Ontology Alignment

Ontology Alignment

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

Ontologies in biomedical research

- many biomedical ontologiese.g. GO, OBO, SNOMED-CT
- practical use of biomedical ontologies
 - e.g. databases annotated with GO

GENE ONTOLOGY (GO)

```
immune response
 i- acute-phase response
 i- anaphylaxis
 i- antigen presentation
 i- antigen processing
 i- cellular defense response
 i- cytokine metabolism
    i- cytokine biosynthesis
      synonym cytokine production
    p- regulation of cytokine
      biosynthesis
 i- B-cell activation
   i- B-cell differentiation
   i- B-cell proliferation
 i- cellular defense response
 i- T-cell activation
    i- activation of natural killer
      cell activity
```

Ontologies with overlapping information

GENE ONTOLOGY (GO)

SIGNAL-ONTOLOGY (SigO)

immune response i- acute-phase response i- anaphylaxis i- antigen presentation i- antigen processing i- cellular defense response i- cytokine metabolism i- cytokine biosynthesis synonym cytokine production p- regulation of cytokine biosynthesis i- B-cell activation i- B-cell differentiation i- B-cell proliferation i- cellular defense response i- T-cell activation i- activation of natural killer

```
Immune Response
   i- Allergic Response
 Antigen Processing and Presentation
   i-B Cell Activation
  A B Cell Development
  i- Complement Signaling
   • synonym complement activation
   i- Cytokine Response
   i- Immune Suppression
   i- Inflammation
   i- Intestinal Immunity
   i- Leukotriene Response
     i- Leukotriene Metabolism
   Natural Killer Cell Response
  → T Cell Activation
   i- T Cell Development
   i- T Cell Selection in Thymus
```

Ontologies with overlapping information

- Use of multiple ontologies
 - custom-specific ontology + standard ontology
 - different views over same domain
 - overlapping domains
- Bottom-up creation of ontologies
 experts can focus on their domain of expertise
- → important to know the inter-ontology relationships

GENE ONTOLOGY (GO)

immune response

- i- acute-phase response
- i- anaphylaxis
- i- antigen presentation
- i- antigen processing
- i- cellular defense response
- i- cytokine metabolism
 - i- cytokine biosynthesis synonym cytokine production

...

p- regulation of cytokine biosynthesis

• •

...

- i- B-cell activation
 - i- B-cell differentiation
 - i- B-cell proliferation
- i- cellular defense response

...

- i- T-cell activation
 - i- activation of natural killer cell activity

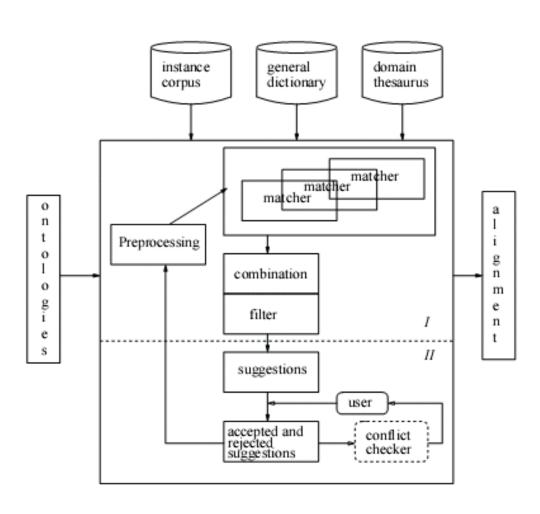
. . .

SIGNAL-ONTOLOGY (SigO)

Immune Response

- i- Allergic Response
- i- Antigen Processing and Presentation
- i- B Cell Activation
- i- B Cell Development
- i- Complement Signaling synonym complement activation
- i- Cytokine Response
- i- Immune Suppression
- i- Inflammation
- i- Intestinal Immunity
- i- Leukotriene Response
 - i- Leukotriene Metabolism
- i- Natural Killer Cell Response
- i- T Cell Activation
- i- T Cell Development
- i- T Cell Selection in Thymus

Ontology Alignment


GENE ONTOLOGY (GO) SIGNAL-ONTOLOGY (SigO) Immune Response immune response i- acute-phase response i- Allergic Response i- anaphylaxis Antigen Processing and Presentation i-B Cell Activation i- antigen presentation B Cell Development i- antigen processing i- Complement Signaling i- cellular defense response i- cytokine metabolism • synonym complement activation i- cytokine biosynthesis i- Cytokine Response synonym cytokine production i- Immune Suppression i- Inflammation p- regulation of cytokine i- Intestinal Immunity biosynthesis i- Leukotriene Response i- Leukotriene Metabolism equivalent concepts Natural Killer Cell Response equivalent relations i- B-cell activation i- B-cell differentiation i- T Cell Development is-a relation i- T Cell Selection in Thymus i- B-cell proliferation i- cellular defense response i- T-cell activation i- activation of natural killer

Defining the relations between the terms in different ontologies

Ontology Alignment

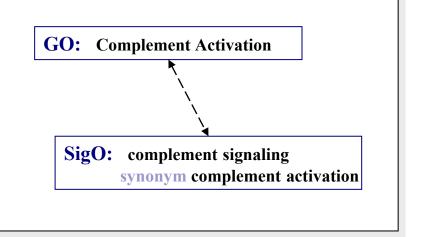
- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

An Alignment Framework

Preprocessing

Preprocessing

For example,


- Selection of features
- Selection of search space

Matchers

ĸ.

Matcher Strategies

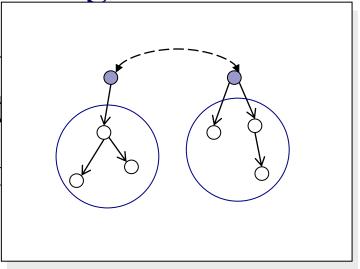
- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-bas
- Instance-based
- Use of auxiliar

w

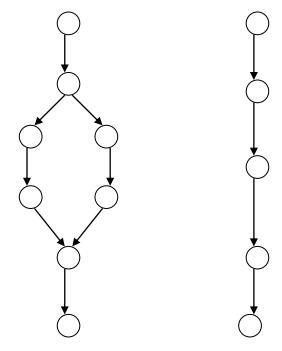
Example matchers

Edit distance

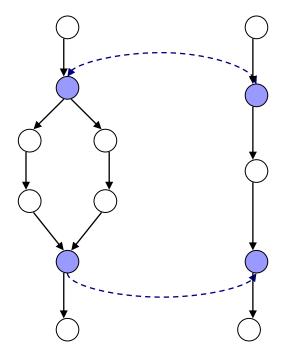
- Number of deletions, insertions, substitutions required to transform one string into another
- □ aaaa → baab: edit distance 2

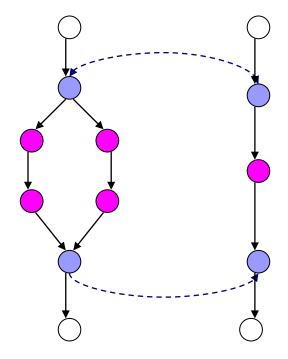

N-gram

- N-gram : N consecutive characters in a string
- □ Similarity based on set comparison of n-grams
- □ aaaa : {aa, aa, aa}; baab : {ba, aa, ab}


v

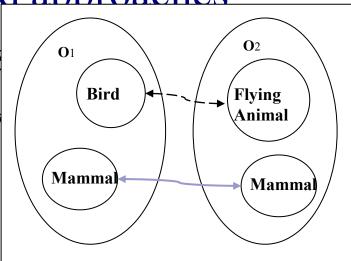
Matcher Strategies


- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based
- Instance-based st
- Use of auxiliary


