Machine Learning for
Knowledge Graph
Construction

A brief overview of topics and resources to get you started.
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Who am I?

Riley Capshaw
« PhD Student under Eva Blomqvist since 2019
 Interested in Natural Language Processing and Knowledge Graphs

 Lab assistant for the Natural Language Processing and Text Mining
courses since 2018
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Who am I?

Riley Capshaw
« PhD Student under Eva Blomqvist since 2019
 Interested in Natural Language Processing and Knowledge Graphs

 Lab assistant for the Natural Language Processing and Text Mining
courses since 2018

» First time giving this presentation! Ask questions!
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Today's presentation:

Outline:

 Introduction to Machine Learning

« Embeddings (Unsupervised approaches)
* Solving tasks (Supervised approaches)

« Knowledge Graph Construction

What to expect:

A high-level overview of important topics and concepts.
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Introduction

Important Concepts in Machine Learning
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Concepts in Machine Learning

Contents:
* Vocabulary
» Concepts

« Background Info
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Machine Learning (ML) is a sub-field of Artificial
Intelligence focused primarily on the extraction of — 5
patterns from data. = SR

 Can be statistical, probabilistic, algebraic, logical...
» Can be used to model, predict, generate...
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[ Relevant course: TDDE01 Machine Learning
hourssucyng : TDDEo7 Bayesian Learning
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Deep Learning

Deep Learning just refers to the sub-field
of ML which uses deep artificial neural
networks as the learning mechanism.

The rest of this presentation will focus on
approaches which use neural networks to
some degree. While not all such approaches
are considered "deep," the discussion should
be equally applicable.
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Training

A ML system must be trained on data. Training a neural network refers to
extracting patterns from data in order to populate certain model parameters.

Think regression:
Before training: y = mx + b

Data: 10, 1}, 11, 3}, 12, 5}
After training: y = 2x + 1
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Training Data
Data can be text, images, numbers, audio, structured, unstructured, so on.

However, in deep learning, discrete data like words or entities must be
converted into embeddings, or fixed-length vectors of numbers. These
vectors and the types of data that they contain are together referred to as
representations.

Example: A text document may be represented as a vector of word counts.

Relevant courses: TDDD41 Data Mining
TDDE16 Text Mining
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Data

The focus of this presentation will be on KG data, such as
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Data

The focus of this presentation will be on KG data, such as
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Data

The focus of this presentation will be on KG data, such as
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ML for KG: Embeddings

A brief overview of modelling a KG in vector space
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KG Embedding

KG embedding is the process of learning a neural model which converts
triples of the form <h, r, t> into vector representations h, r, and t.
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Fig. 1. The basic idea of TransE. Fig. 3. The basic idea of TransR.

Fig. 9. The basic idea of NTHN.
Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." NeurIPS. Vol 26. 2013.

Lin, Yankai, et al. ' Learning entity and relation embeddings for knowledge graph completion." AAAI. Vol. 29. 2015.

Socher Rlchard etal.' Reasonlng with neural tensor networks for knowledge base completion." NeurIPS. Vol 26. 2013.

." 7th TEEE Int. Conf. on Data Science in Cyberspace. 2022.
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KG Embedding
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Fig. 2. Three perspectives and corresponding instances for introducing representation spaces in knowledge
graph embedding: (a) Algebraic Structure. (b) Geometric Structure. (c) Analytical Structure.

Figure: Cao, Jiahang, et al. "Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces." arXiv preprint arXiv:2211.03536 (2022).
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ML for KG: Supervised tasks

A brief example of using embeddings to solve problems

LINKOPING
II." UNIVERSITY



ML for KGs 2023-03-21 18

Unsupervised vs. Supervised Models

KG embedding is an learning task. However, the learned
embeddings are not always useful on their own (black box problem).

Instead, embeddings are generally used for a downstream task,
such as link prediction and entity alignment.

For supervised learning, the learned model is a function f(x) = y mapping
every data point x to a label y.

Example:
x = (?, isCapitalOf, Sweden), y = Stockholm
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Link Prediction

Link prediction is the task of predicting one of the elements of a triple
<h, r, t> if it is masked out. Let h, r, and t be the embeddings of that triple.

Link prediction is done by learning a scoring function ¢(h, r, t) which
scores correct triples higher than incorrect ones.

To illustrate, if we mask out t, we want to be able to recover it with:

t = argmax ¢(h,r,e)
eesS
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Example: Link Prediction with TransE

Most research focuses on defining ¢(h, r, t), which can usually be
derived from the embedding method used to learn h, r, and .

