Description logics

Description logics

- A family of knowledge representation languages
- Uses in different application areas (e.g., software management, configuration management, natural language processing, clinical information systems, information retrieval)
- Key technology for Ontologies and the Semantic Web

Ontologies, Description Logics and OWL terminology

Ontologies DL OWL
concept
relation
axiom
instance
concept role (binary) property axiom individual
class axiom individual

Outline

- DL languages
\square syntax and semantics
- DL reasoning services
\square algorithms, complexity
- DL systems
- DLs for the web

Example

Teams have at least two members, while large teams have at least 10 members. Sports teams are teams which have only athletes as members. A football team is a team which has at least 11 members and all the members are football players. Football players are athletes. Real Madrid is a football team that has Eden Hazard as a member.

DL SYNTAX

Tbox and Abox

$\mathcal{A} \mathcal{L}$

R atomic role, A atomic concept
C,D \rightarrow A | (atomic concept)
T | (universal concept, top)
owl:thing
\perp | (bottom concept)
owl:nothing
$\neg \mathrm{A} \mid$ (atomic negation) owl:complementOf
$\mathrm{C} \cap \mathrm{D} \mid$ (conjunction) owl:intersectionOf
\forall R.C | (value restriction) owl:allValuesFrom
\exists R.T (limited existential quantification)
owl:someValuesFrom

C $\neg \mathrm{C}$ (concept negation) owl:complementOf
\mathcal{U} C U D (disjunction) owl:unionOf
$\mathcal{E} \quad \exists$ R.C (existential quantification)

owl:someValuesFrom

$\mathcal{N} \geq \mathrm{nR}, \leq \mathrm{nR} \quad$ (number restriction) owl:maxCardinality, owl:minCardinality
$Q \quad \geq \mathrm{nR} . \mathrm{C}, \leq \mathrm{n}$ R.C (qualified number restriction)
owl:maxQualifiedCardinality,owl:minQualifiedCardinality

Concepts and relations

Team
Concept/class
(Team)
\neg Team (not Team)

Relation/role/property
Team $\cap \geq 10$ hasMember
(Team and at least 10 members)
Team $\cap \leq 10$ hasMember
(Team and at most 10 members)

Concepts and relations

Team $\cap \forall$ hasMember.Football-player
(Team and all members are football players)

Team $\cap \exists$ hasMember.Football-player
(Team and there is a member that is a football player)

$\mathcal{A} \mathcal{L}[X]$

$\mathcal{R} \quad \mathrm{R} \cap \mathrm{S}$ (role conjunction)
$I \quad \mathrm{R}$ - (inverse roles)
\mathcal{H} (role hierarchies)
$\mathcal{F} \mathrm{u}_{1}=\mathrm{u}_{2}, \mathrm{u}_{1} \neq \mathrm{u}_{2}$ (feature (dis)agreements)

$S[X]$

$S \quad \mathcal{A} \mathcal{L} C+$ transitive roles

SHIQ $\mathcal{A} \mathcal{L} C+$ transitive roles

+ role hierarchies
+ inverse roles
+ number restrictions

Tbox - Terminological axioms

- C = D ($\mathrm{R}=\mathrm{S}$)
owl:equivalentClass / owl:equivalentProperty
$-C \subseteq D \quad(R \subseteq S)$
rdfs:subClassOf / rdfs:subPropertyOf
Football-player \subseteq Athlete
(Every football player is an athlete)
- (disjoint C D)
owl:disjointWith

Tbox

- An equality whose left-hand side is an atomic concept is a definition.
- A finite set of definitions T is a Tbox (or terminology) if no symbolic name is defined more than once.