- Propagation of similarity values
- Anchored matching

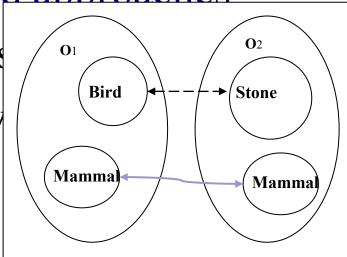
- Propagation of similarity values
- Anchored matching

- Propagation of similarity values
- Anchored matching


Matcher Strategies

- Strategies based on linguistic matching
- Structure-based strategies

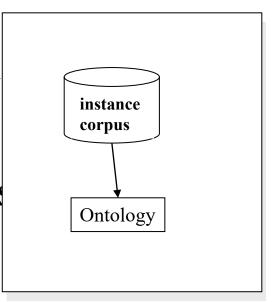
Constraint-based approaches


Instance-based

Use of auxiliary

Matcher Strategies

- Strategies based on linguistic matching
- Structure-based strategies
- Constraint-based approaches
- Instance-based
- Use of auxiliary



- Similarities between data types
- Similarities based on cardinalities

Matcher Strategies

- Strategies based on linguisti
- Structure-based strategies
- Constraint-based approaches
- Instance-based strategies
- Use of auxiliary information

- Instance-based
- Use life science literature as instances

Learning matchers – instance-based strategies

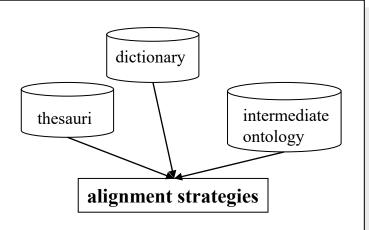
Basic intuition

A similarity measure between concepts can be computed based on the probability that documents about one concept are also about the other concept and vice versa.

Learning matchers - steps

- Generate corpora
 - □ Use concept as query term in PubMed
 - □ Retrieve most recent PubMed abstracts
- Generate text classifiers
 - □ One classifier per ontology / One classifier per concept
- Classification
 - □ Abstracts related to one ontology are classified by the other ontology's classifier(s) and vice versa
- Calculate similarities

Basic Naïve Bayes matcher


- Generate corpora
- Generate classifiers
 - □ Naive Bayes classifiers, one per ontology
- Classification
 - \square Abstracts related to one ontology are classified to the concept in the other ontology with highest posterior probability P(C|d)
- Calculate similarities

$$sim(C_1, C_2) = \frac{n_{NBC2}(C_1, C_2) + n_{NBC1}(C_2, C_1)}{n_D(C_1) + n_D(C_2)}$$

Matcher Strategies

- Strategies based linguist
- Structure-based strategie
- Constraint-based approa
- Instance-based strategies
- Use of auxiliary information

.

- Use of WordNet
 - Use WordNet to find synonyms
 - Use WordNet to find ancestors and descendants in the isa hierarchy
- Use of Unified Medical Language System (UMLS)
 - □ Includes many ontologies
 - Includes many alignments (not complete)
 - Use UMLS alignments in the computation of the similarity values

Table 7 Matching Strategies in the participating systems - 1

System	String-based strategies	Structure-based strategies	Constraint-based strategies	Instance-based strategies
AgreementMaker	SubString, Edit-Distance, TF-IDF	✓	✓	✓
ALIN	SimMetrics APP , WS4J APP	✓	-	-
AML	Jaccard, I-Suib	✓	✓	✓
Anchor-Flood	Jaro-Winkler	✓	-	✓
AOAS	Jaro-Winkler	✓	-	-
AOT, AOTL	Edit-Distance, Block-Distance,			
	SLIM-Winkler, Jaro-Winkler,	-	-	-
	Smith-Winlder, Needleman-Wunsch			
AROMA	Jaro-Winkler	✓	✓	-
ASMOV	Edit-Distance	✓	✓	✓
BLOOMS	Jaccard, Exact Match, Lin,	-	-	-
	Jaro-Winkler			
CIDER-CL	Soft TF-IDF, Jaro-Winkler	✓	-	-
CODI	Edit-Distance, Jaro-Winkler, Cosine,			
	Smith-Waterman, Jaccard,	✓	✓	✓
	Overlap coefficient			
COMMAND	UMBC similarity Model	✓	-	-
CroMatcher	N-Gram, TF-IDF	✓	✓	✓
CSA	Edit-Distance, Wu-Palmer, TF-IDF	✓	-	✓
DKP-AOM, DKP-AOM-Lite	SimMetrics APP	✓	✓	-
DSSim	Jaccard, Jaro-Winkler	✓	-	-
Eff2Match	Exact Match, TF-IDF	✓	-	-
Falcon-AO	I-Sub, TF-IDF	✓	-	-
FCA-Map	Exact Match	✓	-	-
GeRoMeSuite+SMB	Edit-Distance, Jaro-Winkler,	✓	-	✓
	I-Sub, Soft TF-IDF,			
	SecondString Library ^C			
GMap	Edit-Distance, TF-IDF	✓	-	-
GOMMA, GOMMA-bk	Exact Match, N-gram	✓	-	✓
Hertuda	Damerau-Levenshrein ^d	-	-	-
HotMatch	Damerau-Levenshrein ^d	✓	✓	✓
IAMA	Edit-Distance			✓

Dragisic Z, Ivanova V, Li H, Lambrix P,

Experiences from the Anatomy track in the Ontology Alignment Evaluation Initiative,

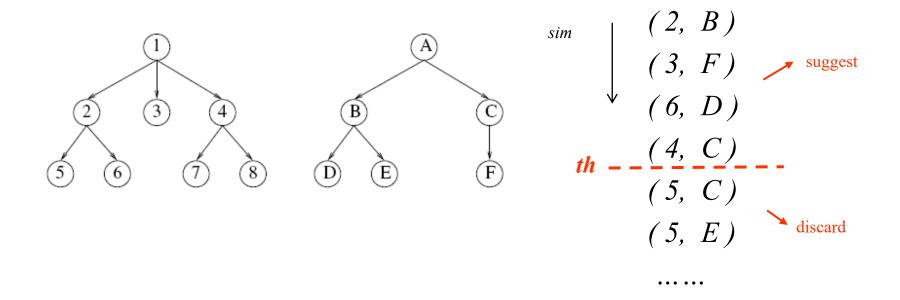
Table 8 Matching strategies in the participating systems - 2

System	String-based strategies	Structure-based strategies	Constraint-based strategies	Instance-based strategies	
JarvisOM	Cosine, WuPalmer, Lin, N-gram	-	-	-	
KOSIMap	SimMetrics APP, Degree of commonality coefficient	✓	✓	-	
Lily	Edit-Distance	✓	✓	✓	
LogMap	I-Sub	✓	-	✓	
LPHOM	I-Sub, Mongue-Elian,	-	-	-	
	3-Gram, Jaccard, Lin				
LYAM++	SOFT TF-IDF, Jaccard	✓	-	-	
MaasMatch	Cosine, Edit-Distance, Jaccard,	✓	-	✓	
	3-Gram, Longest Common Substring				
MapSSS	Edit-Distance, Choice based on [10]	✓	✓	-	
NBJLM	Set of words-level	✓	-	-	
ODGOMS	Longest Common Subsequence, SMOA, TF-IDF	✓	-	-	
Optima+	Lin, Smith-Waterman,	✓	-	-	
	Needleman-Wunsch				
	Inverse Edit-Distance				
Prior+	Edit-Distance	✓	-	-	
RIMOM	Edit-Distance, Cosine	✓	-	✓	
RSDLWB	Jaccard, Substring	✓	✓	-	
SAMBO, SAMBOdtf	Edit-Distance, 3-Gram	✓	-	✓	
ServOMap	Edit-Distance,	✓	-	-	
	I-Sub, Q-Gram, TF-IDF,				
	Monge-Elkan, Jaccard				
SOBOM	I-Sub	✓	-	-	
StringsAuto	Choice based on [10]	-	-	-	
ТахоМар	Lin, 3-gram	✓	✓	-	
	Degree of commonatity coefficient				
TOAST	√b	✓	-	-	
WeSeE	Edit-Distance, TF-IDF	-	-	-	
WikiMatch	Jaccard	-	-	-	
X-SOM	Edit-Distance, Jaro	✓	-	✓	
ХМар	Edit distance, Jaro-Winider,	✓	✓	-	
	N-gram, Jaccard, Cosine				
YAM++	Tversky ^c , TF-IDF	✓	-	✓	