For example, for TransE ¢t = h + r, so: '

¢(h>r)t)=|h+r_t| h t

Where values closer to 0 are better. Then we
hope* that the following holds after training:

Fig. 1. The basic idea of TransE.

¢ (Stockholm, isCapitalOf, Sweden) < ¢(Paris, isCapitalOf, Sweden)
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Entity Alignment

2023-03-21

Entity Alignment is the task of identifying which entities between two

different KGs refer to the same real-world concept.
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Fig. 2. An example of EA. The entity identifiers are placed in the ovals; different arrows represent various types of relationships, and the rectangular box stores the

attribute description information. Dashed lines connect the seed entity pairs.

Figure: Zeng, Kaisheng, et al. "A comprehensive survey of entity alignment for knowledge graphs." AI Open 2 (2021): 1-13.
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Entity Alignment

Solving entity alignment problems with deep
learning is done similarly:

KG1 entity embedding vectors

* Choose an embedding method and apply it

to both KGs.

* Define "correct” samples mathematically.

Optimization
target
based on
similarity
calculation

Representation
learning
methods

« Example: Cosine Similarity

=28 G0

 Construct a model to predict the above.

KG2 entity embedding vectors

Fig. 5. The basic framework of entity alignment models based on representation learning.

« Optimize the model's parameters based on
the data (KGs).

Zeng, Kaisheng, et al. "A comprehensive survey of entity alignment for knowledge graphs." AI Open 2 (2021): 1-13.
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General Flow:

In fact, almost all supervised approaches will have this flow!

» Choose a representation method.

 Define correct (and incorrect) samples mathematically.

« Construct a model to discriminate correct and incorrect cases.

« Optimize the model's parameters based on the data.

Relevant course: TDDE09 Natural Language Processing
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ML for KG: KG Construction (from Scratch)

Or, a brief survey of multi-stage pipelines for extracting facts from text...
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ML for KG Construction from Scratch

All of the topics presented so far have been for enhancing existing KGs.
But what if we want to create one from scratch?

Most solutions are domain-specific, based on fext, and use large pipelines.

Super relevant course: TDDE09 Natural Language Processing
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Example: A Fictional Novels KG
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Rincon-Yanez, Diego, and Sabrina Senatore. "FAIR Knowledge Graph construction from text, an approach applied
to fictional novels." Proceedings of the 1st Int. Workshop on Knowledge Graph Generation From Text. 2022.
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OpenlE

In natural language processing, open information extraction (OpenlE)
is the task of generating a structured, machine-readable representation of
the information in text, usually in the form of triples (Source: Wikipedia)

Think: Schema-free triple extraction from text.
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Example: OpenlE-based KG Construction

Web data

1
1
I
I

ROOT
|
S Algorithm 1: Association of entities with NP tags.
: N . Data: PLAINTEXT SENTENCE, EEL ENTITIES
tagged words tagged words NP VP Result: NP_entities

1 CHUNK-TAGS «— OBTAINCONSTITUENCY( SENTENCE)NP_entities «—

* I T - 1
entities RE . . , . {""I‘-
- NNF NNF NNF VBD NP PP 2 NPs «— FILTERNPS(CHUNK-TAGS); /* Keep NP chunks only

T ] | | | | r T 1 r 1 {npg.np;..... an._l} */
entifies relations Dr.  Gregory House diagnosed DT NN NN IN NP 3 forall the np € NPs do

A - | I I | | m— a | assocEntities « {@};
- a cancer patient in NNP NNP NNP 5 forall the ne < EEL do /* Iterate over entities */
| | | [ if ne.SF < np then /* Matching surface form (SF)

against NP */

NP-entities args New  York City o -
7 | assocEntities «— assocEntities U ne;
Orde Fig. 5. Constituency tree from the sentence “Dr. Gregory House diaggnosed a cancer patient in New York City”™. 8 end
ion 9 end
10 NP_entities.append ({np, assocEntities));
tuples n end

RDF triples

Fig. 3. Overview of the proposed method, where dashed nodes indicate supporting
tasks and solid nodes refer to core tasks.

Martinez-Rodriguez at al. "Openie-based approach for knowledge graph construction from text." Expert Systems with Applications 113. 2018.
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Questions?
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Further Reading

Some keywords you might want to look for:
e Machine Reading

« Language Models (for Knowledge Graphs)
« Language Models (as Knowledge Graphs)
* Multimodal KGs
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Further Reading

Some pitfalls to read up on:

» Generalization (Inability to predict outside of the training data domain)
* Bias (Inadvertant capturing of negative/undesired patterns)
 Black-box models (Inability for humans to understand predictions)

« Hallucination (Generation of incorrect things)
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