different factors such as coaching style (or team systems), manpower
(e.g., even strength or not), goal differential, time of the game, and play location
that may provide further insights. Future work may consider analyzing these
scenarios separately.

Another limitation is the aggregation of metrics while including players with
few samples. We filter our dataset by excluding players that don’t receive a
minimum average amount of ice time per game or have not played a minimum
number of games. However, among the unfiltered players, some players recorded
relatively few completed passes . Future work could apply additional filters (e.g.,
filtering players by a minimum number of samples).

Similar to the limitations with previous work [12, 13], we are only able to
analyze completed passes. In the future we hope to discern or obtain information
about unsuccessful passes. Additionally, our model for overtaking opponents does
not consider potentially valuable passes such as those from close to (or behind)
the net to the slot area, or east-to-west passes on odd-man-rushes, as overtaking
opponents. Future work may adapt our model to include these types of passes.
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9 Conclusions

Traditional ice hockey statistics disproportionately capture the offensive per-
spective of players. Understanding other characteristics of players’ behaviors is
important for constructing forward lines, defensive pairings, or entire teams. In
this paper, we analyze several recently proposed passing metrics using PPT data
from 1221 games of the NHL 2021-2022 season. We find that forwards tend to
complete passes with slightly smaller passing lanes compared to defensemen;
however, defensemen complete more passes and overtake more opponents. Ex-
amining players by comparing their scores on the basis of two metrics reveals
the diversity of behavior among players with regards to pass overtaking and be-
ing overtaken by passes. Finally, because these new metrics do not correlate well
with traditional metrics, we believe they capture aspects of players’ abilities that
may not appear on a traditional game sheet. This analysis may be of significant
interest to coaches and managers as they attempt to construct successful teams.
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