
Ontology	Design	
Patterns	and	XD	
Eva	Blomqvist	
eva.blomqvist@liu.se	

2	

city	-	subClassOf	->	country	

What	we	can	do	with	OWL		
•  ... (maybe) we can check the consistency, classify, and

query our knowledge base
•  ... but, remember the Scarlet example

–  City subClassOf Country
•  Logical consistency is not the main problem

–  e.g. rdfs:subClassOf an be wrongly used and still we have
consistency

•  Why is OWL not enough?
–  OWL gives us logical language constructs, but does not give us

any guidelines on how to use them in order to solve our tasks.
–  E.g. modeling something as an individual, a class, or an object

property can be quite arbitrary

3	

Solutions?	
•  OWL is not enough for building a good ontology,

and we cannot ask all web users neither to learn
logic, or to study ontology design

•  Reusable solutions are here through Ontology
Design Patterns, which help reducing arbitrariness
without asking for sophisticated skills ...

•  ... provided that tools are built for any user J

Various	types	of	ODPs	
•  Logical patterns – "workarounds" and shortcuts in

modelling
–  Example: n-ary relations

•  Content patterns – components with a non-empty
signature, sometimes domain specific
–  Example: how to model roles
–  Can be used as "templates" or ideas for your own

solution, or as components that are specialised
•  Correspondence patterns, transformation patterns...

5	

Example	-	Role	patterns	(ODP)	

<roleclass>

<person> <person> <role> has role

Person Role Person

<role title> <person> <event>

<role>

Role
Person

<person>
<event>

Participation

<part.>
role

person
event

Person

<event>

<eventrole>

<person>
situation

person

Alt:
<roleclass> Event

Event

Event

6	

Catalogues	of	ODPs	
•  Content ODPs are collected and described in

catalogues, books, papers...
•  The ontologydesignpatterns.org initiative maintains a

repository of ODPs

The	eXtreme	Design	
methodology	

8	

Ontology	Engineering	Methodologies	
•  Mostly focus has been on overall life-cycle and “model” of the methodology – rather

than how to actually perform it
•  Few are focused on reuse and the networked nature of web ontologies

•  One of the most cited:
–  Ontology development 101 – Noy & McGuinnes (2001)

•  Pre-OWL methodology
•  Traditional in the sense

–  It doesn’t have a specific task focus
–  It is a waterfall like method

•  Although detailed in some steps, no details on requirements or testing etc.
•  Basic steps for modelling

(1) Domain an scope (2) Consider reuse (3) Enumerate terms
(4) Develop class hierarchy (5) Define the properties
(6) Define restrictions and constraints (7)Create instances

9	

Example:	METHONTOLOGY	(~1997)	
•  Waterfall-like process consisting of (overlapping) phases

1.  Specification – document requirements, scope, level of
formality etc.

2.  Knowledge Acquisition – gathering and studying sources
of information

3.  Conceptualization – structure the terminology identified in
1, going from glossary to logical formulas

4.  Integration – find and select other ontologies to reuse
5.  Implementation – represent in formal language using tool
6.  Evaluation – verification and validation
7.  Documentation

Example:	DILIGENT	(~2004)	
•  Based on theories for argumentation
•  Intended for

–  Empowering domain experts in ontology engineering
–  Continous and distributed construction and update

Building

Adaptation &
update Analysis & revision

Why	the	name	“XD”?	
•  Inspired by XP but with focus on good design
•  An agile methodology for web ontology design
•  Developed as part of the NeOn methodology

XD	principles	
•  Customer/domain expert involvement and feedback
•  "Customer" stories to derive CQs (+ restrictions/constraints,

reasoning requirements)

•  ODP reuse and modular design (ontology networks)
•  Collaboration and integration
•  Task-oriented design, verified

by tests
•  Pair design

XD		
Iteration	

Project((
idea(Design(team(

Integra2ng(par2al(
solu2ons,(evalua2ng((

and(revising(

All(stories(
covered?(

Iden2fying(CP((
catalogues(

Project(ini2a2on((
and(scoping(

Ontology((
Network(

CP((
catalogues(

No(

Design(pair(

Integra2on(team(

Collec2ng((
requirement(stories(Stories(

Customer(

Selec2ng(
story(

Releasing((
module(s)(

Releasing((
new(version(of(

Ontology(Network(

Elici2ng(requirements(
and(construc2ng(

module(s)((
from(CPs(

Design(team(

Design(team(

Seman2c(
Web(

Customer(

XD		
Iteration	

Project((
idea(Design(team(

Integra2ng(par2al(
solu2ons,(evalua2ng((

and(revising(

All(stories(
covered?(

Iden2fying(CP((
catalogues(

Project(ini2a2on((
and(scoping(

Ontology((
Network(

CP((
catalogues(

No(

Design(pair(

Integra2on(team(

Collec2ng((
requirement(stories(Stories(

Customer(

Selec2ng(
story(

Releasing((
module(s)(

Releasing((
new(version(of(

Ontology(Network(

Elici2ng(requirements(
and(construc2ng(

module(s)((
from(CPs(

Design(team(

Design(team(

Seman2c(
Web(

Customer(

Tes$ng''
module''

Reusing'and'
integra$ng'CPs'

Matching'and''
selec$ng'pa8erns'

Elici$ng''
requirements'

Select'
set'

All'require=
ments'

covered?'

No'

All'stories'
covered?'

Select'
story'

Releasing''
module(s)'

No'

Things	to	note	about	XD	
•  Can be adapted to various settings

–  Pairs or individual development?
–  Roles of ontology engineers and other experts
–  Adapt the level of communication and control

•  You quickly have a tangible result
–  Rapid prototyping of ontologies?

•  Integration step is crucial and may involve lots of
refactoring

www.liu.se	

