
Description logics



Description logics

◼ A family of knowledge representation 
languages 

◼ Uses in different application areas (e.g., 
software management, configuration 
management, natural language 
processing, clinical information systems, 
information retrieval)

◼ Key technology for Ontologies and the 
Semantic Web



Ontologies, Description Logics 

and OWL terminology

Ontologies DL                OWL

concept              concept class

relation               role (binary)     property

axiom                 axiom axiom

instance individual          individual



Outline

◼ DL languages

 syntax and semantics

◼ DL reasoning services

 algorithms, complexity

◼ DL systems

◼ DLs for the web



Example

Teams have at least two members, while 

large teams have at least 10 members. 

Sports teams are teams which have only 

athletes as members. A football team is a 

team which has at least 11 members and all 

the members are football players. Football 

players are athletes. Real Madrid is a 

football team that has Eden Hazard as a 

member.



DL SYNTAX



Tbox and Abox

TBOX

Concept and role taxonomies

Intensional knowledge

ABOX

Individuals

Extensional knowledge

Reasoner



AL
R atomic role, A atomic concept

C,D → A  | (atomic concept)

T | (universal concept, top)           owl:thing

⊥ |  (bottom concept)                owl:nothing

A |  (atomic negation)   owl:complementOf

C  D |  (conjunction)           owl:intersectionOf

R.C |  (value restriction)    owl:allValuesFrom

R.T (limited existential quantification)

owl:someValuesFrom



AL[X]
C C   (concept negation)   owl:complementOf

U C U D   (disjunction)                       owl:unionOf

E R.C   (existential quantification)

owl:someValuesFrom

N     ≥ n R,  ≤ n R        (number restriction)

owl:maxCardinality, owl:minCardinality

Q     ≥ n R.C,  ≤ n R.C  (qualified number restriction)

owl:maxQualifiedCardinality,owl:minQualifiedCardinality



Concepts and relations 

Team

(Team)

Team

(not Team)

Team  ≥ 10 hasMember

(Team and at least 10 members)

Team  ≤ 10 hasMember

(Team and at most 10 members)

Concept/class

Relation/role/property



Team   hasMember.Football-player

(Team  and all members are football players)

Team   hasMember.Football-player

(Team  and there is a member that is a football player)

Concepts and relations 



AL[X]

R R  S  (role conjunction)

I R- (inverse roles)

H (role hierarchies)

F u1 = u2, u1 ≠ u2 (feature (dis)agreements)



S[X]

S          ALC + transitive roles

SHIQ   ALC  + transitive roles

+ role hierarchies

+ inverse roles

+ number restrictions



Tbox - Terminological axioms

◼ C = D (R = S) 

owl:equivalentClass / owl:equivalentProperty

◼ C  D    (R  S) 

rdfs:subClassOf / rdfs:subPropertyOf

Football-player  Athlete

(Every football player is an athlete)

◼ (disjoint C D) 
owl:disjointWith



Tbox

◼ An equality whose left-hand side is an 
atomic concept is a definition.

◼ A finite set of definitions T is a Tbox (or 
terminology) if no symbolic name is defined 
more than once.



Example

Team  ≥ 2 hasMember

Large-Team = Team  ≥ 10 hasMember

Sports-team = Team   hasMember.Athlete

Football-Team = Team  ≥ 11 hasMember 

  hasMember.Football-player

Football-player  Athlete



DL as sublanguage of FOPL

Team(this) 

^

( x1,...,x11: 

hasMember(this,x1) ^ … ^ hasMember(this,x11) 

^ x1 ≠ x2 ^ … ^ x10 ≠ x11)

^

( x: hasMember(this,x) → Football-player(x))



Abox

◼ Assertions about individuals:

C(a)

R(a,b)



Example

Football-Team(Real_Madrid)

hasMember(Real_Madrid, Eden_Hazard)



Knowledge base

A knowledge base is a tuple < T, A > 

where T is a Tbox and A is an Abox.