Example

Team $\subseteq \geq 2$ hasMember
Large-Team = Team $\cap \geq 10$ hasMember
Sports-team = Team $\cap \forall$ hasMember.Athlete
Football-Team $=$ Team $\cap \geq 11$ hasMember
$\cap \forall$ hasMember.Football-player
Football-player \subseteq Athlete

DL as sublanguage of FOPL

Team(this)
\wedge
($\exists \mathrm{x}_{1}, \ldots, \mathrm{x}_{11}$:
hasMember(this, x 1$)^{\wedge}$... ^ hasMember(this, x 11)
$\left.{ }^{\wedge} \mathrm{X}_{1} \neq \mathrm{X}_{2}{ }^{\wedge} \ldots{ }^{\wedge} \mathrm{X}_{10} \neq \mathrm{X}_{11}\right)$
\wedge
$(\forall \mathrm{x}:$ hasMember(this, x$) \rightarrow$ Football-player(x))

Abox

- Assertions about individuals:
$\square \mathrm{C}(\mathrm{a})$
$\square R(a, b)$

Example

Football-Team(Real_Madrid) hasMember(Real_Madrid, Eden_Hazard)

Knowledge base

A knowledge base is a tuple $<T, A>$ where T is a Tbox and A is an Abox.

Example

Team $\subseteq \geq 2$ hasMember
Large-Team = Team $\cap \geq 10$ hasMember
Sports-team = Team $\cap \forall$ hasMember.Athlete
Football-Team = Team $\cap \geq 11$ hasMember
$\cap \forall$ hasMember.Football-player
Football-player \subseteq Athlete

Football-Team(Real_Madrid)
hasMember(Real_Madrid, Eden_Hazard)

Example - OWL

<Declaration> <ObjectProperty IRI="\#hasmember"/> </Declaration>
<Declaration> <Class IRI="\#football-player"/> </Declaration>
<Declaration> <Class IRI="\#athlete"/> </Declaration>
<Declaration> <Class IRI="\#team"/> </Declaration>
<Declaration> <Class IRI="\#large-team"/> </Declaration>
<Declaration> <Class IRI="\#sports-team"/> </Declaration>
<Declaration> <Class IRI="\#football-team"/> </Declaration>
<Declaration> <NamedIndividual IRI="\#Real_Madrid"/> </Declaration>
<Declaration> <NamedIndividual IRI="\#Eden_Hazard"/> </Declaration>

Example - OWL

Large-Team $=$ Team $\cap \geq 10$ hasMember
<EquivalentClasses>
<Class IRI="\#large-team"/>
<ObjectIntersectionOf>
<Class IRI="\#team"/>
<ObjectMinCardinality cardinality="10">
<ObjectProperty IRI="\#hasmember"/>
</ObjectMinCardinality>
</ObjectIntersectionOf>
</EquivalentClasses>

Example - OWL

Football-Team $=$ Team $\cap \geq 11$ hasMember $\cap \forall$ hasMember.Football-player
<EquivalentClasses>
<Class IRI="\#football-team"/>
<ObjectIntersectionOf>
<Class IRI="\#team"/>
<ObjectAllValuesFrom>
<ObjectProperty IRI="\#hasmember"/>
<Class IRI="\#football-player"/>
</ObjectAIIValuesFrom>
<ObjectMinCardinality cardinality="11">
<ObjectProperty IRI="\#hasmember"/>
</ObjectMinCardinality>
</ObjectIntersectionOf>
</EquivalentClasses>

DL SEMANTICS

$\mathcal{A} \mathcal{L}$ (Semantics)

An interpretation I consists of a non-empty set $\Delta^{\mathcal{J}}$ (the domain of the interpretation) and an interpretation function.${ }^{J}$ which assigns to every atomic concept A a set $A^{\mathcal{J}} \subseteq \Delta^{\mathcal{I}}$ and to every atomic role R a binary relation
$R^{\mathcal{I} \subseteq} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.

The interpretation function is extended to concept definitions using inductive definitions.

