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Abstract. Tracking and identifying players is an important problem in
computer vision based ice hockey analytics. Player tracking is a chal-
lenging problem since the motion of players in hockey is fast-paced and
non-linear. There is also significant player-player and player-board oc-
clusion, camera panning and zooming in hockey broadcast video. Prior
published research perform player tracking with the help of handcrafted
features for player detection and re-identification. Although commercial
solutions for hockey player tracking exist, to the best of our knowledge,
no network architectures used, training data or performance metrics are
publicly reported. There is currently no published work for hockey player
tracking making use of the recent advancements in deep learning while
also reporting the current accuracy metrics used in literature. Therefore,
in this paper we compare and contrast several state-of-the-art track-
ing algorithms and analyze their performance and failure modes in ice
hockey.
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1 Introduction

Ice hockey is played by an estimated 1.8 million people worldwide [10]. As a
team sport, the positioning of the players and puck on the ice are critical to
team offensive and defensive strategy [22]. The location of players on the ice is
essential for hockey analysts for determining the location of play and analyzing
game strategy and events. In ice hockey, prior published research [15, 5] perform
player tracking with the help of handcrafted features for player detection and
re-identification. Okuma et al. [15] track hockey players by introducing a particle
filter combined with mixture particle filter (MPF) framework [23], along with
an Adaboost [24] player detector. The MPF framework [23] allows the parti-
cle filter framework to handle multi-modality by modelling the posterior state
distributions of M objects as an M component mixture. A disadvantage of the
MPF framework is that the particles merge and split in the process and leads
to loss of identities. Moreover, the algorithm does not have any mechanism to
prevent identity switches and lost identities of players after occlusions. Cai et al.
[5] improve upon [15] by using a bipartite matching for associating observations
with targets instead of using the mixture particle filter framework. However, the



algorithm is not trained or tested on broadcast videos, but performs tracking in
the rink coordinate system after a manual homography calculation.

Remarking that there is a lack of publicly available research for tracking
ice hockey players making use of recent advancements in deep learning, in this
paper we track and identify hockey players in broadcast NHL videos and analyze
performance of several state-of-the-art deep tracking models on the ice hockey
dataset. We also annotate and introduce a new hockey player tracking dataset
on which the deep tracking models are tested.

2 Related work

There are a number of recent studies dealing with player tracking in basketball
[19, 13, 27] and soccer [20, 9, 21, 7]. For basketball player tracking, Sangüesa et al.
[19] demonstrated that deep features perform better than classical handcrafted
features for basketball player tracking. Lu et al. [13] perform player tracking in
basketball using a Kalman filter by making the assumption that the relation-
ship between time and player’s locations is approximately linear in a short time
interval. Zhang et al. [27] perform basketball player tracking in a multi camera
setting.

In soccer, Theagarajan et al. [20] track players using the deep SORT algo-
rithm [26] for generating tactical analysis and ball possession statistics . Hurault
et al. [9] introduce a self-supervised detection algorithm to detect small soccer
players and track players in non-broadcast settings using a triplet loss trained
re-identification mechanism, with embeddings obtained from the detector itself.
Theiner et al. [21] present a pipeline to extract player position data on the soccer
field from video. The player tracking was performed with the help of CenterTrack
[29]. However, the major focus of the work was on detection accuracy rather than
tracking and identification. Gadde et al. [7] use a weakly supervised transduc-
tive approach for player detection in soccer broadcast videos by treating player
detection as a domain adaptation problem. The dataset used is generated with
the help of the deep SORT algorithm [26].

3 Methodology

We experimented with five state-of-the-art tracking algorithms [3, 26, 28, 1, 4] on
the hockey player tracking dataset. The algorithms include four online tracking
algorithms [3, 26, 28, 1] and one offline tracking algorithm [4]. SORT [3], deep
SORT [26] and MOT Neural Solver [4] are tracking by detection (TBD) algo-
rithms. Tracktor [1] and FairMOT [28] are joint detection and tracking (JDT)
algorithms.

Tracking by detection (TBD) is a widely used approach for multi-object
tracking. TBD consists of three steps: (1) detecting objects (hockey players
in our case) frame-by-frame in the video (2) calculating affinity between de-
tected objects (3) inference - linking player detections using calculated affinities
to produce tracks. Concretely, in TBD, the input is a set of object detections



Table 1. Tracking algorithms compared for hockey player tracking.

Algorithm Description

SORT [3] Kalman filter with simple IOU based re-id.
Deep SORT [26] Kalman filter with deep CNN based re-id.

