
Description logics

Description logics

◼ A family of knowledge representation
languages

◼ Uses in different application areas (e.g.,
software management, configuration
management, natural language
processing, clinical information systems,
information retrieval)

◼ Key technology for Ontologies and the
Semantic Web

Ontologies, Description Logics

and OWL terminology

Ontologies DL OWL

concept concept class

relation role (binary) property

axiom axiom axiom

instance individual individual

Outline

◼ DL languages

 syntax and semantics

◼ DL reasoning services

 algorithms, complexity

◼ DL systems

◼ DLs for the web

Example

Teams have at least two members, while

large teams have at least 10 members.

Sports teams are teams which have only

athletes as members. A football team is a

team which has at least 11 members and all

the members are football players. Football

players are athletes. Real Madrid is a

football team that has Eden Hazard as a

member.

DL SYNTAX

Tbox and Abox

TBOX

Concept and role taxonomies

Intensional knowledge

ABOX

Individuals

Extensional knowledge

Reasoner

AL
R atomic role, A atomic concept

C,D → A | (atomic concept)

T | (universal concept, top) owl:thing

⊥ | (bottom concept) owl:nothing

A | (atomic negation) owl:complementOf

C  D | (conjunction) owl:intersectionOf

R.C | (value restriction) owl:allValuesFrom

R.T (limited existential quantification)

owl:someValuesFrom

AL[X]
C C (concept negation) owl:complementOf

U C U D (disjunction) owl:unionOf

E R.C (existential quantification)

owl:someValuesFrom

N ≥ n R, ≤ n R (number restriction)

owl:maxCardinality, owl:minCardinality

Q ≥ n R.C, ≤ n R.C (qualified number restriction)

owl:maxQualifiedCardinality,owl:minQualifiedCardinality

Concepts and relations

Team

(Team)

Team

(not Team)

Team  ≥ 10 hasMember

(Team and at least 10 members)

Team  ≤ 10 hasMember

(Team and at most 10 members)

Concept/class

Relation/role/property

Team   hasMember.Football-player

(Team and all members are football players)

Team   hasMember.Football-player

(Team and there is a member that is a football player)

Concepts and relations

AL[X]

R R  S (role conjunction)

I R- (inverse roles)

H (role hierarchies)

F u1 = u2, u1 ≠ u2 (feature (dis)agreements)

S[X]

S ALC + transitive roles

SHIQ ALC + transitive roles

+ role hierarchies

+ inverse roles

+ number restrictions

Tbox - Terminological axioms

◼ C = D (R = S)

owl:equivalentClass / owl:equivalentProperty

◼ C  D (R  S)

rdfs:subClassOf / rdfs:subPropertyOf

Football-player  Athlete

(Every football player is an athlete)

◼ (disjoint C D)
owl:disjointWith

Tbox

◼ An equality whose left-hand side is an
atomic concept is a definition.

◼ A finite set of definitions T is a Tbox (or
terminology) if no symbolic name is defined
more than once.

Example

Team  ≥ 2 hasMember

Large-Team = Team  ≥ 10 hasMember

Sports-team = Team   hasMember.Athlete

Football-Team = Team  ≥ 11 hasMember

  hasMember.Football-player

Football-player  Athlete

DL as sublanguage of FOPL

Team(this)

^

( x1,...,x11:

hasMember(this,x1) ^ … ^ hasMember(this,x11)

^ x1 ≠ x2 ^ … ^ x10 ≠ x11)

^

( x: hasMember(this,x) → Football-player(x))

Abox

◼ Assertions about individuals:

C(a)

R(a,b)

Example

Football-Team(Real_Madrid)

hasMember(Real_Madrid, Eden_Hazard)

Knowledge base

A knowledge base is a tuple < T, A >

where T is a Tbox and A is an Abox.