$\mathcal{A} \mathcal{L}$ (Semantics)

$\mathrm{C}, \mathrm{D} \rightarrow \mathrm{A} \mid$ (atomic concept)
T | (universal concept) $\quad \mathrm{T}^{J}=\Delta^{J}$
\perp (bottom concept) $\quad \perp^{\mathcal{I}}=\varnothing$
$\neg \mathrm{A} \mid$ (atomic negation) $\quad(\neg \mathrm{A})^{\mathcal{J}}=\Delta^{\mathcal{J}} \backslash \mathrm{A}^{\mathcal{J}}$
$\mathrm{C} \cap \mathrm{D} \mid$ (conjunction)
$(C \cap D)^{J}=C^{J} \cap D^{J}$
\forall R.C | (value restriction)
$(\forall \text { R.C })^{\mathfrak{J}}=$
$\left\{\mathrm{a} \in \Delta^{\mathcal{J}} \mid \forall \mathrm{b} .(\mathrm{a}, \mathrm{b}) \in \mathrm{R}^{\mathcal{J}} \rightarrow \mathrm{b} \in \mathrm{C}^{\mathcal{J}}\right\}$
\exists R.T | (limited existential $(\exists \mathrm{R} . \mathrm{T})^{\mathfrak{y}}=\left\{\mathrm{a} \in \Delta^{\mathfrak{J}} \mid \exists \mathrm{b} .(\mathrm{a}, \mathrm{b}) \in \mathrm{R}^{\mathcal{J}}\right\}$ quantification)

$\mathcal{A} \mathcal{L} C$ (Semantics)

$$
(\neg \mathrm{C})^{\mathcal{I}}=\Delta^{\mathcal{I}} \backslash \mathrm{C}^{\mathcal{I}}
$$

$(C \cup D)^{\mathfrak{J}}=C^{\mathfrak{I}} \cup D^{\mathfrak{I}}$
$(\geq n R)^{\mathcal{I}}=\left\{a \in \Delta^{\mathcal{I}} \mid \#\left\{b \in \Delta^{\mathcal{I}} \mid(a, b) \in R^{\mathcal{I}}\right\} \geq n\right\}$
$(\leq n R)^{\mathcal{I}}=\left\{a \in \Delta^{\mathcal{I}} \mid \#\left\{b \in \Delta^{\mathcal{I}} \mid(a, b) \in R^{\mathcal{I}}\right\} \leq n\right\}$
$(\exists \mathrm{R} . \mathrm{C})^{\mathcal{I}}=\left\{\mathrm{a} \in \Delta^{\mathcal{I}} \mid \exists \mathrm{b} \in \Delta^{\mathcal{I}}:(\mathrm{a}, \mathrm{b}) \in \mathrm{R}^{\mathcal{J} \wedge} \mathrm{b} \in \mathrm{C}^{\mathcal{J}}\right\}$

Semantics

Individual i
$\mathrm{i}^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

Unique Name Assumption: if $i_{1} \neq i_{2}$ then $i_{1}{ }^{J} \neq i_{2}{ }^{\text {g }}$

Semantics

An interpretation ${ }^{J}$ is a model for a terminology T iff
$\mathrm{C}^{\mathcal{J}}=\mathrm{D}^{\mathcal{J}}$ for all $\mathrm{C}=\mathrm{D}$ in T
$\mathrm{C}^{\mathfrak{J}} \subseteq \mathrm{D}^{\boldsymbol{g}}$ for all a $\mathrm{C} \subseteq \mathrm{D}$ in T
$\mathrm{C}^{J} \cap \mathrm{D}^{\boldsymbol{J}}=\varnothing$ for all (disjoint CD) in T

Semantics

An interpretation ${ }^{J}$ is a model for a knowledge base $<T, A>$ iff

${ }^{J}$ is a model for T

$$
\begin{array}{ll}
a^{\mathcal{I}} \in C^{\mathcal{J}} & \text { for all } C(a) \text { in } A \\
<a^{\mathfrak{J}}, b^{\mathcal{I}}>\in R^{\mathcal{I}} & \text { for all } R(a, b) \text { in } A
\end{array}
$$

