
Ontology	Engineering	
-	The	basics	of	OWL	
Eva	Blomqvist	
eva.blomqvist@liu.se	

Outline	
•  Recap from the ontology intro
•  Ontology languages and logic
•  Main focus: OWL

–  What does the OWL language contain?
–  Common misconceptions

2	

Reminders	from	ontology	intro	

3	

Components
•  concepts
 - represent a set or class of entities in a domain
 immune response
 - organized in taxonomies

(hierarchies based on e.g. is-a or is-part-of)
 immune response is-a defense response

•  instances
 - often not represented in an ontology
 (instantiated ontology)

Components
•  relations
 R: C1 x C2 x … x Cn

 Protein hasName ProteinName

 Chromosone hasSubcellularLocation Nucleus

Components
•  axioms
 ‘facts that are always true’

The origin of a protein is always of the type ‘gene

coding origin type’
Each protein has at least one source.
A helix can never be a sheet and vice versa.

Example
We have a lot of data and want to be able to
ask for all research articles

Person
Employment

Article

Information off.

Press contact

Lecturer

Ann M.
Hans P.

Research at LiU 2016-17

Ontology design patterns

Universitetsnytt 22/4 2017
Eva B.

rdf:type
rdf:type rdf:type

hasEmployment

wroteArticle

= person with a
 research employment

Example
We have a lot of data and want to be able to
ask for all research articles

Researcher

Research
article

= article written by a
 researcher

Res.
employment

Admin.
employment

Person
Employment

Article

Information off.

Press contact

Lecturer

Ann M.
Hans P.

Research at LiU 2016-17

Ontology design patterns

Universitetsnytt 22/4 2017
Eva B.

rdf:type

rdf:type rdf:type

hasEmployment

wroteArticle

rdf:type
rdf:type

Ontologies	as	vocabularies	for	RDF	data	
•  Concepts (classes) that represent the types of

instances in the data
•  Properties that can be used as predicates in our RDF

triples

Then we can add more... IF we need to

In this course we focus on task-oriented ontologies,
i.e. ontologies that serves a specific purpose, fulfils a
certain set of requirements

Ontology	languages	for	the	
Semantic	Web	

10	

RDF(S):	RDF	Schema	
•  RDF gives a data representation format and ways to

serialize, but it does not give any special meaning to
vocabulary such as “subClassOf” or “range”

•  Triple interpretation is an arbitrary binary relation

•  RDF Schema extends RDF with a schema vocabulary
–  Classes as types for individuals: rdfs:Class, rdfs:Literal,

rdfs:Datatype, rdf:type and rdfs:subClassOf, etc.
–  Property relations: rdf:Property, rdfs:subPropertyOf,

rdfs:range, rdfs:domain, etc.
–  Annotations: rdfs:label, rdfs:comment, etc.

RDF/RDF(S)	“Liberality”	
•  No distinction between classes and instances

(individuals)
•  Properties can themselves have properties
•  No distinction between language constructors and

ontology vocabulary, so constructors can be applied
to themselves/each other

What	does	RDF(S)	give	us?	
•  Ability to use simple schema/vocabularies when

describing our resources

•  Consistent vocabulary use and sharing

•  Simple inference, e.g. inheritance in a taxonomy

•  But...
–  In some cases too weak to describe resources in

sufficient detail
–  Not formally based on any logic

What	are	Description	Logics?	
•  A family of logic based Knowledge Representation formalisms

–  Descendants of Semantic Networks, Minsky’s frames, and KL-ONE
–  Describe domain in terms of concepts (classes), roles (relationships)

and individuals

•  Distinguished by
–  Formal semantics (model theoretic)

•  Decidable fragments of FOL
•  Closely related to Propositional Modal & Dynamic Logics

–  Provision of inference services
•  Sound and complete decision procedures for key problems
•  Implemented systems (highly optimized)

DL	Semantics	
•  Model theoretic semantics. An interpretation consists of

–  A domain of discourse (a collection of objects)
–  Functions mapping

•  classes to set of objects
•  properties to sets of pairs of objects

–  Rules describe how to interpret the constructors and
tell us when an interpretation is a model.

•  In DL, a class description is thus a characterization of the
individuals that are members of that class.

OWL	
•  DL-based language
•  OWL2 is the latest version of the standard (https://www.w3.org/TR/owl2-primer/)
•  Different language profiles

–  OWL EL
•  Intended for large ontologies with many classes, mainly used for

classification tasks
•  Example use: biomedical ontologies
•  Not allowed: negation, disjunction, inverse properties, universal

quantification on properties
–  OWL QL

•  Covers most features of UML and ER-models, so is suitable for use with
relational data

•  Example use: ontologies used to access relational data
–  OWL RL

•  Reasoning can be implemented as rules
•  Does not allow expressions that assume an anonymous individual

16	

OWL	syntaxes 		
•  Abstract syntax

–  Used in the definition of the language
•  Manchester syntax
•  OWL in RDF

–  RDF/XML presentation
–  Turtle

•  ...