Table 9 Use of auxiliary information by the participating systems

System	Background knowledge							
	UMLS	Uberon	BioPortal	MeSH	FMA	WordNet	Other	
AgreementMaker	✓	✓	-	-	-	✓	-	
ALIN	-	-	-	-	-	✓	-	
AMI	✓	✓		✓		✓	-	
Anchor-Flood	-	-	-	-	-	✓	-	
NOAS	✓	-	-	-	✓	-	-	
NOT, AOTL	-	-	-	-	-	✓	-	
ASMOV	✓	-	-	-	-	✓	-	
COMMAND	✓	_	_	-	-	✓	_	
CroMatcher	-	✓	-	-	-	✓	-	
SA	-	_	_	-	-		_	
DKP-AOM	_	_	_	_	_	1	_	
DSSim	_	_	-	-	-	1	_	
Eff2March	_	_	_	_	_	1	_	
SOMMA	✓	✓	_	_	1	-	_	
GeRoMeSuite+SMB			_	_		✓	_	
lournatch	_	_	_	_	_		API tanes ^a , WikiPedia	
none in the second							Big Huge Thesaurus ^b	
larvisOM						✓	Apache Lucene ^c	
AMA							Apache Lucene ^c	
ily							Web search (Google)	
.ogMapBio	-	-	-,	-	-	-	web search (doogle)	
YAM++	-	-,	✓	-	-	-	BabetNer ^d	
MaasMarch		✓	-			-,	papellect	
	-	-	-	-	-	✓	Canata	
MapSSS	-	-	-	-	-	-	Google	
NBJLM	-	-	-	-	-	√.	-	
Optima+	-	-	-	-	-	√		
RIMOM	✓	-	-	-	-	✓	Wiki Pages	
SDLWB	-	-	-	-	-	√	DBpedia ^e	
AMBO	✓	-	-	-	-	√	-	
servOMap	-	-	-	-	-	✓	Apache Lucene ^c	
ТахоМар	-	-	-	-	-	✓	-	
OAST	-	-	-	-	-	✓	-	
W eSeE	-	-	-	-	-	-	Microsoft Bing Search	
							JFreeWebSearch ^f	
MikiMatch	-	-		-	-	-	WikiPedia	
ОМар	✓		-	-	-	✓	-	
K-SOM	-	-	-	-	-	✓	Google	
YAM++	-	-	-	-		-	Apache Lucene ^c	

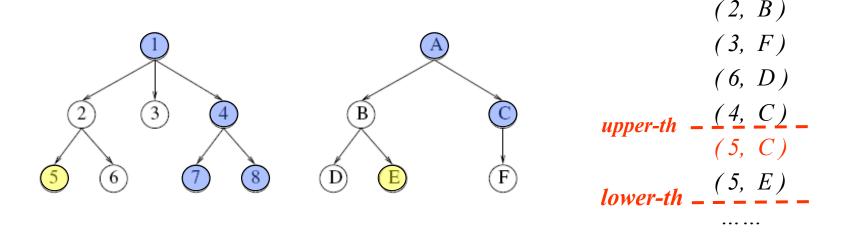
Combinations


- Usually weighted sum of similarity values of different matchers
- Maximum of similarity values of different matchers

Filtering

Filtering techniques

Threshold filtering


Pairs of concepts with similarity higher or equal than threshold are alignment suggestions

Filtering techniques

Double threshold filtering

- (1) Pairs of concepts with similarity higher than or equal to **upper** threshold are alignment suggestions
- (2) Pairs of concepts with similarity between **lower** and **upper** thresholds are alignment suggestions if they make sense with respect to the structure of the ontologies and the suggestions according to (1)

Example alignment system SAMBO – matchers, combination, filter

		start	Align Concept in mou	se and hun	nan		
matchers:	1.0 NGram 1.0 TermBasic 1.0 TermWN 1.0 UMLSM 1.0 Naive Bayes	single threshold: double threshold:	0.6 lower 0.4		weighted-sum combi maximum-based cor	use preprocessed data	
Start Computation	Finish Computation	Interrupt Computation	interrupt at:	, , , , , , , , , , , , , , , , , , ,	gies		

Example alignment system SAMBO – suggestion mode

nose	e_MA		nose_MeSH				
nasal_cavity_epith definition: MA:000 synonym: nasal n part-of: nasal_o)1324 nucosa	definition:	nasal_mucosa definition: MESH:A.04.531.520 synonym: nasal epithelium part-of:				
nasal_cavity_epithe nasal_mucosa new name for the ec		s:					
= Equiv. Concepts	≤ Sub-Concept	≥ Super-Concept	< Undo	>> Skip to Next			

Table 6 Analysis of the components of the participating systems

Systems	Basic processes							
systems	Preprocessing ^{D/R}	Matching	Combination	Filtering	Debugging	User interaction		
AgreementMaker	-	√	✓	✓	-	√*		
ALIN	-	✓	✓	✓	-	✓		
AML, AML_bk	D	✓	✓	✓	✓	·*		
Anchor-Flood	D	✓	✓	✓	-	-		
ACAS	-	✓	✓	✓	-	-		
AOT, AOTL	-	✓	✓	✓	-	-		
AROMA	D	✓	✓	✓	-	-		
ASMOV	-	✓	✓	✓	✓	✓		
BLOOMS	D	✓	✓	✓	-	-		
CIDER-CL	D	✓	✓	✓	-	-		
CODI	D	✓	✓	✓	✓	-		
COMMAND	-	✓	✓	✓	-	-		
CroMatcher	D	✓	✓	✓	-	-		
CSA	D	✓	✓	✓	-	-		
DKP-AOM, DKP-AOM-Lite	D	✓	✓	✓	✓	-		
DSSim	R	✓	✓	✓	-	-		
Eff2March	D	✓	✓	✓	-	-		
Falcon-AO	R	✓	✓	✓	-	√*		
FCA-Map	D	✓	-	-	✓	-		
GeRoMeSuite+SMB	-	✓	✓	✓	✓	✓*		
GМар	-	✓	✓	✓	-	-		
GOMMA, GOMMAbk	R	✓	✓	✓	✓	√(*)¹		
Herruda	D	✓	-	✓	-	✓		
HorMarch	D	✓	✓	✓	-	-		
AMA	D	✓	1	1	_	_		

Dragisic Z, Ivanova V, Li H, Lambrix P,

Experiences from the Anatomy track in the Ontology Alignment Evaluation Initiative,