Semantics - acyclic Tbox

Bird = Animal $\cap \forall$ Skin.Feather
$\Delta^{\mathcal{I}}=\{$ tweety, goofy, fea1, fur1\}
Animal ${ }^{\mathfrak{J}}=\{$ tweety, goofy $\}$
Feather $^{\mathcal{J}}=\{$ fea1 $\}$
Skin $^{\mathcal{J}}=\{<$ tweety,fea1>, <goofy,fur1>\}
$\rightarrow \operatorname{Bird}^{\mathcal{J}}=\{t w e e t y\}$

Exercise - Homework for credits

Create an interpretation for:

Team $\subseteq \geq 2$ hasMember
Large-Team = Team $\cap \geq 10$ hasMember
Sports-team $=$ Team $\cap \forall$ hasMember.Athlete Football-Team $=$ Team $\cap \geq 11$ hasMember
$\cap \forall$ hasMember.Football-player
Football-player \subseteq Athlete

Football-Team(Real_Madrid)
hasMember(Real_Madrid, Eden_Hazard)

Semantics - cyclic Tbox

QuietPerson $=$ Person $\cap \forall$ Friend.QuietPerson
($A=F(A)$)
$\Delta^{\mathcal{I}}=\{j o h n$, sue, andrea, bill $\}$
Person ${ }^{\mathcal{I}}=\{j o h n$, sue, andrea, bill\}
Friend ${ }^{\mathcal{J}}=\{<$ john,sue>, <andrea,bill>, <bill,bill>\}
\rightarrow QuietPerson $^{\mathfrak{I}}=\{j o h n$, sue $\}$
\rightarrow QuietPerson ${ }^{\mathcal{J}}=\{j o h n$, sue, andrea, bill\}

Semantics - cyclic Tbox

Descriptive semantics: $A=F(A)$ is a constraint stating that A has to be some solution for the equation.

- Not appropriate for defining concepts
- Necessary and sufficient conditions for concepts

Human $=$ Mammal $\cap \exists$ Parent $\cap \forall$ Parent.Human

Semantics - cyclic Tbox

Least fixpoint semantics: $A=F(A)$ specifies that A is to be interpreted as the smallest solution (if it exists) for the equation.

- Appropriate for inductively defining concepts

DG = EmptyDG U Non-Empty-DG
Non-Empty-DG $=$ Node $\cap \forall$ Arc.Non-Empty-DG

Human $=$ Mammal $\cap \exists$ Parent $\cap \forall$ Parent. Human \rightarrow Human $=\perp$

Semantics - cyclic Tbox

Greatest fixpoint semantics: $A=F(A)$ specifies that A is to be interpreted as the greatest solution (if it exists) for the equation.
■ Appropriate for defining concepts whose individuals have circularly repeating structure

FoB $=$ Blond $\cap \exists$ Child.FoB

Human = Mammal $\cap \exists$ Parent $\cap \forall$ Parent. Human Horse $=$ Mammal $\cap \exists$ Parent $\cap \forall$ Parent. Horse
\rightarrow Human $=$ Horse

Open world vs closed world semantics

Databases: closed world reasoning database instance represents one interpretation
\rightarrow absence of information interpreted as negative information
"complete information" query evaluation is finite model checking
DL: open world reasoning
Abox represents many interpretations (its models)
\rightarrow absence of information is lack of information
"incomplete information"
query evaluation is logical reasoning

Open world vs closed world semantics

hasChild(Jocasta, Oedipus)
hasChild(Jocasta, Polyneikes)
hasChild(Oedipus, Polyneikes)
hasChild(Polyneikes, Thersandros)
patricide(Oedipus)
\neg patricide(Thersandros) (not represented in DB)

Does it follow from the Abox that
\exists hasChild.(patricide $\cap \exists$ hasChild. \neg patricide)(Jocasta) ?

