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city	-	subClassOf	->	country	



What	we	can	do	with	OWL		
•  ... (maybe) we can check the consistency, classify, and 

query our knowledge base 
•  ... but, remember the Scarlet example 

–  City subClassOf Country 
•  Logical consistency is not the main problem  

–  e.g. rdfs:subClassOf an be wrongly used and still we have 
consistency 

•  Why is OWL not enough? 
–  OWL gives us logical language constructs, but does not give us 

any guidelines on how to use them in order to solve our tasks.  
–  E.g. modeling something as an individual, a class, or an object 

property can be quite arbitrary 
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Solutions?	
•  OWL is not enough for building a good ontology, 

and we cannot ask all web users neither to learn 
logic, or to study ontology design 

•  Reusable solutions are here through Ontology 
Design Patterns, which help reducing arbitrariness 
without asking for sophisticated skills ... 

•  ... provided that tools are built for any user J 



Various	types	of	ODPs	
•  Logical patterns – "workarounds" and shortcuts in 

modelling 
–  Example: n-ary relations 

•  Content patterns – components with a non-empty 
signature, sometimes domain specific 
–  Example: how to model roles 
–  Can be used as "templates" or ideas for your own 

solution, or as components that are specialised 
•  Correspondence patterns, transformation patterns... 
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Example	-	Role	patterns	(ODP)	

<roleclass> 

<person> <person> <role> has role 

Person Role Person 

<role title> <person> <event> 

<role> 

Role 
Person 

<person> 
<event> 

Participation 

<part.> 
role 

person 
event 

Person 

<event> 

<eventrole> 

<person> 
situation 

person 

Alt: 
<roleclass> Event 

Event 

Event 
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Catalogues	of	ODPs	
•  Content ODPs are collected and described in 

catalogues, books, papers... 
•  The ontologydesignpatterns.org initiative maintains a 

repository of ODPs 



The	eXtreme	Design	
methodology	
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Ontology	Engineering	Methodologies	
•  Mostly focus has been on overall life-cycle and “model” of the methodology – rather 

than how to actually perform it 
•  Few are focused on reuse and the networked nature of web ontologies 

•  One of the most cited: 
–  Ontology development 101 – Noy & McGuinnes (2001) 

•  Pre-OWL methodology 
•  Traditional in the sense  

–  It doesn’t have a specific task focus 
–  It is a waterfall like method 

•  Although detailed in some steps, no details on requirements or testing etc. 
•  Basic steps for modelling 

(1) Domain an scope (2) Consider reuse (3) Enumerate terms  
(4) Develop class hierarchy (5) Define the properties  
(6) Define restrictions and constraints (7)Create instances 
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Example:	METHONTOLOGY	(~1997)	
•  Waterfall-like process consisting of (overlapping) phases 

1.  Specification – document requirements, scope, level of 
formality etc. 

2.  Knowledge Acquisition – gathering and studying sources 
of information 

3.  Conceptualization – structure the terminology identified in 
1, going from glossary to logical formulas 

4.  Integration – find and select other ontologies to reuse 
5.  Implementation – represent in formal language using tool 
6.  Evaluation – verification and validation 
7.  Documentation 



Example:	DILIGENT	(~2004)	
•  Based on theories for argumentation 
•  Intended for  

–  Empowering domain experts in ontology engineering 
–  Continous and distributed construction and update 

Building 

Adaptation & 
update Analysis & revision 



Why	the	name	“XD”?	
•  Inspired by XP but with focus on good design 
•  An agile methodology for web ontology design 
•  Developed as part of the NeOn methodology 



XD	principles	
•  Customer/domain expert involvement and feedback 
•  "Customer" stories to derive CQs (+ restrictions/constraints, 

reasoning requirements) 

•  ODP reuse and modular design (ontology networks) 
•  Collaboration and integration 
•  Task-oriented design, verified  

by tests 
•  Pair design 



XD		
Iteration	
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Things	to	note	about	XD	
•  Can be adapted to various settings 

–  Pairs or individual development? 
–  Roles of ontology engineers and other experts 
–  Adapt the level of communication and control  

•  You quickly have a tangible result 
–  Rapid prototyping of ontologies? 

•  Integration step is crucial and may involve lots of 
refactoring 
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