Tracktor [1] JDT algorithm with separate detection and re-id networks.
FairMOT [28] JDT algorithm with combined object detection and re-id network.

MOT Neural Solver [4] Tracking using graph message passing with edge classification.

O = {o1, .....on}, where n denotes the total number of detections in all video
frames. A detection oi is represented by {xi, yi, wi, hi, Ii, ti}, where xi, yi, wi, hi

denotes the coordinates, width, and height of the detection bounding box. Ii
and ti represent the image pixels and timestamp corresponding to the detection.
Affinity calculation consists of calculating affinity between detections oi by ob-
taining appropriate features. The features can be simple intersection over union
(IOU) based [3] or using deep networks [25]. After affinity calculation, a set of
trajectories T = {T1, T2...Tm} is found that best explains O where each Ti is a
time-ordered set of observations. This is done through an appropriate inference
technique. Two widely used inference techniques are filtering [3, 25] and graph-
ical formulation [4]. As an example of graphical formulation, the MOT Neural
Solver [4] models the tracking problem as an undirected graph G = (V,E) ,
where V = {1, 2, ..., n} is the set of n nodes for n player detections for all video
frames. In the edge set E, every pair of detections is connected so that trajecto-
ries with missed detections can be recovered. The problem of tracking is posed
as splitting the graph into disconnected components where each component is a
trajectory Ti. After computing each node embedding and edge embedding using
a CNN (affinity calculation), the model then solves a graph message passing
problem. The message passing algorithm classifies whether an edge between two
nodes in the graph belongs to the same player trajectory.

Joint detection and tracking (JDT) [1, 28] is the latest trend in multi-object
tracking research. These methods either (1) Convert an object detector to a
tracker by estimating the location of a bounding box in the adjacent frames [1] or
(2) Perform detection and re-identification using a single network [28]. Bergmann
et al. [1] use the bounding box regressor of a Faster RCNN [16] detector to regress
the position of a person in the next frame. The re-identification is performed
using a separate siamese network. Zhang et al. [28] perform object detection
and re-identification with the same network using separate detection and re-
identification branches. The differences and similarities between the five tracking
algorithms are summarized in Table 1. We refer the readers to the publications
of the respective tracking papers [3, 26, 28, 1, 4] for more detail.

4 Dataset

The player tracking dataset consists of a total of 84 broadcast NHL game clips
with a frame rate of 30 frames per second (fps) and resolution of 1280 × 720
pixels. The average clip duration is 36 seconds. The 84 video clips in the dataset



Fig. 1. CVAT tool used for tracking annotations. The tool offers the ability to annotate
bounding boxes with each box having one label - home or away team. Each player
bounding box has player name and jersey number as attributes. CVAT also offers an
interpolation mode which alleviates the need to draw bounding boxes multiple times
for adjacent frames.

are extracted from 25 NHL games. The duration of the clips is shown in Fig. 2.
Each video frame in a clip is annotated with player and referee bounding boxes
and player identity consisting of player name and jersey number. The annotation
is carried out with the help of the open source computer vision annotation tool
(CVAT) 1. An illustration of an annotation job using the CVAT tool is shown
in Fig. 1. The dataset is split such that 58 clips are used for training, 13 clips
for validation, and 13 clips for testing. To prevent any game-level bias affecting
the results, the split is made at the game level, such that the training clips are
obtained from 17 games, validation clips from 4 games and test split from 4
games respectively.
Table 2 compares the size of the dataset with other tracking datasets in literature.
The hockey player tracking dataset is comparable in size with other tracking
datasets used in literature. As compared to pedestrian datsets (MOT 16 [14]
and MOT20 [6]), the bounding boxes per frame is less in our dataset since the
maximum number of players on the screen can be 12, with usually less than
12 players actually in broadcast camera field of view (FOV). The NHL game
videos used to create this dataset have been obtained from Stathletes Inc. with
permission.

1 Found online at: https://github.com/openvinotoolkit/cvat



Fig. 2. Duration of videos in the player tracking dataset. The average clip duration is
36 seconds. The red horizontal line represents the average clip duration.

Table 2. Comparison of hockey tracking dataset with other tracking datasets in liter-
ature. Our hockey player tracking dataset is comparable to other multi-object tracking
datasets commonly used in literature.