DL REASONING

Example

Teams have at least two members, while large teams have at least 10 members. Sports teams are teams which have only athletes as members. A football team is a team which has at least 11 members and all the members are football players. Football players are athletes. Real Madrid is a football team that has Eden Hazard as a member.

Example

Team $\subseteq \geq 2$ hasMember
Large-Team = Team $\cap \geq 10$ hasMember
Sports-team = Team $\cap \forall$ hasMember.Athlete
Football-Team = Team $\cap \geq 11$ hasMember
$\cap \forall$ hasMember.Football-player
Football-player \subseteq Athlete

Football-Team(Real_Madrid)
hasMember(Real_Madrid, Eden_Hazard)

Example

Every team has at least 2 members
Every large team is a team and has at least 10 members
Every sports team is a team and has only athletes as members
Every football team is a team and has at least 11 members and has only football players as members

Example

Every team has at least 2 members
Every large team is a team and has at least 10 members
Every sports team is a team and has only athletes as members
Every football team is a team and has at least 11 members and has only football players as members

Reasoning:
Every football team is a large team
Every football team is a sports team

Example

Real Madrid is an instance of football team

Real Madrid has member Eden Hazard

Example

Reasoning:

Real Madrid is an instance of football team
Real Madrid is an instance of large team
Real Madrid is an instance of team
Real Madrid is an instance of sports team
Real Madrid has at least 11 members
All members in Real Madrid are football players
All members in Real Madrid are athletes

Real Madrid has member Eden Hazard
Eden Hazard is an instance of football player
Eden Hazard is an instance of athlete

Reasoning services

- Satisfiability of concept
- Subsumption between concepts
- Equivalence between concepts
- Disjointness of concepts
- Classification
- Instance checking
- Realization
- Retrieval
- Knowledge base consistency

Reasoning services

- Reduction to subsumption
$\square \mathrm{C}$ is unsatisfiable iff C is subsumed by \perp
$\square \mathrm{C}$ and D are equivalent iff C is subsumed by D and D is subsumed by C
$\square \mathrm{C}$ and D are disjoint iff $\mathrm{C} \cap \mathrm{D}$ is subsumed by \perp
- The statements also hold w.r.t. a Tbox.

Reasoning services

- Reduction to unsatisfiability
$\square C$ is subsumed by D iff $C \cap \neg D$ is unsatisfiable
$\square \mathrm{C}$ and D are equivalent iff both $(C \cap \neg D)$ and $(D \cap \neg C)$ are unsatisfiable
$\square C$ and D are disjoint iff $C \cap D$ is unsatisfiable
- The statements also hold w.r.t. a Tbox.

Tableau algorithms

- To prove that C subsumes D:
\square If C subsumes D, then it is impossible for an individual to belong to D but not to C.
\square Idea: Create an individual that belongs to D and not to C and see if it causes a contradiction.
\square If always a contradiction (clash) then subsumption is proven. Otherwise, we have found a model that contradicts the subsumption.

Tableau algorithms

- Based on constraint systems.
$\square S=\{x: \neg C \cap D\}$
\square Add constraints according to a set of propagation rules
\square Until clash or no constraint is applicable

Tableau algorithms de Morgan rules

$$
\begin{aligned}
& \neg \neg \mathrm{C} \rightarrow \mathrm{C} \\
& \neg(\mathrm{~A} \cap \mathrm{~B}) \rightarrow \neg \mathrm{A} \cup \neg \mathrm{~B} \\
& \neg(\mathrm{~A} \cup \mathrm{~B}) \rightarrow \neg \mathrm{A} \cap \neg \mathrm{~B} \\
& \neg(\forall \mathrm{R} . \mathrm{C}) \rightarrow \exists \mathrm{R} .(\neg \mathrm{C}) \\
& \neg(\exists \mathrm{R} . \mathrm{C}) \rightarrow \forall \mathrm{R} .(\neg \mathrm{C})
\end{aligned}
$$