JarvisOM .	D	✓	✓	✓	-	✓
KOSIMap	D	✓	✓	✓	✓	-
Lity	D	✓	✓	✓	✓	·*
LogMap, LogMapBio,						
LogMapC, LogMapLite	D,R	✓	✓	✓	✓	✓*
LPHOM	D	✓	✓	✓	-	-
LYAM++	D	✓	-	✓	-	-
MaasMatch	D	✓	✓	✓	-	-
MapSSS	-	✓	✓	✓	-	-
NBJLM	-	✓	✓	✓	-	-
ODGOMS	D	✓	✓	✓	-	-
Optima+	-	✓	✓	✓	-	-
Prior+	D	✓	✓	✓	-	-
RIMOM	D	✓	✓	✓	-	-
RSDLWB	D	✓	✓	-	-	✓*
SAMBO, SAMBOdif	-	✓	✓	✓	✓	·*
ServOMap(L), ServOMBI	D	✓	✓	✓	✓	✓
SOBOM	-	✓	✓	✓	-	-
StringsAuto	-	✓	✓	✓	-	-
ТахоМар	D,R	✓	✓	✓	-	-
TOAST	-	✓	-	-	-	-
WeSeE	D	✓	-	✓	-	✓
WikiMarch	D	✓	-	✓	-	-
X-SOM	-	✓	✓	✓	✓	-
XMap, XMAPGen, XMAPSig	-	✓	✓	✓	-	✓
YAM++	D	✓	✓	✓	✓	-

Ontology Alignment

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

Evaluation measures

■ Precision:

```
# correct mapping suggestions

# mapping suggestions
```

Recall:

```
# correct mapping suggestions
# correct mappings
```

■ F-measure: combination of precision and recall

Ontology Alignment Evaluation Initiative

http://oaei.ontologymatching.org/

OAEI

- Since 2004
- Evaluation of systems
- Different tracks (2022)
 - Anatomy, conference, large biomedical ontologies, phenotype, biodiversity, materials
 - □ Multilingual: multifarm (9 languages), food
 - Complex
 - Interactive
 - Instance matching and link discovery
 - Knowledge graphs

OAEI

- Evaluation measures
 - □ Precision/recall/f-measure
 - recall of non-trivial mappings

full / partial golden standard

м

OAEI 2022

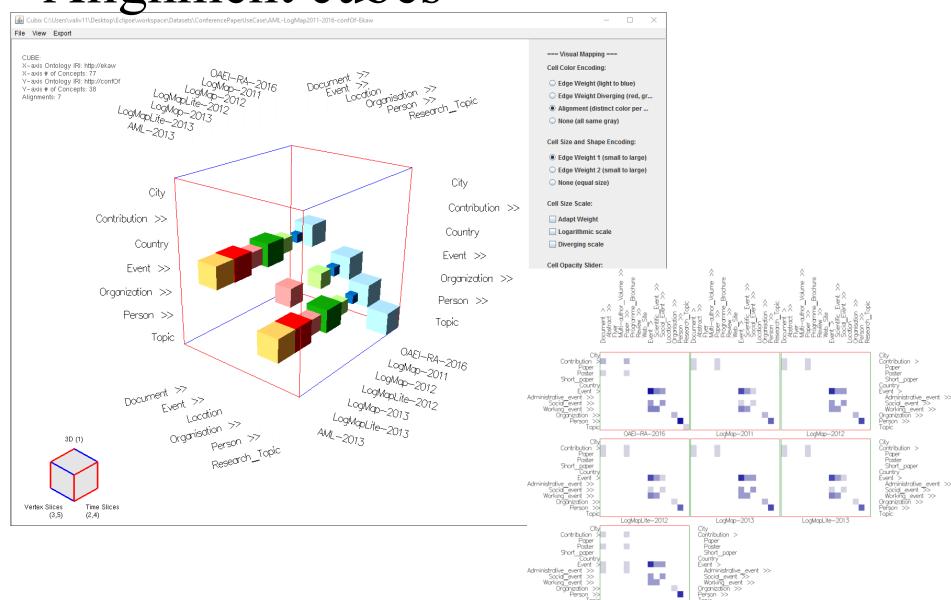
- Anatomy:
 - □ 11 systems
 - □ best system f=0.94, p=0.98, r=0.93, r+=0.81, 37 seconds
 - □ 2 systems produce coherent mappings

10

OAEI Anatomy Track 2007-2016*

- Components
 - Almost all systems implement preprocessing, matchers, combination, filtering components
 - Debugging component and GUI rarely implemented
- Matching strategies
 - Variety of string-based strategies
 - Most often string and structured-based strategies
- Use of background knowledge
 - □ Almost all systems use sources of background knowledge

^{*} Dragisic Z, Ivanova V, Li H, Lambrix P, <u>Experiences from the Anatomy track in the Ontology Alignment Evaluation Initiative</u>, *Journal of Biomedical Semantics* 8:56, 2017.


Complementary evaluation

Alignment cubes

- Interactive visualization of alignments
- Region-level, mapping level
- Missing mappings
- Often found mappings

http://www.ida.liu.se/~patla00/research/AlignmentCubes/

Alignment cubes

AML-2013

Ontology Alignment

- Ontology alignment
- Ontology alignment strategies
- Evaluation of ontology alignment strategies
- Ontology alignment challenges

Challenges

- Large-scale matching evaluation
- Efficiency of matching techniques
 - parallellization
 - distribution of computation
 - approximation of matching results (not complete)
 - modularization of ontologies
 - optimization of matching methods

м.

Challenges

- Matching with background knowledge
 - partial alignments
 - reuse of previous matches
 - use of domain-specific corpora
 - use of domain-specific ontologies

- Matcher selection, combination and tuning
 - recommendation of algorithms and settings

.

Challenges

- User involvement
 - visualization
 - □ user feedback

- Explanation of matching results
- Social and collaborative matching
- Alignment management: infrastructure and support

Further reading

Starting points for further studies

- <u>http://www.ontologymatching.org</u>(plenty of references to articles and systems)
- Ontology alignment evaluation initiative: http://oaei.ontologymatching.org (home page of the initiative)
- Euzenat, Shvaiko, *Ontology Matching*, Springer, 2007.
- Shvaiko, Euzenat, Ontology Matching: state of the art and future challenges, *IEEE Transactions on Knowledge and Data Engineering* 25(1):158-176, 2013.
- Dragisic Z, Ivanova V, Li H, Lambrix P, <u>Experiences from the Anatomy track in the Ontology Alignment Evaluation Initiative</u>, *Journal of Biomedical Semantics* 8:56, 2017.

Systems at LiU / IDA / ADIT

■ Lambrix, Tan, SAMBO – a system for aligning and merging biomedical ontologies, *Journal of Web Semantics*, 4(3):196-206, 2006.

(description of the SAMBO tool and overview of evaluations of different matchers)

Lambrix, Tan, A tool for evaluating ontology alignment strategies, *Journal on Data Semantics*, VIII:182-202, 2007.

(description of the KitAMO tool for evaluating matchers)

- Lambrix P, Kaliyaperumal R, <u>A Session-based Ontology Alignment Approach enabling User Involvement</u>, *Semantic Web Journal* 8(2):225-251, 2017.
- Ivanova V, Bach B, Pietriga E, Lambrix P, <u>Alignment Cubes: Towards Interactive Visual Exploration and Evaluation of Multiple Ontology Alignments</u>, 16th International Semantic Web Conference, 400-417, 2017.

■ Chen, Tan, Lambrix, Structure-based filtering for ontology alignment, *IEEE WETICE workshop on semantic technologies in collaborative applications*, 364-369, 2006.

(double threshold filtering technique)

■ Tan, Lambrix, A method for recommending ontology alignment strategies, *International Semantic Web Conference*, 494-507, 2007.

Ehrig, Staab, Sure, Bootstrapping ontology alignment methods with APFEL, *International Semantic Web Conference*, 186-200, 2005.

Mochol, Jentzsch, Euzenat, Applying an analytic method for matching approach selection, *International Workshop on Ontology Matching*, 2006.