Dataset Videos/sequences Frames Bounding boxes Domain

MOT16 [14] 14 11, 235 292, 733 Pedestrians
MOT20 [6] 8 13, 410 2, 102, 385 Crowded pedestrian scenes
KITTI-T [8] 50 10, 870 65, 213 Autonomous driving

Ours 84 91, 807 773, 545 Ice hockey players

4.1 Annotation process

15 annotators annotated the whole dataset using the CVAT tool. The average
time taken to annotate one minute of video is 10.45 minutes. The total time
taken to annotate all 84 videos is 527 minutes. The manual annotation was done
such that a bounding box as tight as possible was drawn around a player/referee.
Linear interpolation was used to interpolate bounding box positions. Addition-
ally, unlike other tracking datasets such as MOT16 [14] and MOT20 [6], the same
ground truth identity was assigned to a player leaving camera FOV at a partic-
ular frame and re-entering after some time. If a player was occluded by board
or another player, the bounding box was annotated based on the best guess of
the tightest box enclosing the full body of the player. For quality control, all
bounding boxes were checked to make sure each box has label-name(name of
the player ). When a player enters/exits the scene, his bounding box was labeled
even if he was partially in camera FOV. Whenever players were occluded by
other players, revision of annotations was performed to ensure high quality.

5 Results

Player detection is performed using a Faster-RCNN network [17] with a ResNet50
based Feature Pyramid Network (FPN) backbone [11] pre-trained on the COCO



Table 3. Comparison of the overall tracking performance on test videos of the hockey
player tracking dataset. (↓ means lower is better, ↑ mean higher is better)

Method IDF1↑ MOTA ↑ ID-switches ↓ False positives (FP)↓ False negatives (FN) ↓
SORT [3] 53.7 92.4 673 2403 5826

Deep SORT [26] 59.3 94.2 528 1881 4334
Tracktor [1] 56.5 94.4 687 1706 4216
FairMOT [28] 61.5 91.9 768 1179 7568

MOT Neural Solver [4] 62.9 94.5 431 1653 4394

Fig. 3. Proportion of pan identity switches vs. δ plot for video number 9. Majority
of the identity switches ( 90% at a threshold of δ = 40 frames) occur due to camera
panning, which is the main cause of error.

dataset - a large scale object detection, segmentation, and captioning dataset,
popular in computer vision [12] and fine tuned on the hockey tracking dataset.
The object detector obtains an average precision (AP) of 70.2 on the test videos
(Table 4). The accuracy metrics for tracking used are the CLEAR MOT met-
rics [2] and Identification F1 score (IDF1) [18]. A ground truth object missed
by the trackers is called a false negative (FN) whereas a false alarm is called a
false positive (FP). For any tracker, a low number of false positives (FP) and
false negatives (FN) are favoured. An important metric is the number of identity
switches (IDSW), which occurs when a ground truth ID i is assigned a tracked
ID j when the last known assignment ID was k ̸= j. A low number of iden-
tity switches is an indicator of accurate tracking performance. For sports player
tracking, the IDF1 is considered a better accuracy measure than Multi Object
Tracking accuracy (MOTA) since it measures how consistently the identity of a
tracked object is preserved with respect to the ground truth identity. The overall
results are shown in Table 3. The best tracking performance is achieved using
the MOT Neural Solver tracking model [4] re-trained on the hockey dataset. The
MOT Neural Solver model obtains the highest MOTA score of 94.5 and IDF1
score of 62.9 on the test videos.



Table 4. Player detection results on the test videos. AP stands for Average Precision.
AP50 and AP75 are the average precision at an IOU of 0.5 and 0.75 respectively.

AP AP50 AP75

70.2 95.9 87.5

Fig. 4. Proportion of pan-identity switches for all videos at a threshold of δ = 40
frames. On average, pan-identity switches account for 65% of identity switches.

6 Discussion

From Table 3 it can be seen that the MOTA score of all methods is above 90%.
This is because MOTA is calculated as

MOTA = 1− Σt(FNt + FPt + IDSWt)

ΣtGTt
(1)

where t is the frame index and GT is the number of ground truth objects. MOTA
metric counts detection errors through the sum FP +FN and association errors
through IDSWs. Since false positives (FP) and false negatives (FN) heavily rely
on the performance of the player detector, the MOTA metric highly depends on
the performance of the detector. For hockey player tracking, the player detection
accuracy is high because of the sufficiently large size of players in broadcast video
and a reasonable number of players and referees (with a fixed upper limit) to
detect in the frame. Therefore, the MOTA score for all methods is high.

The SORT [3] algorithm obtains the least IDF1 score and the highest num-
ber of identity switches. This is due to the linear motion model assumption and
simple IOU score for re-identification. Deep SORT [25], on the other hand uses
features obtained from deep network for re-identification resulting in better IDF1
score and lower identity switches. For JDT based networks, performing detec-
tion and re-identification with a single network using a multi-task loss performs
better than having separate networks for detection and re-id tasks, evident by
better performance of FairMOT [28] compared to Tracktor [1]. JDT tracking



Table 5. Tracking performance of MOT Neural Solver model for the 13 test videos (↓
means lower is better, ↑ means higher is better).