Tableau algorithms - constraint

 propagation rules$\boxed{S} \rightarrow_{\cap}\left\{x: \mathrm{C}_{1}, \mathrm{x}: \mathrm{C}_{2}\right\} \cup \mathrm{S}$
if $x: C_{1} \cap C_{2}$ in S and either $x: C_{1}$ or $x: C_{2}$ is not in S
$\because S \rightarrow_{U}\{x: D\} \cup S$
if $\mathrm{x}: \mathrm{C}_{1} \cup \mathrm{C}_{2}$ in S and neither $\mathrm{x}: \mathrm{C}_{1}$ or $\mathrm{x}: \mathrm{C}_{2}$ is in S , and $\mathrm{D}=\mathrm{C}_{1}$ or $\mathrm{D}=\mathrm{C}_{2}$

Tableau algorithms - constraint

 propagation rules$-S \rightarrow_{\forall}\{y: C\} \cup S$
if $x: \forall$ R.C in S and $x R y$ in S and $y: C$ is not in S

- $S \rightarrow{ }_{\exists}\{x R y, y: C\} \cup S$
if $x: \exists$ R.C in S and y is a new variable and there is no z such that both $x R z$ and $z: C$ are in S

Example

- ST: Tournament
$\cap \exists$ hasParticipant.Swedish
- SBT: Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)

Example 1

- SBT => ST?
- $\mathrm{S}=\{\mathrm{x}$:
\neg (Tournament $\cap \exists$ hasParticipant.Swedish) \cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)) \}

Example 1

- S = $\{\mathrm{x}$:
(\neg Tournament
U \forall hasParticipant. \neg Swedish)
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian))
\}

Example 1

\cap-rule:

- $S=\{$
x: (\neg Tournament U \forall hasParticipant. \neg Swedish)
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x: \neg Tournament
U \forall hasParticipant. \neg Swedish,
x: Tournament,
x: \exists hasParticipant.(Swedish \cap Belgian)
\}

Example 1

\exists-rule:

- $S=\{$
x: (\neg Tournament U \forall hasParticipant. \neg Swedish)
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x: \neg Tournament
U \forall hasParticipant. \neg Swedish,
x: Tournament,
$x: \exists$ hasParticipant.(Swedish \cap Belgian),
\mathbf{x} hasParticipant \mathbf{y}, \mathbf{y} : (Swedish \cap Belgian)
\}

Example 1

ค-rule:

- $S=\{x$: (\neg Tournament $U \forall$ hasParticipant. \neg Swedish $)$
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x: \neg Tournament $U \forall$ hasParticipant. \neg Swedish,
x: Tournament,
x: \exists hasParticipant.(Swedish \cap Belgian),
x hasParticipant y, y: (Swedish \cap Belgian),
y: Swedish, y: Belgian \}

Example 1

U-rule, choice 1

- $S=\{\mathrm{x}$: (\neg Tournament $\mathrm{U} \forall$ hasParticipant. \neg Swedish)
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x: \neg Tournament U \forall hasParticipant. \neg Swedish,
x: Tournament,
$x: \exists$ hasParticipant.(Swedish \cap Belgian),
x hasParticipant $\mathrm{y}, \mathrm{y}:($ Swedish \cap Belgian),
y : Swedish, y: Belgian,
x: \neg Tournament
\}
\rightarrow clash

Example 1

U-rule, choice 2

- $S=\{x$: (\neg Tournament $U \forall$ hasParticipant. \neg Swedish $)$
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x : \neg Tournament $\mathrm{U} \forall$ hasParticipant. \neg Swedish,
x: Tournament,
$x: \exists$ hasParticipant.(Swedish \cap Belgian),
x hasParticipant y, y : (Swedish \cap Belgian),
y : Swedish, y: Belgian,
x: \forall hasParticipant. \neg Swedish