Example

Team  ≥ 2 hasMember

Large-Team = Team  ≥ 10 hasMember

Sports-team = Team   hasMember.Athlete

Football-Team = Team  ≥ 11 hasMember

  hasMember.Football-player

Football-player  Athlete

Football-Team(Real_Madrid)

hasMember(Real_Madrid, Eden_Hazard)

Example - OWL

<Declaration> <ObjectProperty IRI="#hasmember"/> </Declaration>

<Declaration> <Class IRI="#football-player"/> </Declaration>

<Declaration> <Class IRI="#athlete"/> </Declaration>

<Declaration> <Class IRI="#team"/> </Declaration>

<Declaration> <Class IRI="#large-team"/> </Declaration>

<Declaration> <Class IRI="#sports-team"/> </Declaration>

<Declaration> <Class IRI="#football-team"/> </Declaration>

<Declaration> <NamedIndividual IRI="#Real_Madrid"/> </Declaration>

<Declaration> <NamedIndividual IRI="#Eden_Hazard"/> </Declaration>

Example - OWL

Large-Team = Team  ≥ 10 hasMember

<EquivalentClasses>

<Class IRI="#large-team"/>

<ObjectIntersectionOf>

<Class IRI="#team"/>

<ObjectMinCardinality cardinality="10">

<ObjectProperty IRI="#hasmember"/>

</ObjectMinCardinality>

</ObjectIntersectionOf>

</EquivalentClasses>

Example - OWL
Football-Team = Team  ≥ 11 hasMember   hasMember.Football-player

<EquivalentClasses>

<Class IRI="#football-team"/>

<ObjectIntersectionOf>

<Class IRI="#team"/>

<ObjectAllValuesFrom>

<ObjectProperty IRI="#hasmember"/>

<Class IRI="#football-player"/>

</ObjectAllValuesFrom>

<ObjectMinCardinality cardinality="11">

<ObjectProperty IRI="#hasmember"/>

</ObjectMinCardinality>

</ObjectIntersectionOf>

</EquivalentClasses>

DL SEMANTICS

AL (Semantics)

An interpretation I consists of a non-empty set

I (the domain of the interpretation) and an

interpretation function .I which assigns to

every atomic concept A a set AI I and to

every atomic role R a binary relation

RI I I.

The interpretation function is extended to

concept definitions using inductive definitions.

AL (Semantics)

C,D → A | (atomic concept)

T | (universal concept)

⊥ | (bottom concept)

A | (atomic negation)

C  D | (conjunction)

R.C | (value restriction)

R.T | (limited existential

quantification)

TI = I

⊥I = Ø

(A)I = I \ AI

(CD)I = CIDI

( R.C)I =

{a  I|b.(a,b) RI→b CI }

( R.T)I = {a  I| b.(a,b) RI}

ALC (Semantics)

( C)I = I \ CI

(C U D)I = CI U DI

(≥ n R)I = {a  I| # {b  I | (a,b) RI } ≥ n }

(≤ n R)I = {a  I| # {b  I | (a,b) RI } ≤ n }

( R.C)I = {a  I| b  I : (a,b) RI ^ b  CI}

Semantics
Individual i

iI I

Unique Name Assumption:

if i1 ≠ i2 then i1
I ≠ i2

I

Semantics

An interpretation .I is a model for a
terminology T iff

CI = DI for all C = D in T

CI DI for all a C  D in T

CIDI = Ø for all (disjoint C D) in T

Semantics

An interpretation .I is a model for a

knowledge base <T, A > iff

.I is a model for T

aI  CI for all C(a) in A

<aI,bI>RI for all R(a,b) in A

Semantics - acyclic Tbox

Bird = Animal   Skin.Feather

I = {tweety, goofy, fea1, fur1}

AnimalI = {tweety, goofy}

FeatherI = {fea1}

SkinI = {<tweety,fea1>, <goofy,fur1>}

→ BirdI = {tweety}

Exercise - Homework for credits

Create an interpretation for:

Team  ≥ 2 hasMember

Large-Team = Team  ≥ 10 hasMember

Sports-team = Team   hasMember.Athlete

Football-Team = Team  ≥ 11 hasMember

  hasMember.Football-player

Football-player  Athlete

Football-Team(Real_Madrid)

hasMember(Real_Madrid, Eden_Hazard)

Semantics - cyclic Tbox

QuietPerson = Person   Friend.QuietPerson

(A = F(A))

I = {john, sue, andrea, bill}

PersonI = {john, sue, andrea, bill}

FriendI = {<john,sue>, <andrea,bill>, <bill,bill>}

→ QuietPersonI ={john, sue}

→ QuietPersonI ={john, sue, andrea, bill}

Semantics - cyclic Tbox

Descriptive semantics: A = F(A) is a constraint
stating that A has to be some solution for the
equation.