Example

Team  ≥ 2 hasMember

Large-Team = Team  ≥ 10 hasMember

Sports-team = Team   hasMember.Athlete

Football-Team = Team  ≥ 11 hasMember 

  hasMember.Football-player

Football-player  Athlete

Football-Team(Real_Madrid)

hasMember(Real_Madrid, Eden_Hazard)



Example - OWL

<Declaration>  <ObjectProperty IRI="#hasmember"/> </Declaration>

<Declaration>  <Class IRI="#football-player"/> </Declaration>

<Declaration>  <Class IRI="#athlete"/> </Declaration>

<Declaration>  <Class IRI="#team"/> </Declaration>

<Declaration>  <Class IRI="#large-team"/> </Declaration>

<Declaration>  <Class IRI="#sports-team"/> </Declaration>

<Declaration>  <Class IRI="#football-team"/> </Declaration>

<Declaration>  <NamedIndividual IRI="#Real_Madrid"/> </Declaration>

<Declaration>  <NamedIndividual IRI="#Eden_Hazard"/> </Declaration>



Example - OWL

Large-Team = Team  ≥ 10 hasMember

<EquivalentClasses>

<Class IRI="#large-team"/>

<ObjectIntersectionOf>

<Class IRI="#team"/>

<ObjectMinCardinality cardinality="10">

<ObjectProperty IRI="#hasmember"/>

</ObjectMinCardinality>

</ObjectIntersectionOf>

</EquivalentClasses>



Example - OWL
Football-Team = Team  ≥ 11 hasMember     hasMember.Football-player

<EquivalentClasses>

<Class IRI="#football-team"/>

<ObjectIntersectionOf>

<Class IRI="#team"/>

<ObjectAllValuesFrom>

<ObjectProperty IRI="#hasmember"/>

<Class IRI="#football-player"/>

</ObjectAllValuesFrom>

<ObjectMinCardinality cardinality="11">

<ObjectProperty IRI="#hasmember"/>

</ObjectMinCardinality>

</ObjectIntersectionOf>

</EquivalentClasses>



DL SEMANTICS



AL  (Semantics)

An interpretation I consists of a non-empty set 

I (the domain of the interpretation) and an 

interpretation function .I which assigns to 

every atomic concept A a set AI I and to 

every atomic role R a binary relation 

RI I I.

The interpretation function is extended to 

concept definitions using inductive definitions.



AL  (Semantics)

C,D → A  | (atomic concept)  

T | (universal concept) 

⊥ | (bottom concept)

A | (atomic negation)

C  D | (conjunction)

R.C | (value restriction)

R.T | (limited existential 

quantification)

TI =   I

⊥I        =   Ø

(A)I = I  \ AI

(CD)I =  CIDI

( R.C)I =  

{a  I|b.(a,b) RI→b CI } 

( R.T)I = {a  I| b.(a,b) RI}



ALC  (Semantics)

( C)I = I  \ CI 

(C U D)I = CI  U DI 

(≥ n R)I = {a  I| # {b  I | (a,b) RI } ≥ n }

(≤ n R)I = {a  I| # {b  I | (a,b) RI } ≤ n }

( R.C)I = {a  I| b  I : (a,b) RI ^ b  CI} 



Semantics
Individual i

iI I

Unique Name Assumption:

if i1 ≠ i2 then i1
I ≠ i2

I



Semantics

An interpretation .I is a model for a 
terminology T iff

CI = DI for all C = D in T

CI DI for all a C  D in T

CIDI = Ø for all (disjoint C D) in T



Semantics

An interpretation .I is a model for a 

knowledge base <T, A > iff 

.I is a model for T

aI  CI for all C(a) in A

<aI,bI>RI for all R(a,b) in A



Semantics - acyclic Tbox

Bird = Animal   Skin.Feather

I = {tweety, goofy, fea1, fur1}

AnimalI = {tweety, goofy}

FeatherI = {fea1}

SkinI = {<tweety,fea1>, <goofy,fur1>}

→ BirdI = {tweety}



Exercise - Homework for credits

Create an interpretation for:

Team  ≥ 2 hasMember

Large-Team = Team  ≥ 10 hasMember

Sports-team = Team   hasMember.Athlete

Football-Team = Team  ≥ 11 hasMember 

  hasMember.Football-player

Football-player  Athlete

Football-Team(Real_Madrid)

hasMember(Real_Madrid, Eden_Hazard)



Semantics - cyclic Tbox

QuietPerson = Person   Friend.QuietPerson

( A = F(A) )

I = {john, sue, andrea, bill}

PersonI = {john, sue, andrea, bill}

FriendI = {<john,sue>, <andrea,bill>, <bill,bill>}

→ QuietPersonI ={john, sue}

→ QuietPersonI ={john, sue, andrea, bill}



Semantics - cyclic Tbox

Descriptive semantics: A = F(A) is a constraint 
stating that A has to be some solution for the 
equation.