Example 1

choice 2 - continued
\forall-rule

- $S=\{$
x: (\neg Tournament U \forall hasParticipant. \neg Swedish)
\cap (Tournament $\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x : \neg Tournament $\mathrm{U} \forall$ hasParticipant. \neg Swedish,
x: Tournament,
$\mathrm{x}: \exists$ hasParticipant.(Swedish \cap Belgian),
x hasParticipant y, y : (Swedish \cap Belgian),
y: Swedish, y: Belgian,
x: \forall hasParticipant. \neg Swedish,
$\mathrm{y}: \neg$ Swedish \}
\rightarrow clash

Example 2

- ST => SBT?
- $S=\{x$:
\neg (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish)
\}

Example 2

- $S=\{x:$
(\neg Tournament
$U \forall$ hasParticipant.(\neg Swedish $U \neg$ Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish) \}

Example 2

\cap-rule

- $S=\{$
x: (\neg Tournament
U \forall hasParticipant. $(\neg$ Swedish $U \neg$ Belgian) $)$
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x: (\neg Tournament
U \forall hasParticipant. $(\neg$ Swedish U \neg Belgian)),
x: Tournament,
x: \exists hasParticipant.Swedish
\}

Example 2

\exists-rule

- $S=\{$
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish $U \neg$ Belgian)),
x : Tournament,
x : \exists hasParticipant.Swedish, \mathbf{x} hasParticipant y, y : Swedish \}

Example 2

U -rule, choice 1

- $S=\{$
x: (\neg Tournament
$\mathrm{U} \forall$ hasParticipant.(\neg Swedish U \neg Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian)),
x: Tournament,
$\mathrm{x}: \exists$ hasParticipant.Swedish, x hasParticipant y, y : Swedish, x: \neg Tournament
\}
\rightarrow clash

Example 2

U -rule, choice 2

- $S=\{$
x: (\neg Tournament
$\mathrm{U} \forall$ hasParticipant.(\neg Swedish U \neg Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian)),
x: Tournament,
$\mathrm{x}: \exists$ hasParticipant.Swedish, x hasParticipant y, y : Swedish,
x: \forall hasParticipant.(\neg Swedish U \neg Belgian)
\}

Example 2

choice 2 continued
\forall-rule

- $S=\{$
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian))
(Tournament $\cap \exists$ hasParticipant.Swedish),
x: (\neg Tournament
U \forall hasParticipant. $(\neg$ Swedish $U \neg$ Belgian)),
x: Tournament,
$x: \exists$ hasParticipant.Swedish, x hasParticipant y, y : Swedish, x: \forall hasParticipant. (\neg Swedish U \neg Belgian),
y: (\neg Swedish U \neg Belgian)
\}

Example 2

choice 2 continued
U-rule, choice 2.1

- $S=\{$
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian)),
x: Tournament,
$\mathrm{x}: \exists$ hasParticipant.Swedish, x hasParticipant y, y : Swedish,
x: \forall hasParticipant. \neg Swedish U \neg Belgian),
y: (\neg Swedish $U \neg$ Belgian),
y: \neg Swedish
$\} \rightarrow$ clash

Example 2

choice 2 continued
U-rule, choice 2.2

- $S=\{$
x: (\neg Tournament
$\mathrm{U} \forall$ hasParticipant.(\neg Swedish U \neg Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x: (\neg Tournament
$\mathrm{U} \forall$ hasParticipant.(\neg Swedish $\mathrm{U} \neg$ Belgian)),
x: Tournament,
$\mathrm{x}: \exists$ hasParticipant.Swedish, x hasParticipant y, y : Swedish,
x : \forall hasParticipant.(\neg Swedish U \neg Belgian),
y: $(\neg$ Swedish $U \neg$ Belgian),
y: \neg Belgian
\} \rightarrow ok, model

