




• ... (maybe) we can check the consistency, classify, and 
query our knowledge base

• ... but, remember the Scarlet example
– City subClassOf Country

• Logical consistency is not the main problem 
– e.g. rdfs:subClassOf an be wrongly used and still we have 

consistency
• Why is OWL not enough?

– OWL gives us logical language constructs, but does not give us 
any guidelines on how to use them in order to solve our tasks. 

– E.g. modeling something as an individual, a class, or an object 
property can be quite arbitrary



• OWL is not always enough for building a good 
ontology, and we cannot ask all web users neither 
to learn logic, or to study ontology design

• Reusable solutions 
– Top-level ontologies, standard ontologies etc.
– Ontology Design Patterns

• ... provided that tools have good usability ☺



• Logical patterns – "workarounds" and shortcuts in 
modelling
– Example: n-ary relations

• Content patterns – components with a non-empty 
signature, sometimes domain specific
– Example: how to model roles
– Can be used as "templates" or ideas for your own 

solution, or as components that are specialised
• Correspondence patterns, transformation patterns...



<roleclass>

<person> <person> <role>
has role

Person Role Person

<role title><person> <event>

<role>

Role
Person

<person>
<event>

Participation

<part.>
role

person
event

Person

<event>

<eventrole>

<person>
situation

person

Alt:

<roleclass>Event

Event

Event

time

<time period>



• Content ODPs are collected and described in 
catalogues, books, papers...

• The ontologydesignpatterns.org initiative maintains a 
repository of ODP proposals



• A curated, but smaller repository of ODPs are 
available here: 
https://daselab.cs.ksu.edu//content/modl-modular-
ontology-design-library 





• Mostly focus has been on overall life-cycle and steps of the methodology – rather than 
how to actually perform them

• Few are focused on reuse and getting something out fast

• One of the most cited:
– Ontology development 101 – Noy & McGuinnes (2001)

• Pre-OWL methodology
• Traditional in the sense 

– It doesn’t have a specific task focus
– It is a waterfall like method

• Although detailed in some steps, no details on requirements or testing etc.
• Basic steps for modelling

(1) Domain an scope (2) Consider reuse (3) Enumerate terms 
(4) Develop class hierarchy (5) Define the properties 
(6) Define restrictions and constraints (7)Create instances



• Waterfall-like process consisting of (overlapping) phases
Specification – document requirements, scope, level of 
formality etc.
Knowledge Acquisition – gathering and studying sources 
of information
Conceptualization – structure the terminology identified 
in 1, going from glossary to logical formulas
Integration – find and select other ontologies to reuse
Implementation – represent in formal language using tool
Evaluation – verification and validation
Documentation



• Based on theories for argumentation
• Intended for 

– Empowering domain experts in ontology engineering
– Continuous and distributed construction and update

Building

Adaptation & 
update Analysis & revision



• Provides a different perspective
– Modular ontologies
– "Rapid prototyping" - get something out fast

• Probably you want to develop your own 
process and your own ODPs in the end!



• Inspired by XP but with focus on modelling and design
• An agile methodology for web ontology design
• Developed as part of the NeOn methodology



• Customer/domain expert/developer involvement and feedback
• "Customer" stories to derive CQs (+ restrictions/constraints, 

reasoning requirements)

• ODP reuse and modular design (ontology networks)
• Collaboration and integration
• Task-oriented design, verified 

by tests
• Pair design





OR 
modelling 
from scratch!



• Can be adapted to various settings
– Pairs or individual development?
– Roles of ontology engineers and other experts
– Adapt the level of communication and control 

• You quickly have a tangible result
– "Rapid prototyping" of ontologies

• Integration step is crucial and may involve lots of 
refactoring unless you introduce more guidance

Blomqvist, E., Hammar, K., and Presutti, V.: Engineering Ontologies with Patterns – The 
eXtreme Design Methodology. In: Ontology Engineering with Ontology Design Pattern – 
Foundations and Applications, IOS Press, 2016.