◼ Not appropriate for defining concepts

◼ Necessary and sufficient conditions for
concepts

Human = Mammal   Parent

  Parent.Human

Semantics - cyclic Tbox

Least fixpoint semantics: A = F(A) specifies that A is to
be interpreted as the smallest solution (if it exists) for
the equation.

◼ Appropriate for inductively defining concepts

DG = EmptyDG U Non-Empty-DG

Non-Empty-DG = Node   Arc.Non-Empty-DG

Human = Mammal   Parent   Parent.Human →
Human = ⊥

Semantics - cyclic Tbox

Greatest fixpoint semantics: A = F(A) specifies that A is
to be interpreted as the greatest solution (if it exists)
for the equation.

◼ Appropriate for defining concepts whose individuals
have circularly repeating structure

FoB = Blond   Child.FoB

Human = Mammal   Parent   Parent.Human

Horse = Mammal   Parent   Parent.Horse

→ Human = Horse

Open world vs closed

world semantics
Databases: closed world reasoning

database instance represents one interpretation

→ absence of information interpreted as negative
information

“complete information”

query evaluation is finite model checking

DL: open world reasoning

Abox represents many interpretations (its models)

→ absence of information is lack of information

“incomplete information”

query evaluation is logical reasoning

Open world vs closed

world semantics

hasChild(Jocasta, Oedipus)

hasChild(Jocasta, Polyneikes)

hasChild(Oedipus, Polyneikes)

hasChild(Polyneikes, Thersandros)

patricide(Oedipus)

 patricide(Thersandros) (not represented in DB)

Does it follow from the Abox that

hasChild.(patricide  hasChild.  patricide)(Jocasta) ?

DL REASONING

Example

Teams have at least two members, while

large teams have at least 10 members.

Sports teams are teams which have only

athletes as members. A football team is a

team which has at least 11 members and all

the members are football players. Football

players are athletes. Real Madrid is a

football team that has Eden Hazard as a

member.

Example

Team  ≥ 2 hasMember

Large-Team = Team  ≥ 10 hasMember

Sports-team = Team   hasMember.Athlete

Football-Team = Team  ≥ 11 hasMember

  hasMember.Football-player

Football-player  Athlete

Football-Team(Real_Madrid)

hasMember(Real_Madrid, Eden_Hazard)

Example

Every team has at least 2 members

Every large team is a team and has at least 10 members

Every sports team is a team and has only athletes as members

Every football team is a team and has at least 11 members

and has only football players as members

Example

Every team has at least 2 members

Every large team is a team and has at least 10 members

Every sports team is a team and has only athletes as members

Every football team is a team and has at least 11 members

and has only football players as members

Reasoning:

Every football team is a large team

Every football team is a sports team

Example

Real Madrid is an instance of football team

Real Madrid has member Eden Hazard

Example
Reasoning:

Real Madrid is an instance of football team

Real Madrid is an instance of large team

Real Madrid is an instance of team

Real Madrid is an instance of sports team

Real Madrid has at least 11 members

All members in Real Madrid are football players

All members in Real Madrid are athletes

Real Madrid has member Eden Hazard

Eden Hazard is an instance of football player

Eden Hazard is an instance of athlete

Reasoning services

◼ Satisfiability of concept

◼ Subsumption between concepts

◼ Equivalence between concepts

◼ Disjointness of concepts

◼ Classification

◼ Instance checking

◼ Realization

◼ Retrieval

◼ Knowledge base consistency

Reasoning services

◼ Reduction to subsumption

C is unsatisfiable iff C is subsumed by ⊥

C and D are equivalent iff C is subsumed by D

and D is subsumed by C

C and D are disjoint iff C  D is subsumed by ⊥

◼ The statements also hold w.r.t. a Tbox.

Reasoning services

◼ Reduction to unsatisfiability

C is subsumed by D iff C  D is unsatisfiable

C and D are equivalent iff

both (C  D) and (D  C) are
unsatisfiable

C and D are disjoint iff C  D is unsatisfiable

◼ The statements also hold w.r.t. a Tbox.