Complexity - languages

- Overview available via the DL home page at http://dl.kr.org

Example tractable language:

$$
\mathrm{A}, \mathrm{~T}, \perp, \neg \mathrm{~A}, \mathrm{C} \cap \mathrm{D}, \forall \mathrm{R} . \mathrm{C}, \geq \mathrm{n} \mathrm{R}, \leq \mathrm{nR}
$$

Reasons for intractability:
choices, e.g. C U D
exponential size models, e.g interplay universal and existential quantification

Reasons for undecidability:
e.g. role-value maps $R=S$

Complexity - languages

- Overview available via the DL home page at http://dl.kr.org

Example tractable language:

$$
\mathrm{A}, \mathrm{~T}, \perp, \neg \mathrm{~A}, \mathrm{C} \cap \mathrm{D}, \forall \mathrm{R} . \mathrm{C}, \geq \mathrm{n} \mathrm{R}, \leq \mathrm{nR}
$$

Reasons for intractability:
choices, e.g. C U D
exponential size models, e.g interplay universal and existential quantification

Reasons for undecidability:
e.g. role-value maps $R=S$

DL SYSTEMS

Systems

Systems

- Overview available via the DL home page at http://dl.kr.org
- Current systems include: CEL, Cerebra Enginer, FaCT++, fuzzyDL, HermiT, KAON2, MSPASS, Pellet, QuOnto, RacerPro, SHER

Extensions

- Time
- Defaults
- Part-of
- Knowledge and belief
- Uncertainty (fuzzy, probabilistic)

DL AND THE WEB

OWL

■ OWL-Lite, OWL-DL, OWL-Full: increasing expressivity

- A legal OWL-Lite ontology is a legal OWL-DL ontology is a legal OWL-Full ontology
- OWL-DL: expressive description logic, decidable
- XML-based
- RDF-based (OWL-Full is extension of RDF, OWLLite and OWL-DL are extensions of a restriction of RDF)

OWL-Lite

- Class, subClassOf, equivalentClass
- intersectionOf (only named classes and restrictions)
- Property, subPropertyOf, equivalentProperty
- domain, range (global restrictions)
- inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty, InverseFunctionalProperty
- allValuesFrom, someValuesFrom (local restrictions)
- minCardinality, maxCardinality (only $0 / 1$)
- Individual, sameAs, differentFrom, AllDifferent
(*) restricted

OWL-DL

- Type separation (class cannot also be individual or property, property cannot be also class or individual), Separation between DatatypeProperties and ObjectProperties
- Class -complex classes, subClassOf, equivalentClass, disjointWith
- intersectionOf, unionOf, complementOf
- Property, subPropertyOf, equivalentProperty
- domain, range (global restrictions)
- inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty, InverseFunctionalProperty
- allValuesFrom, someValuesFrom (local restrictions), oneOf, hasValue
- minCardinality, maxCardinality
- Individual, sameAs, differentFrom, AllDifferent
(*) restricted

OWL2

- OWL2 Full and OWL2 DL
- OWL2 DL compatible with SROIQ
- Punning
\square IRI may denote both class and individual
\square For reasoning they are considered separate entities

OWL2 profiles

- OWL2 EL (based on EL++)
\square Essentially intersection and existential quantification
\square SNOMED CT, NCI Thesaurus
- OWL2 QL ("query language")
\square Can be realized using relational database technology
\square RDFS + small extensions
- OWL2 RL ("rule language")

References

- Baader, Calvanese, McGuinness, Nardi, PatelSchneider. The Description Logic Handbook. Cambridge University Press, 2003.
- Donini, Lenzerini, Nardi, Schaerf, Reasoning in description logics. Principles of knowledge representation. CSLI publications. pp 191-236. 1996.
- dl.kr.org

References

■ https://www.w3.org/TR/2004/REC-owl-features20040210/

- https://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/
■ https://www.w3.org/TR/2012/REC-owl2-primer20121211/