OWL	Class	Constructors	

Constructor Example,  
Turtle syntax

Example,  
Manchester syntax

<Classes> :Human rdf:type owl:Class Class: Human

intersectionOf owl:intersectionOf (:Human :Male) Human and Male

unionOf owl:unionOf (:Male :Female) Female or Male

complementOf owl:complementOf (:Male) not Male

oneOf owl:oneOf (:John :Mary) {John, Mary}

OWL	Individual	Axioms	

Axiom Example,  
Turtle syntax

Example,  
Manchester syntax

<Individual> :Mary rdf:type :Human Individual: Mary
 Types: Human

<Fact> :Mary :worksWith :John Individual: John
 Facts: worksWith Mary

differentFrom :Mary owl:differentFrom :John Individual: Mary
 DifferentFrom: John

sameAs :Mary owl:sameAs :May Individual: Mary
 SameAs: May

OWL	Class	Axioms	

Axiom Example,  
Turtle syntax

Example,  
Manchester syntax

subClassOf :Woman rdfs:subClassOf :Human Class: Woman
 SubClassOf: Human

equivalentClass :Person owl:equivalentClass :Human Class: Person
 EquivalentTo: Human

disjointClass [] rdf:type owl:AllDisjointClasses ;
 owl:members (:Woman :Man) .

DisjointClasses:  
 Woman, Man

OWL	Class	Constructors	(cont.)	

Constructor Example,  
Turtle syntax

Example,  
Manchester syntax

someValuesFrom owl:onProperty :hasChild ;
owl:someValuesFrom :Male hasChild some Male

allValuesFrom owl:onProperty :hasChild ;
owl:allValuesFrom :Female hasChild only Female

minCardinality owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger ;
owl:onProperty :hasChild hasChild min 2

maxCardinality owl:maxQualifiedCardinality "2"^^xsd:nonNegativeInteger ;
owl:onProperty :hasChild hasChild max 2

OWL	Property	Axioms	
Axiom Example,  

Turtle syntax
Example,  

Manchester syntax

subPropertyOf :hasSon rdfs:subPropertyOf :hasChild ObjectProperty: hasSon
 SubPropertyOf: hasChild

domain :hasChild rdfs:domain :Parent ObjectProperty: hasChild
 Domain: Parent

range :hasSon rdfs:range :Man ObjectProperty: hasSon
 Range: Man

symmetric :worksWith rdf:type owl:SymmetricProperty ObjectProperty: worksWith
 Characteristics: Symmetric

transitive :hasAncestor rdf:type owl:TransitiveProperty ObjectProperty: hasAncestor
 Characteristics: Transitive

inverseOf :hasParent owl:inverseOf :hasChild ObjectProperty: hasParent
 InverseOf: hasChild

Other	useful	OWL	constructs	
•  XML namespaces and prefixes

–  Turtle: @prefix : <http://example.com/owl/families/> .
 @prefix owl: <http://www.w3.org/2002/07/owl#> .

–  Manchester: Prefix: : <http://example.com/owl/families/>
 Prefix: owl: <http://www.w3.org/2002/07/owl#>

•  Datatype properties and XML schema datatypes
–  Turtle: :John :hasAge 33
–  Manchester: Individual: John

 Facts: hasAge "33"^^xsd:integer
•  Property chains and keys
•  owl:imports
•  owl:Ontology
•  Annotation properties

–  rdfs:label, rdfs:comment, ...

23	

Common	misconceptions	
•  Disjointness of primitives
•  Properties do not "belong" to classes
•  Interpreting domain and range
•  And and or
•  Quantification
•  Closed and open worlds

Disjointness	
•  By default, primitive classes are not disjoint.
•  Unless we explicitly say so, the description (Animal

and Vegetable) is not an unsatisfiable class
•  Similarly with individuals – the so-called Unique

Name Assumption does not hold, and individuals are
not considered to be distinct unless explicitly
asserted to be so.

Properties	
•  Unlike frame-based languages, UML and many other

common modelling languages in OWL properties do
not "belong" to any specific class

•  To "connect" a property to a class we can
–  Add domain and range axioms of the property
–  Add restrictions on the class

•  But neither is necessary for it to be a valid OWL
ontology!

26	

Domain	and	Range	
•  Note domain and range are NOT interpreted as a

constraint as you might expect
•  Domain and range assertions allow us to make

inferences about individuals
•  Example

:hasChild rdfs:domain :Parent
:Mary :hasChild :Bob
–  If we haven’t said anything else about Mary or

Bob, this is not an error. But we can now infer that
Mary is a Parent

And/Or	and	quantification	
•  The logical connectives and and or often cause confusion

–  Milk and sugar? Tea or coffee? – think carefully of the
meaning when modeling

•  Quantification can be contrary to our intuition.
–  Universal quantification over an empty set is true
–  :John may belong to the class :OnlyDaughterParent if

he has no child at all and we describe that class as:
:OnlyDaughterParent rdf:type owl:Class ;  
 owl:equivalentClass [ 

rdf:type owl:Restriction ;  
owl:onProperty :hasChild ;  
owl:allValuesFrom :Female  

] .
•  Existential quantification may imply the existence of an

individual that we don’t know the name of

Closed	and	open	world	assumptions	
•  The standard semantics of OWL makes an Open World

Assumption (OWA)
–  We cannot assume that all information is known about

all the individuals in a domain
–  Negation only through contradiction

•  Anything might be true unless it can be proven false

•  Closed World Assumption (CWA)
–  Named individuals are the only individuals in the

domain
–  Negation as failure

•  If we don't know that x is of type C, then we assume
that x is NOT of type C

www.liu.se	