(recommendation of alignment strategies)

■ Lambrix, Liu, Using partial reference alignments to align ontologies, *European Semantic Web Conference*, 188-202, 2009.

(use of partial alignments in ontology alignment)

User Involvement

- Li H, Dragisic Z, Faria D, Ivanova V, Jimenez-Ruiz E, Lambrix P, Pesquita C, User validation in ontology alignment: functional assessment and impact, *The Knowledge Engineering Review*, 2019.
- Ivanova V, Lambrix P, Åberg J, <u>Requirements for and Evaluation of User Support for Large-Scale Ontology Alignment</u>, *12th Extended Semantic Web Conference ESWC 2015*, <u>LNCS 9088</u>, 3-20, 2015.

Ontology Completion and Debugging

w

Defects in ontologies

- Syntactic defects
 - □ E.g. wrong tags or incorrect format
- Semantic defects
 - E.g. unsatisfiable concepts, incoherent and inconsistent ontologies
- Modeling defects
 - □ E.g. wrong or missing relations

Example - incoherent ontology

- Example: DICE ontology
 - Brain ☐ CentralNervousSystem ☐ BodyPart ☐
 ∃systempart.NervousSystem ☐ ∃ region.HeadAndNeck ☐
 ∀region.HeadAndNeck

A brain is a central nervous system and a body part which has a system part that is a nervous system and that is in the head and neck region.

CentralNervousSystem
 □ NervousSystem

A central nervous system is a nervous system.

BodyPart ⊑¬NervousSystem

Nothing can be at the same time a body part and a nervous system.

Example - inconsistent ontology

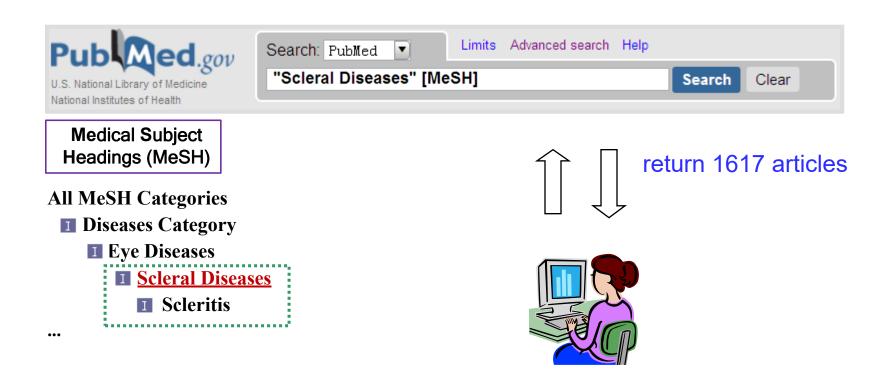
Example from Foaf:

- Person(timbl)
- Homepage(timbl, http://w3.org/)
- Homepage(w3c, http://w3.org/)
- Organization(w3c)
- InverseFunctionalProperty(Homepage)
- DisjointWith(Organization, Person)

Example from OpenCyc:

- ArtifactualFeatureType(PopulatedPlace)
- ExistingStuffType(PopulatedPlace)
- DisjointWith(ExistingObjectType,ExistingStuffType)
- ArtifactualFeatureType

 ExistingObjectType


Example - missing is-a relations

- In 2008 Ontology Alignment Evaluation Initiative (OAEI)
 Anatomy track, task 4
 - □ Ontology MA : Adult Mouse Anatomy Dictionary (2744 concepts)
 - □ Ontology NCI-A : NCI Thesaurus anatomy (3304 concepts)
 - □ 988 mappings between MA and NCI-A
 - 121 missing is-a relations in MA
 - 83 missing is-a relations in NCI-A


Influence of missing structure

Ontology-based querying.

Influence of missing structure

Incomplete results from ontology-based queries

Defects in ontologies and ontology networks

- Ontologies and ontology networks with defects, although often useful, also lead to problems when used in semantically-enabled applications.
- → Wrong conclusions may be derived or valid conclusions may be missed.

Completion and debugging process

- Detection (find candidate defects)
- Validation (real defects)
- Repair (remove wrong, add correct)

м.

Detection

Many approaches

- inspection
- ontology learning or evolution
- using linguistic and logical patterns
 - animals such as dogs and cats
- by using knowledge intrinsic to an ontology network
- by using machine learning and statistical methods

Repairing

Definition 1. (Repair)¹⁵

Let \mathcal{T} be a TBox. Let M and W be finite sets of TBox axioms. Let Or be an oracle that, given a TBox axiom, returns true or false. A repair for Complete-Debug-Problem CDP(\mathcal{T}, Or, M, W) is any pair of finite sets of TBox axioms (A, D) such that

- (i) $\forall \psi_a \in A$: $Or(\psi_a) = true$;
- (ii) ∀ ψ_d ∈ D: Or(ψ_d) = false;
- (iii) (T ∪ A) \ D is consistent;
- (iv) $\forall \psi_m \in M: (\mathcal{T} \cup A) \setminus D \models \psi_m$;
- (v) $\forall \psi_w \in W : (\mathcal{T} \cup A) \setminus D \not\models \psi_w$.

Current work usually focuses on debugging or completion, but not both.

Most work on debugging.

Ontology Debugging

Example: an Incoherent Ontology

Consider the following TBox T^* , where A, B and C are primitive and A_1, \ldots, A_7 defined concept names:

$$ax_1:A_1 \stackrel{.}{\sqsubseteq} \neg A \sqcap A_2 \sqcap A_3 \qquad ax_2:A_2 \stackrel{.}{\sqsubseteq} A \sqcap A_4 ax_3:A_3 \stackrel{.}{\sqsubseteq} A_4 \sqcap A_5 \qquad ax_4:A_4 \stackrel{.}{\sqsubseteq} \forall s.B \sqcap C ax_5:A_5 \stackrel{.}{\sqsubseteq} \exists s. \neg B \qquad ax_6:A_6 \stackrel{.}{\sqsubseteq} A_1 \sqcup \exists r.(A_3 \sqcap \neg C \sqcap A_4) ax_7:A_7 \stackrel{.}{\sqsubseteq} A_4 \sqcap \exists s. \neg B$$

The ontology is incoherent!

The set of unsatisfiable concepts are : $\{A_1, A_3, A_6, A_7\}$.

What are the root causes of these defects?

М

Explain the Semantic Defects

• We need to identify the sets of axioms which are necessary for causing the logic contradictions.

$$ax_1: A_1 \stackrel{.}{\sqsubseteq} \neg A \sqcap A_2 \sqcap A_3 \qquad ax_2: A_2 \stackrel{.}{\sqsubseteq} A \sqcap A_4$$

$$ax_3: A_3 \stackrel{.}{\sqsubseteq} A_4 \sqcap A_5 \qquad ax_4: A_4 \stackrel{.}{\sqsubseteq} \forall s. B \sqcap C$$

$$ax_5: A_5 \stackrel{.}{\sqsubseteq} \exists s. \neg B \qquad ax_6: A_6 \stackrel{.}{\sqsubseteq} A_1 \sqcup \exists r. (A_3 \sqcap \neg C \sqcap A_4)$$

$$ax_7: A_7 \stackrel{.}{\sqsubseteq} A_4 \sqcap \exists s. \neg B$$

• For example, for the unsatisfiable concept " A_I ", there are two sets of axioms.

$$ax_1:A_1 \sqsubseteq \underline{\neg A} \sqcap A_2 \sqcap A_3 \\ ax_2:A_2 \sqsubseteq \underline{A} \sqcap A_4$$

$$ax_1:A_1 \sqsubseteq \neg A \sqcap A_2 \sqcap A_3$$

$$ax_3:A_3 \sqsubseteq A_4 \sqcap A_5$$

$$ax_4:A_4 \sqsubseteq \forall s.B \sqcap C$$

$$ax_5:A_5 \sqsubseteq \exists s. \neg B$$

Minimal Unsatisfiability Preserving Sub-TBoxes (MUPS)

Definition 1 Let A be a concept which is unsatisfiable in a TBox \mathcal{T} . A set $\mathcal{T}' \subseteq \mathcal{T}$ is a minimal unsatisfiability-preserving sub-TBox (MUPS) of \mathcal{T} if

- A is unsatisfiable in T', and
- A is satisfiable in every sub-TBox $T'' \subset T'$.