Tableau algorithms

◼ To prove that C subsumes D:

 If C subsumes D, then it is impossible for an

individual to belong to D but not to C.

 Idea: Create an individual that belongs to D

and not to C and see if it causes a

contradiction.

 If always a contradiction (clash) then

subsumption is proven. Otherwise, we have

found a model that contradicts the

subsumption.
50

Tableau algorithms

◼ Based on constraint systems.

S = { x: C  D }

Add constraints according to a set of

propagation rules

Until clash or no constraint is applicable

51

Tableau algorithms –

de Morgan rules

  C → C

 (A  B) →  A U  B

 (A U B) →  A   B

 ( R.C) →  R.( C)

 ( R.C) →  R.( C)

52

Tableau algorithms – constraint

propagation rules

◼ S →  {x:C1, x:C2} U S

if x: C1  C2 in S

and either x:C1 or x:C2 is not in S

◼ S →U {x:D} U S

if x: C1 U C2 in S and neither x:C1 or x:C2

is in S, and D = C1 or D = C2
53

Tableau algorithms – constraint

propagation rules
◼ S → {y:C} U S

if x:  R.C in S and xRy in S and y:C is not
in S

◼ S →  {xRy, y:C} U S

if x:  R.C in S and y is a new variable and
there is no z such that both xRz and z:C
are in S 54

Example

◼ ST: Tournament

  hasParticipant.Swedish

◼ SBT: Tournament

  hasParticipant.(Swedish  Belgian)

55

Example 1

◼ SBT => ST?

◼ S = { x:

(Tournament   hasParticipant.Swedish)

 (Tournament

  hasParticipant.(Swedish  Belgian))

}

56

Example 1

◼ S = { x:

(Tournament

U  hasParticipant. Swedish)

 (Tournament

  hasParticipant.(Swedish  Belgian))

}

57

Example 1

-rule:

◼ S = {

x: (Tournament

U  hasParticipant. Swedish)

 (Tournament

  hasParticipant.(Swedish  Belgian)),

x: Tournament

U  hasParticipant. Swedish,

x: Tournament,

x:  hasParticipant.(Swedish  Belgian)

}
58

Example 1

 -rule:

◼ S = {

x: (Tournament U  hasParticipant. Swedish)

 (Tournament

  hasParticipant.(Swedish  Belgian)),

x: Tournament

U  hasParticipant. Swedish,

x: Tournament,

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian)

}
59

Example 1

-rule:

◼ S= {x: (Tournament U  hasParticipant. Swedish)

 (Tournament

  hasParticipant.(Swedish  Belgian)),

x: Tournament U  hasParticipant. Swedish,

x: Tournament,

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian),

y: Swedish, y: Belgian }

60

Example 1

U-rule, choice 1

◼ S = { x: (Tournament U  hasParticipant. Swedish)

 (Tournament
  hasParticipant.(Swedish  Belgian)),

x: Tournament U  hasParticipant. Swedish,

x: Tournament,

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian),

y: Swedish, y: Belgian,

x: Tournament

}

→ clash
61

Example 1

U-rule, choice 2

◼ S = {x: (Tournament U  hasParticipant. Swedish)

 (Tournament
  hasParticipant.(Swedish  Belgian)),

x: Tournament U  hasParticipant. Swedish,

x: Tournament,

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian),

y: Swedish, y: Belgian,

x:  hasParticipant. Swedish

}

62

Example 1

choice 2 – continued

-rule

◼ S = {

x: (Tournament U  hasParticipant. Swedish)

 (Tournament   hasParticipant.(Swedish  Belgian)),

x: Tournament U  hasParticipant. Swedish,

x: Tournament,

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian),

y: Swedish, y: Belgian,

x:  hasParticipant. Swedish,

y:  Swedish

}

→ clash

63

Example 2

◼ ST => SBT?