Video # IDF1↑ MOTA ↑ ID-switches ↓ False positives (FP)↓ False negatives (FN) ↓ Duration (sec.)

1 78.53 94.95 23 100 269 36
2 61.49 93.29 26 48 519 29
3 55.83 95.85 43 197 189 43
4 67.22 95.50 31 77 501 49
5 72.60 91.42 40 222 510 40
6 66.66 90.93 38 301 419 35
7 49.02 94.89 59 125 465 48
8 50.06 92.02 31 267 220 34
9 53.33 96.67 30 48 128 29
10 55.91 95.30 26 65 193 26
11 56.52 96.03 40 31 477 45
12 87.41 94.98 14 141 252 35
13 62.98 94.77 30 31 252 22

algorithms, however, [28, 1] do not not show any significant improvement over
deep SORT evident by lower identity switches of deep SORT in comparison.
The MOT Neural Solver method achieves the highest IDF1 score of 62.9 and
significantly lower identity switches than the other methods. This is because the
other trackers use a linear motion model assumption which does not perform
well with the motion of hockey players. Sharp changes in player motion often
leads to identity switches. The MOT Neural Solver model, in contrast, has no
such assumptions since it poses tracking as a graph edge classification problem.

Table 5 shows the performance of the MOT Neural solver for each of the 13
test videos. We do a failure analysis to determine the cause of identity switches
and low IDF1 score in some videos. The major sources of identity switches
are severe occlusions and players going out of the camera FOV (due to camera
panning and/or player movement). We define a pan-identity switch as an identity
switch resulting from a player leaving and re-entering camera FOV due to camera
panning. It is very difficult for the tracking model to maintain identity in these
situations since players of the same team look identical with features such as,
jersey color, helmet model, visor model, stick model, glove model, skate model,
tape color etc unidentifiable from bounding boxes cropped from 720p broadcast
clips. During a pan-identity switch, a player going out of the camera FOV at
a particular point in screen coordinates can re-enter at any other point. We
estimate the proportion of pan-identity switches to determine the contribution
of panning to total identity switches.

To estimate the number of pan-identity switches, since we have quality an-
notations, we make the assumption that the ground truth annotations are ac-
curate and there are no missing annotations in the ground truth. Based on this
assumption, there is a significant time gap between two consecutive annotated
detections of a player only when the player leaves the camera FOV and comes
back again. Let Tgt = {o1, o2, ..., on} represent a ground truth tracklet, where
oi = {xi, yi, wi, ht, Ii, ti} represents a ground truth detection. A pan-identity
switch is expected to occur during tracking when the difference between times-
tamps (in frames) of two consecutive ground truth detections i and j is greater



than a sufficiently large threshold δ. That is

(ti − tj) > δ (2)

Therefore, the total number of pan-identity switches in a video is approximately
calculated as ∑

G

1(ti − tj > δ) (3)

where the summation is carried out over all ground truth trajectories and 1

is an indicator function. Consider the video number 9 in Table 5 having 30
identity switches and a low IDF1 of 53.33. We plot the proportion of pan identity
switches, that is

=

∑
G 1(ti − tj > δ)

IDSWs
(4)

against δ, where δ varies between 40 and 80 frames. From Fig. 3 it can be seen
that majority of the identity switches ( 90% at a threshold of δ = 40 frames)
occur due to camera panning. Visually investigating the video confirmed the
statement. Fig. 4 shows the proportion of pan-identity switches for all videos at
a threshold of δ = 40 frames. On average, pan identity switches account for 65%
of identity switches in the videos. This shows that the tracking model is able to
tackle a majority of other sources of errors which include minor occlusions and
lack of detections. The primary source or errors are pan-identity switches and
extremely cluttered scenes.

7 Conclusion

In this paper, we test five state-of-the-art tracking algorithms on the ice hockey
dataset and analyzed their performance. From the performance of trackers we
infer that trackers with a linear motion model do not perform well on hockey
dataset, evident by the high number of identity switches occurring in models
with linear motion assumption. The best performance is obtained by the MOT
neural solver model [4], that uses a graph based approach towards tracking
without any linear motion model assumption. Also, the IDF1 metric is a better
metric for hockey player tracking since the MOTA metric is heavily influenced
by player detection accuracy. We find that the main source of error in hockey
player tracking in broadcast video are pan-identity switches - identity switches
results due to players going outside the broadcast camera FOV.
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