We will abbreviate the set of MUPS of \mathcal{T} and A by $mups(\mathcal{T}, A)$.

$$mups(T^*, A_1) = \{\{ax_1, ax_2\}, \{ax_1, ax_3, ax_4, ax_5\}\}$$

- The MUPS of an unsatisfiable concept imply the solutions for repairing.
 - → Remove at least one axiom from each axiom set in the MUPS

Example

```
mups(\mathcal{T}^*, A_1) = \{\{ax_1, ax_2\}, \{ax_1, ax_3, ax_4, ax_5\}\}
mups(\mathcal{T}^*, A_3) = \{\{ax_3, ax_4, ax_5\}\}
mups(\mathcal{T}^*, A_6) = \{\{ax_1, ax_2, ax_4, ax_6\}, \{ax_1, ax_3, ax_4, ax_5, ax_6\}\}
mups(\mathcal{T}^*, A_7) = \{\{ax_4, ax_7\}\}
```

 Possible ways of repairing all the unsatisfiable concepts in the ontology:

$$\{ax_1, ax_3, ax_4\}$$

How to represent all these possibilities?

Minimal Incoherence Preserving Sub-TBox (MIPS)

Definition 2 Let \mathcal{T} be an incoherent TBox. A TBox $\mathcal{T}' \subseteq \mathcal{T}$ is a *minimal incoherence-preserving sub-TBox (MIPS) of* \mathcal{T} if

- T' is incoherent, and
- every sub-TBox $T'' \subset T'$ is coherent.

```
mups(\mathcal{T}^*, A_1) = \{\{ax_1, ax_2\}, \{ax_1, ax_3, ax_4, ax_5\}\}
mups(\mathcal{T}^*, A_3) = \{\{ax_3, ax_4, ax_5\}\}\}
mups(\mathcal{T}^*, A_6) = \{\{ax_1, ax_2, ax_4, ax_6\},
\{ax_1, ax_3, ax_4, ax_5, ax_6\}\}
mups(\mathcal{T}^*, A_7) = \{\{ax_4, ax_7\}\}
```

We will abbreviate the set of MIPS of \mathcal{T} by $mips(\mathcal{T})$. For \mathcal{T}^* we get three MIPS:

$$mips(\mathcal{T}^*) = \{\{ax_1, ax_2\}, \{ax_3, ax_4, ax_5\}, \{ax_4, ax_7\}\}$$

A possible repairing is $\{ax_i\} \cup \{ax_j\} \cup \{ax_k\}$, where

- $ax_i \in \{ax_1, ax_2\}$
- $ax_j \in \{ax_3, ax_4, ax_5\}$
- $ax_k \in \{ax_4, ax_7\}$

Exercise – homework for credit

Given the following axioms in an ontology:

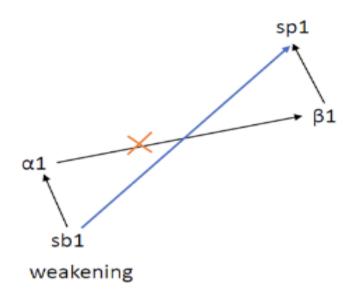
 $A \sqsubseteq B$; $A \sqsubseteq E$; $B \sqsubseteq C$; $B \sqsubseteq D$; $C \sqsubseteq F$; $D \sqsubseteq F$;

 $F \sqsubseteq G$; $E \sqsubseteq G$; $A \sqsubseteq \neg G$. Debug the ontology.

Compute MIPS and MUPS

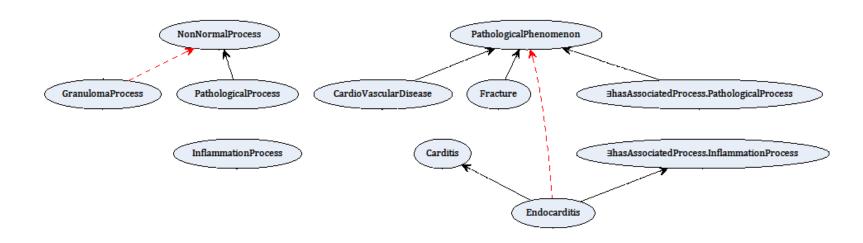
Axiom Weakening

Problem with removing wrong axioms


When removing wrong axioms also correct knowledge may be removed.

How to mitigate this effect?

M


Axiom weakening

For a given wrong axiom, find a weaker axiom that is correct and add to the ontology.

Completing the is-a structure of ontologies

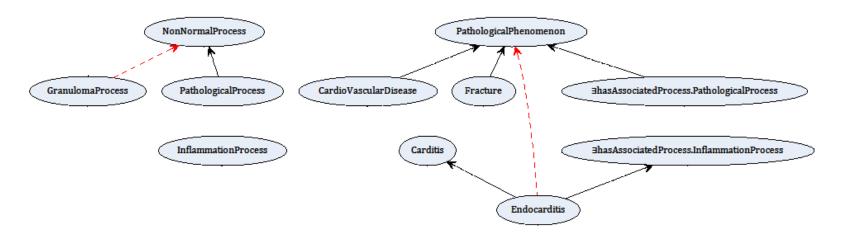
Example

Repairing actions:

```
{Endocarditis ⊑ PathologicalPhenomenon, GranulomaProcess ⊑ NonNormalProcess} 
{Carditis ⊑ CardioVascularDisease, GranulomaProcess ⊑ PathologicalProcess} 
{Carditis ⊑ Fracture, GranulomaProcess ⊑ NonNormalProcess}
```

Description logic EL

Concepts


Atomic concept	A
Universal concept	Ţ
Intersection of concepts	$C\sqcap D$
Existential restriction	∃r. <i>C</i>

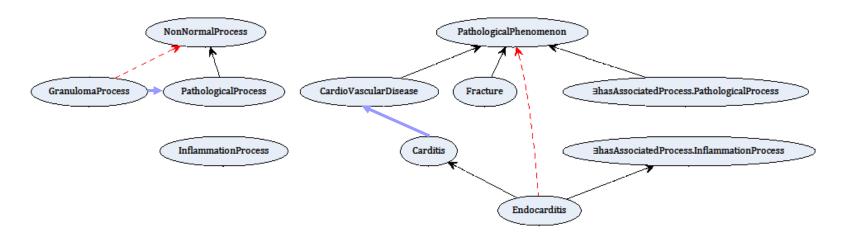
 Terminological axioms: equivalence and subsumption

Generalized Tbox Abduction Problem – GTAP(**T**,**C**,Or,M)

- Given
 - □ **T** a Tbox in EL
 - □ C- a set of atomic concepts in T
 - \square M = {Ai \subseteq Bi}i=1..n and \forall i:1..n: Ai, Bi \in C
 - \square Or: $\{C_i \subseteq D_i \mid C_i, D_i \in C\} \rightarrow \{true, false\}$
- Find
 - □ S = {Ei ⊆ Fi}i=1..k such that
 ∀ i:1..k: Ei, Fi ∈ C and Or(Ei ⊆ Fi) = true
 and T U S is consistent and T U S |= M