◼ S = { x:

 (Tournament

  hasParticipant.(Swedish  Belgian))

 (Tournament   hasParticipant.Swedish)

}

64

Example 2

◼ S = { x:

(Tournament

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish)

}

65

Example 2

-rule

◼ S = {

x: (Tournament

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish

}

66

Example 2

 -rule

◼ S = {

x: (Tournament

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish

}

67

Example 2

U –rule, choice 1

◼ S = {

x: (Tournament

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish,

x: Tournament

}

→ clash

68

Example 2

U –rule, choice 2

◼ S = {

x: (Tournament

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish,

x:  hasParticipant.( Swedish U  Belgian)

}

69

Example 2
choice 2 continued

–rule

◼ S = {

x: (Tournament

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish,

x:  hasParticipant.( Swedish U  Belgian),

y: ( Swedish U  Belgian)

}

70

Example 2
choice 2 continued

U–rule, choice 2.1

◼ S = {

x: (Tournament

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish,

x:  hasParticipant.( Swedish U  Belgian),

y: ( Swedish U  Belgian),

y:  Swedish

} → clash

71

Example 2
choice 2 continued

U–rule, choice 2.2

◼ S = {

x: (Tournament

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish,

x:  hasParticipant.( Swedish U  Belgian),

y: ( Swedish U  Belgian),

y:  Belgian

} → ok, model

72

Complexity - languages

◼ Overview available via the DL home page at

http://dl.kr.org

Example tractable language:
A, T,⊥ , A, C  D, R.C, ≥ n R, ≤ n R

Reasons for intractability:

choices, e.g. C U D

exponential size models,
e.g interplay universal and existential quantification

Reasons for undecidability:
e.g. role-value maps R=S 73

http://dl.kr.org/

Complexity - languages

◼ Overview available via the DL home page at

http://dl.kr.org

Example tractable language:
A, T,⊥ , A, C  D, R.C, ≥ n R, ≤ n R

Reasons for intractability:

choices, e.g. C U D

exponential size models,
e.g interplay universal and existential quantification

Reasons for undecidability:
e.g. role-value maps R=S

http://dl.kr.org/

DL SYSTEMS

Systems

Late

1980s

Early

1990s

Mid

1990s

Late

1990s

undecidable

ExpTime

PSpace

NP

PTime

KL-ONE

NIKL

CLASSIC

Loom

CRACK, KRIS

FaCT, DLP, RACER

Investigation

Of complexity

starts

Systems

◼ Overview available via the DL home page

at http://dl.kr.org

◼ Current systems include: CEL, Cerebra

Enginer, FaCT++, fuzzyDL, HermiT,

KAON2, MSPASS, Pellet, QuOnto,

RacerPro, SHER

http://dl.kr.org/

Extensions

◼ Time

◼ Defaults

◼ Part-of

◼ Knowledge and belief

◼ Uncertainty (fuzzy, probabilistic)

DL AND THE WEB

OWL

◼ OWL-Lite, OWL-DL, OWL-Full: increasing
expressivity

◼ A legal OWL-Lite ontology is a legal OWL-DL
ontology is a legal OWL-Full ontology

◼ OWL-DL: expressive description logic, decidable

◼ XML-based

◼ RDF-based (OWL-Full is extension of RDF, OWL-
Lite and OWL-DL are extensions of a restriction of
RDF)

OWL-Lite

◼ Class, subClassOf, equivalentClass

◼ intersectionOf (only named classes and restrictions)

◼ Property, subPropertyOf, equivalentProperty

◼ domain, range (global restrictions)

◼ inverseOf, TransitiveProperty (*), SymmetricProperty,
FunctionalProperty, InverseFunctionalProperty

◼ allValuesFrom, someValuesFrom (local restrictions)

◼ minCardinality, maxCardinality (only 0/1)

◼ Individual, sameAs, differentFrom, AllDifferent

(*) restricted

OWL-DL

◼ Type separation (class cannot also be individual or property, property
cannot be also class or individual), Separation between DatatypeProperties
and ObjectProperties

◼ Class –complex classes, subClassOf, equivalentClass, disjointWith

◼ intersectionOf, unionOf, complementOf

◼ Property, subPropertyOf, equivalentProperty

◼ domain, range (global restrictions)

◼ inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty,
InverseFunctionalProperty