◼ Not appropriate for defining concepts

◼ Necessary and sufficient conditions for 
concepts

Human = Mammal   Parent                

  Parent.Human



Semantics - cyclic Tbox

Least fixpoint semantics: A = F(A) specifies that A is to 
be interpreted as the smallest solution (if it exists) for 
the equation.

◼ Appropriate for inductively defining concepts

DG = EmptyDG U Non-Empty-DG

Non-Empty-DG = Node   Arc.Non-Empty-DG

Human = Mammal   Parent   Parent.Human →
Human = ⊥



Semantics - cyclic Tbox

Greatest fixpoint semantics: A = F(A) specifies that A is 
to be interpreted as the greatest solution (if it exists) 
for the equation.

◼ Appropriate for defining concepts whose individuals 
have circularly repeating structure

FoB = Blond   Child.FoB

Human = Mammal   Parent   Parent.Human

Horse = Mammal   Parent   Parent.Horse

→ Human = Horse



Open world vs closed 

world semantics
Databases: closed world reasoning

database instance represents one interpretation

→ absence of information interpreted as negative 
information

“complete information”

query evaluation is finite model checking

DL: open world reasoning

Abox represents many interpretations (its models)   

→ absence of information is lack of information

“incomplete information”

query evaluation is logical reasoning



Open world vs closed 

world semantics

hasChild(Jocasta, Oedipus)

hasChild(Jocasta, Polyneikes)

hasChild(Oedipus, Polyneikes)

hasChild(Polyneikes, Thersandros)

patricide(Oedipus)

 patricide(Thersandros)   (not represented in DB)

Does it follow from the Abox that

hasChild.(patricide  hasChild.  patricide)(Jocasta) ?



DL REASONING



Example

Teams have at least two members, while 

large teams have at least 10 members. 

Sports teams are teams which have only 

athletes as members. A football team is a 

team which has at least 11 members and all 

the members are football players. Football 

players are athletes. Real Madrid is a 

football team that has Eden Hazard as a 

member.



Example

Team  ≥ 2 hasMember

Large-Team = Team  ≥ 10 hasMember

Sports-team = Team   hasMember.Athlete

Football-Team = Team  ≥ 11 hasMember 

  hasMember.Football-player

Football-player  Athlete

Football-Team(Real_Madrid)

hasMember(Real_Madrid, Eden_Hazard)



Example

Every team has at least 2 members

Every large team is a team and has at least 10 members

Every sports team is a team and has only athletes as members

Every football team is a team and has at least 11 members 

and has only football players as members



Example

Every team has at least 2 members

Every large team is a team and has at least 10 members

Every sports team is a team and has only athletes as members

Every football team is a team and has at least 11 members 

and has only football players as members

Reasoning:

Every football team is a large team

Every football team is a sports team



Example

Real Madrid is an instance of football team 

Real Madrid has member Eden Hazard



Example
Reasoning:

Real Madrid is an instance of football team 

Real Madrid is an instance of large team

Real Madrid is an instance of team

Real Madrid is an instance of sports team

Real Madrid has at least 11 members

All members in Real Madrid are football players

All members in Real Madrid are athletes

Real Madrid has member Eden Hazard

Eden Hazard is an instance of football player

Eden Hazard is an instance of athlete



Reasoning services

◼ Satisfiability of concept

◼ Subsumption between concepts 

◼ Equivalence between concepts 

◼ Disjointness of concepts

◼ Classification

◼ Instance checking

◼ Realization

◼ Retrieval 

◼ Knowledge base consistency



Reasoning services

◼ Reduction to subsumption

C is unsatisfiable iff C is subsumed by ⊥

C and D are equivalent iff C is subsumed by D 

and D is subsumed by C

C and D are disjoint iff C  D is subsumed by ⊥

◼ The statements also hold w.r.t. a Tbox.



Reasoning services

◼ Reduction to unsatisfiability

C is subsumed by D iff C  D is unsatisfiable

C and D are equivalent iff 

both (C  D) and  (D  C) are 
unsatisfiable 

C and D are disjoint iff C  D is unsatisfiable

◼ The statements also hold w.r.t. a Tbox.



Tableau algorithms

◼ To prove that C subsumes D:

 If C subsumes D, then it is impossible for an 

individual to belong to D but not to C.