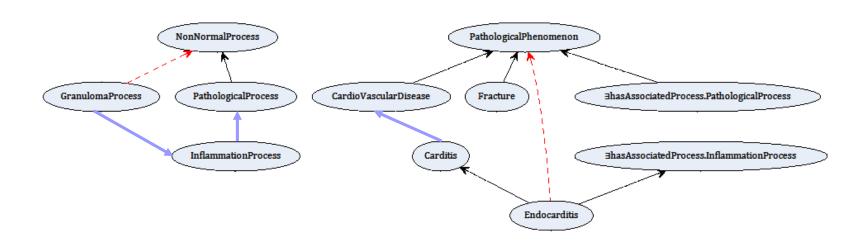
GTAP - example

 $C = \{ \ Granuloma Process, Cardio Vascular Disease, Pathological Phenomenon, Fracture, Endocarditis, Carditis, Inflammation Process, Pathological Process, Non Normal Process \}$


 $T = \{ \text{ GranulomaProcess } \sqsubseteq \top, \text{ hasAssociatedProcess } \sqsubseteq \top \times \top, \\ \text{ CardioVascularDisease } \sqsubseteq \text{ PathologicalPhenomenon, Fracture } \sqsubseteq \text{ PathologicalPhenomenon,} \\ \exists \text{ hasAssociatedProcess.PathologicalProcess } \sqsubseteq \text{ PathologicalPhenomenon,} \\ \text{ Endocarditis } \sqsubseteq \text{ Carditis, Endocarditis } \sqsubseteq \exists \text{ hasAssociatedProcess.InflammationProcess,} \\ \text{ PathologicalProcess } \sqsubseteq \text{ NonNormalProcess } \}$

 $M = \{ \text{ Endocarditis } \sqsubseteq \text{ Pathological Phenomenon, Granuloma Process } \sqsubseteq \text{ NonNormal Process } \}$

Preference criteria

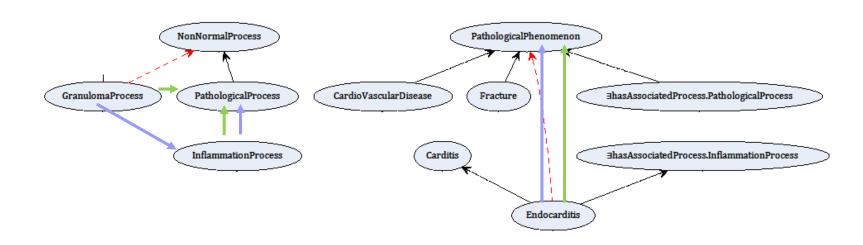

There can be many solutions for GTAP

Preference criteria

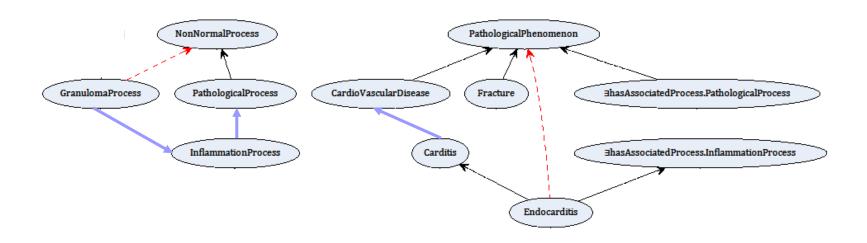
There can be many solutions for GTAP

Not all are equally interesting.

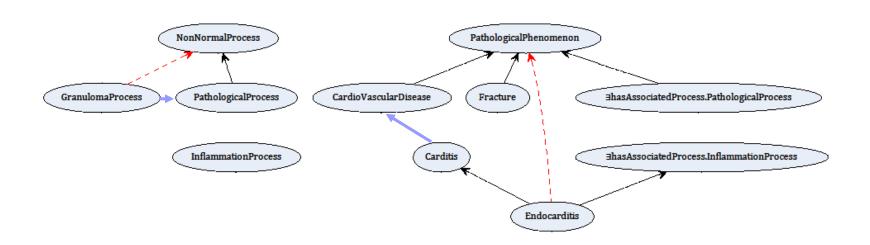
.


More informative

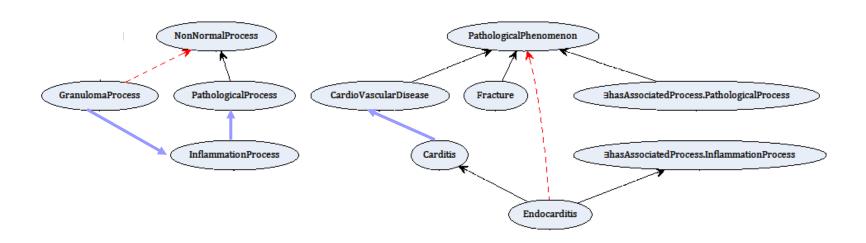
- Let S and S' be two solutions to GTAP(**T**,**C**,Or,M). Then,
- S is more informative than S' iff **T** U S |= S' but not **T** U S' |= S
- S is equally informative as S' iff **T** U S |= S' and **T** U S' |= S


More informative

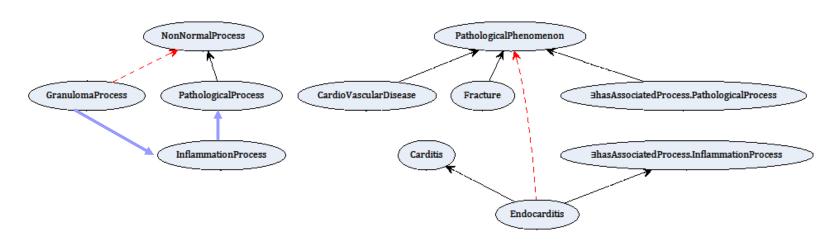
'Blue' solution is more informative than 'green' solution


Semantic maximality

A solution S to GTAP(T,C,Or,M) is semantically maximal iff there is no solution S' which is more informative than S.


Subset minimality

A solution S to GTAP(T,C,Or,M) is subset minimal iff there is no proper subset S' of S that is a solution.


Combining with priority for semantic maximality

A solution S to GTAP(T,C,Or,M) is maxmin optimal iff S is semantically maximal and there is no other semantically maximal solution that is a proper subset of S.

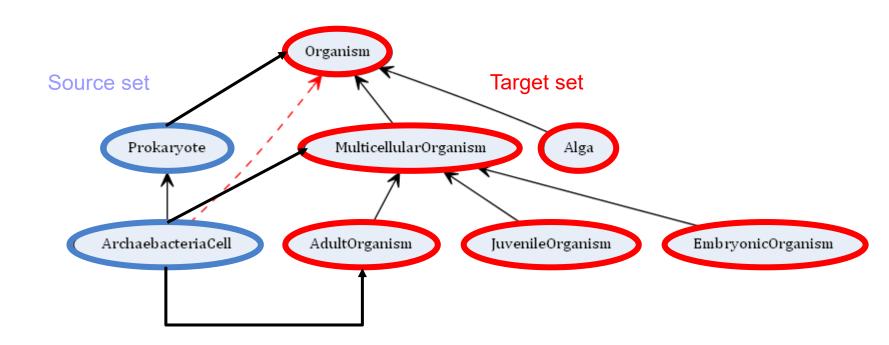
Combining with priority for subset minimality

A solution S to GTAP(T,C,Or,M) is minmax optimal iff S is subset minimal and there is no other subset minimal solution that is more informative than S.