◼ allValuesFrom, someValuesFrom (local restrictions), oneOf, hasValue

◼ minCardinality, maxCardinality

◼ Individual, sameAs, differentFrom, AllDifferent

(*) restricted

OWL2

◼ OWL2 Full and OWL2 DL

◼ OWL2 DL compatible with SROIQ

◼ Punning

 IRI may denote both class and individual

 For reasoning they are considered separate entities

OWL2 profiles

◼ OWL2 EL (based on EL++)

 Essentially intersection and existential quantification

 SNOMED CT, NCI Thesaurus

◼ OWL2 QL (“query language”)

 Can be realized using relational database technology

 RDFS + small extensions

◼ OWL2 RL (“rule language”)

References

◼ Baader, Calvanese, McGuinness, Nardi, Patel-

Schneider. The Description Logic Handbook.

Cambridge University Press, 2003.

◼ Donini, Lenzerini, Nardi, Schaerf, Reasoning in

description logics. Principles of knowledge

representation. CSLI publications. pp 191-236.

1996.

◼ dl.kr.org

References

◼ https://www.w3.org/TR/2004/REC-owl-features-

20040210/

◼ https://www.w3.org/TR/2012/REC-owl2-quick-

reference-20121211/

◼ https://www.w3.org/TR/2012/REC-owl2-primer-

20121211/

https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/
https://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/

	Bild 1: Description logics
	Bild 2: Description logics
	Bild 3: Ontologies, Description Logics and OWL terminology
	Bild 4: Outline
	Bild 5: Example
	Bild 6: DL syntax
	Bild 7: Tbox and Abox
	Bild 8: AL
	Bild 9: AL[X]
	Bild 10: Concepts and relations
	Bild 11: Concepts and relations
	Bild 12: AL[X]
	Bild 13: S[X]
	Bild 14: Tbox - Terminological axioms
	Bild 15: Tbox
	Bild 16: Example
	Bild 17: DL as sublanguage of FOPL
	Bild 18: Abox
	Bild 19: Example
	Bild 20: Knowledge base
	Bild 21: Example
	Bild 22: Example - OWL
	Bild 23: Example - OWL
	Bild 24: Example - OWL
	Bild 25: DL Semantics
	Bild 26: AL (Semantics)
	Bild 27: AL (Semantics)
	Bild 28: ALC (Semantics)
	Bild 29: Semantics
	Bild 30: Semantics
	Bild 31: Semantics
	Bild 32: Semantics - acyclic Tbox
	Bild 33: Exercise - Homework for credits
	Bild 34: Semantics - cyclic Tbox
	Bild 35: Semantics - cyclic Tbox
	Bild 36: Semantics - cyclic Tbox
	Bild 37: Semantics - cyclic Tbox
	Bild 38: Open world vs closed world semantics
	Bild 39: Open world vs closed world semantics
	Bild 40: DL Reasoning
	Bild 41: Example
	Bild 42: Example
	Bild 43: Example
	Bild 44: Example
	Bild 45: Example
	Bild 46: Example
	Bild 47: Reasoning services
	Bild 48: Reasoning services
	Bild 49: Reasoning services
	Bild 50: Tableau algorithms
	Bild 51: Tableau algorithms
	Bild 52: Tableau algorithms – de Morgan rules
	Bild 53: Tableau algorithms – constraint propagation rules
	Bild 54: Tableau algorithms – constraint propagation rules
	Bild 55: Example
	Bild 56: Example 1
	Bild 57: Example 1
	Bild 58: Example 1
	Bild 59: Example 1
	Bild 60: Example 1
	Bild 61: Example 1
	Bild 62: Example 1
	Bild 63: Example 1
	Bild 64: Example 2
	Bild 65: Example 2
	Bild 66: Example 2
	Bild 67: Example 2
	Bild 68: Example 2
	Bild 69: Example 2
	Bild 70: Example 2
	Bild 71: Example 2
	Bild 72: Example 2
	Bild 73: Complexity - languages
	Bild 74: Complexity - languages
	Bild 75: Dl systems
	Bild 76: Systems
	Bild 77: Systems
	Bild 78: Extensions
	Bild 79: Dl and the web
	Bild 80: OWL
	Bild 81: OWL-Lite
	Bild 82: OWL-DL
	Bild 83: OWL2
	Bild 84: OWL2 profiles
	Bild 85: References
	Bild 86: References