 Idea: Create an individual that belongs to D 

and not to C and see if it causes a 

contradiction.

 If always a contradiction (clash) then 

subsumption is proven. Otherwise, we have 

found a model that contradicts the 

subsumption.
50



Tableau algorithms

◼ Based on constraint systems.

S = { x: C  D }

Add constraints according to a set of 

propagation rules

Until clash or no constraint is applicable

51



Tableau algorithms –

de Morgan rules

  C → C

 (A  B) →  A U  B

 (A U B) →  A   B

 ( R.C) →  R.( C)

 ( R.C) →  R.( C)

52



Tableau algorithms – constraint 

propagation rules

◼ S →  {x:C1, x:C2} U S

if x: C1  C2 in S 

and either x:C1 or x:C2 is not in S

◼ S →U {x:D} U S

if x: C1 U C2 in S and neither x:C1 or x:C2

is in S, and D = C1 or D = C2
53



Tableau algorithms – constraint 

propagation rules
◼ S → {y:C} U S

if x:  R.C in S and xRy in S and y:C is not 
in S

◼ S →  {xRy, y:C} U S

if x:  R.C in S and y is a new variable and 
there is no z such that both xRz and z:C 
are in S 54



Example

◼ ST: Tournament 

  hasParticipant.Swedish

◼ SBT: Tournament 

  hasParticipant.(Swedish  Belgian)

55



Example 1

◼ SBT => ST?

◼ S = { x: 

(Tournament   hasParticipant.Swedish)

 (Tournament 

  hasParticipant.(Swedish  Belgian))

}

56



Example 1

◼ S = { x: 

(Tournament 

U  hasParticipant. Swedish)

 (Tournament 

  hasParticipant.(Swedish  Belgian))

}

57



Example 1

-rule:

◼ S = { 

x: (Tournament 

U  hasParticipant. Swedish)

 (Tournament 

  hasParticipant.(Swedish  Belgian)),

x: Tournament 

U  hasParticipant. Swedish,

x: Tournament, 

x:  hasParticipant.(Swedish  Belgian)

}
58



Example 1

 -rule:

◼ S = {                                                                                     

x: (Tournament  U  hasParticipant. Swedish)

 (Tournament                                                                                   

  hasParticipant.(Swedish  Belgian)),

x: Tournament 

U  hasParticipant. Swedish,

x: Tournament, 

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian)

}
59



Example 1

-rule:

◼ S= {x: (Tournament  U  hasParticipant. Swedish)

 (Tournament                                                                                   

  hasParticipant.(Swedish  Belgian)),

x: Tournament  U  hasParticipant. Swedish,

x: Tournament, 

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian),

y: Swedish, y: Belgian }

60



Example 1

U-rule, choice 1

◼ S = { x: (Tournament  U  hasParticipant. Swedish)

 (Tournament                                                                                   
  hasParticipant.(Swedish  Belgian)),

x: Tournament  U  hasParticipant. Swedish,

x: Tournament, 

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian),

y: Swedish, y: Belgian,

x: Tournament

}

→ clash
61



Example 1

U-rule, choice 2

◼ S = {x: (Tournament  U  hasParticipant. Swedish)

 (Tournament                                                                                   
  hasParticipant.(Swedish  Belgian)),

x: Tournament  U  hasParticipant. Swedish,

x: Tournament, 

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian),

y: Swedish, y: Belgian,

x:  hasParticipant. Swedish

}

62



Example 1

choice 2 – continued

-rule

◼ S = { 

x: (Tournament  U  hasParticipant. Swedish)

 (Tournament   hasParticipant.(Swedish  Belgian)),

x: Tournament  U  hasParticipant. Swedish,

x: Tournament, 

x:  hasParticipant.(Swedish  Belgian),

x hasParticipant y, y: (Swedish  Belgian),

y: Swedish, y: Belgian,

x:  hasParticipant. Swedish,

y:  Swedish

}

→ clash

63



Example 2

◼ ST => SBT?