Combining with equal preferences

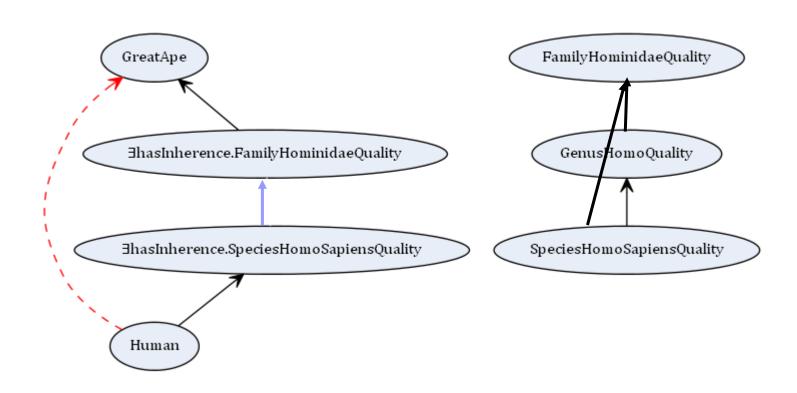
- A solution S to GTAP(T,C,Or,M) is skyline optimal iff there is no other solution that is a proper subset of S and that is equally informative than S.
 - All subset minimal, minmax optimal and maxmin optimal solutions are also skyline optimal solutions.
 - Semantically maximal solutions may or may not be skyline optimal.

Preference criteria - conclusions

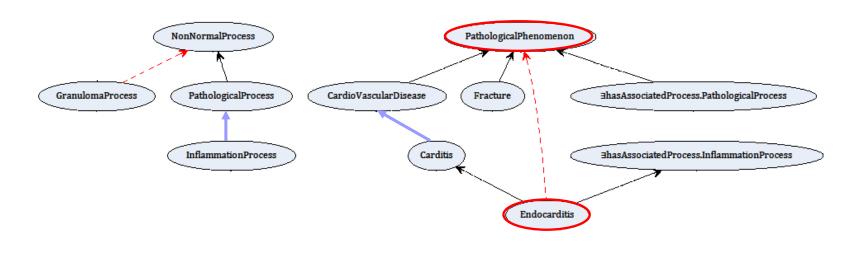

- In practice it is not clear how to generate maxmin or semantically maximal solutions (the preferred solutions)
- Skyline optimal solutions are the next best thing and are easy to generate

Approach

- Input
 - □ Normalized EL TBox
 - Set of missing is-a relations (correct according to the domain)
- Output a skyline-optimal solution to GTAP
- Iteration of three main steps:
 - □ Creating solutions for individual missing is-a relations
 - Combining individual solutions
 - Trying to improve the result by finding a solution which introduces additional new knowledge (more informative)


m

Intuition 1

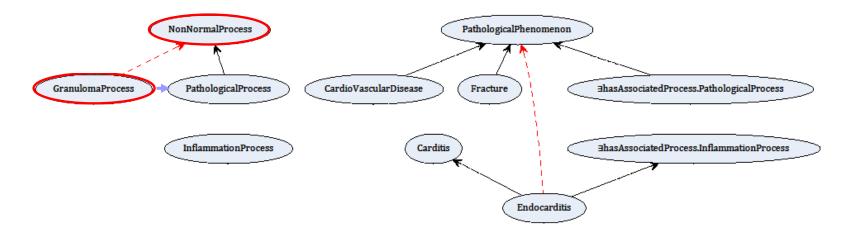


Intuitions 2/3

Example – repairing single is–a relation

- Endocarditis <u>E PathologicalPhenomenon</u>
- -Endocarditis Fracture
- Endocarditis <u>E Cardio Vascular Disease</u>
- -Carditis <u>E PathologicalPhenomenon</u>
- -Carditis 🗀 Fracture

Carditis <u>CardioVascularDisease</u>


InflammationProcess $\stackrel{.}{\sqsubseteq}$ PathologicalProcess

false

false

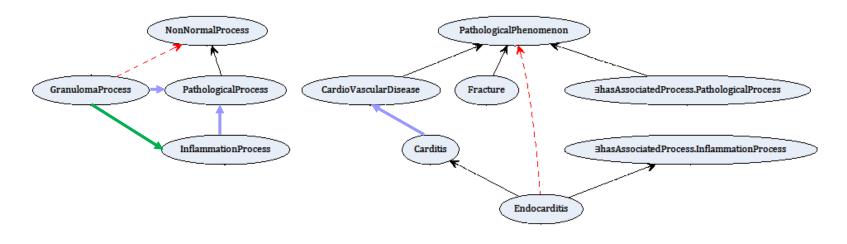
М

Example – repairing single is–a relation

GranulomaProcess <u>i</u> NonNormalProcess GranulomaProcess <u>i</u> PathologicalProcess

Algorithm - Repairing multiple is-a relations

- Combine solutions for individual missing is-a relations
- Remove redundant relations while keeping the same level of informativness
- Resulting solution is a skyline optimal solution


```
{InflammationProcess <u>□</u> PathologicalProcess,
Carditis <u>□</u> CardioVascularDisease,
GranulomaProcess <u>□</u> PathologicalProcess}
```

.

Algorithm – improving solution

- Solution S from previous step may contain relations which are not derivable from the ontology.
- These can be seen as new missing is-a relations.
- We can solve a new GTAP problem: GTAP(T U S, C, Or, S)

Example – improving solutions

GranulomaProcess <u>□</u> InflammationProcess

Algorithm properties

- Sound
- Skyline optimal solutions

Experiments

Two use-cases

- Case 1: given missing is-a relations
 AMA and a fragment of NCI-A ontology OAEI 2013
 - AMA (2744 concepts) 94 missing is-a relations
 → 3 iterations, 101 in repairing (47 additional new knowledge)
 - NCI-A (3304 concepts) 58 missing is-a relations
 → 3 iterations, 54 in repairing (10 additional new knowledge)
- Case 2: no given missing is-a relations
 Modified BioTop ontology
 - Biotop (280 concepts, 42 object properties)
 randomly choose is-a relations and remove them: 47 'missing'
 → 4 iterations, 41 in repairing (40 additional new knowledge)

Repairing ontologies using debugging, weakening and completing

Lab session

Further reading

Starting points for further studies

Further reading ontology repairing

Debugging and Completing Ontologies

 Lambrix P, Completing and Debugging Ontologies: state of the art and challenges, 2019. <u>arXiv:1908.03171</u>

Debugging Ontologies

- Schlobach S, Cornet R. Non-Standard Reasoning Services for the Debugging of Description Logic Terminologies. 18th International Joint Conference on Artificial Intelligence - IJCAI03, 355-362, 2003.
- Schlobach S. <u>Debugging and Semantic Clarification by Pinpointing</u>. 2nd European Semantic Web Conference - ESWC05, LNCS 3532, 226-240, 2005.

Further reading ontology repairing

Completing ontologies

- Fang Wei-Kleiner, Zlatan Dragisic, Patrick Lambrix. <u>Abduction Framework for Repairing Incomplete EL Ontologies: Complexity Results and Algorithms</u>. 28th AAAI Conference on Artificial Intelligence AAAI 2014, 1120-1127, 2014.
- Lambrix P, Ivanova V, <u>A unified approach for debugging is-a structure and mappings in networked taxonomies</u>, *Journal of Biomedical Semantics* 4:10, 2013.
- Lambrix P, Liu Q, <u>Debugging the missing is-a structure within taxonomies</u> networked by partial reference alignments, *Data & Knowledge Engineering* 86:179-205, 2013.

Further reading ontology repairing

Combining removing, weakening and completing

 Ying Li, Patrick Lambrix. Repiaring EL ontologies using weakening and completing, ESWC 2023.