◼ S = { x: 

 (Tournament 

  hasParticipant.(Swedish  Belgian))

 (Tournament   hasParticipant.Swedish)

}

64



Example 2

◼ S = { x: 

(Tournament 

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish)

}

65



Example 2

-rule

◼ S = {

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish

}

66



Example 2

 -rule

◼ S = { 

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish

}

67



Example 2

U –rule, choice 1

◼ S = { 

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish,

x: Tournament

}

→ clash

68



Example 2

U –rule, choice 2

◼ S = { 

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish,

x:  hasParticipant.( Swedish U  Belgian)

}

69



Example 2
choice 2 continued

–rule

◼ S = { 

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish, 

x:  hasParticipant.( Swedish U  Belgian),

y: ( Swedish U  Belgian)

}

70



Example 2
choice 2 continued

U–rule, choice 2.1

◼ S = { 

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish, 

x:  hasParticipant.( Swedish U  Belgian),

y: ( Swedish U  Belgian),

y:  Swedish

}  → clash
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Example 2
choice 2 continued

U–rule, choice 2.2

◼ S = { 

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian))

 (Tournament   hasParticipant.Swedish),

x: (Tournament 

U  hasParticipant.( Swedish U  Belgian)),

x: Tournament,

x:  hasParticipant.Swedish,

x hasParticipant y, y: Swedish, 

x:  hasParticipant.( Swedish U  Belgian),

y: ( Swedish U  Belgian),

y:  Belgian

}  → ok, model

72



Complexity - languages

◼ Overview available via the DL home page at 

http://dl.kr.org

Example tractable language: 
A, T,⊥ , A, C  D, R.C, ≥ n R,  ≤ n R 

Reasons for intractability: 

choices, e.g. C U D

exponential size models, 
e.g interplay universal and existential quantification

Reasons for undecidability:
e.g. role-value maps R=S 73

http://dl.kr.org/
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DL SYSTEMS



Systems

Late 

1980s

Early 

1990s

Mid 

1990s

Late 

1990s

undecidable

ExpTime

PSpace

NP

PTime

KL-ONE

NIKL

CLASSIC

Loom

CRACK, KRIS

FaCT,   DLP, RACER

Investigation

Of complexity 

starts



Systems

◼ Overview available via the DL home page 

at http://dl.kr.org

◼ Current systems include: CEL, Cerebra 

Enginer, FaCT++, fuzzyDL, HermiT, 

KAON2, MSPASS, Pellet, QuOnto, 

RacerPro, SHER

http://dl.kr.org/


Extensions

◼ Time

◼ Defaults

◼ Part-of

◼ Knowledge and belief

◼ Uncertainty (fuzzy, probabilistic)



DL AND THE WEB



OWL

◼ OWL-Lite, OWL-DL, OWL-Full: increasing 
expressivity

◼ A legal OWL-Lite ontology is a legal OWL-DL 
ontology is a legal OWL-Full ontology

◼ OWL-DL: expressive description logic, decidable

◼ XML-based

◼ RDF-based (OWL-Full is extension of RDF, OWL-
Lite and OWL-DL are extensions of a restriction of 
RDF)



OWL-Lite

◼ Class, subClassOf, equivalentClass

◼ intersectionOf (only named classes and restrictions)

◼ Property, subPropertyOf, equivalentProperty

◼ domain, range (global restrictions)

◼ inverseOf, TransitiveProperty (*), SymmetricProperty, 
FunctionalProperty, InverseFunctionalProperty

◼ allValuesFrom, someValuesFrom (local restrictions)

◼ minCardinality, maxCardinality (only 0/1)

◼ Individual, sameAs, differentFrom, AllDifferent

(*) restricted



OWL-DL

◼ Type separation (class cannot also be individual or property, property 
cannot be also class or individual), Separation between DatatypeProperties 
and ObjectProperties

◼ Class –complex classes, subClassOf, equivalentClass, disjointWith

◼ intersectionOf, unionOf, complementOf

◼ Property, subPropertyOf, equivalentProperty

◼ domain, range (global restrictions)

◼ inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty, 
InverseFunctionalProperty

◼ allValuesFrom, someValuesFrom (local restrictions), oneOf, hasValue

◼ minCardinality, maxCardinality

◼ Individual, sameAs, differentFrom, AllDifferent

(*) restricted



OWL2

◼ OWL2 Full and OWL2 DL

◼ OWL2 DL compatible with SROIQ

◼ Punning 

 IRI may denote both class and individual

 For reasoning they are considered separate entities



OWL2 profiles

◼ OWL2 EL (based on EL++)

 Essentially intersection and existential quantification

 SNOMED CT, NCI Thesaurus

◼ OWL2 QL (“query language”)

 Can be realized using relational database technology

 RDFS + small extensions

◼ OWL2 RL (“rule language”)
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