WWW 2017 Tutorial:

Semantic Data Management in Practice

Part 2: Storage and Querying

Olaf Hartig

Linköping University

☑ olaf.hartig@liu.se

@olafhartig

Olivier Curé

University of Paris-Est Marne la Vallée

olivier.cure@u-pem.fr

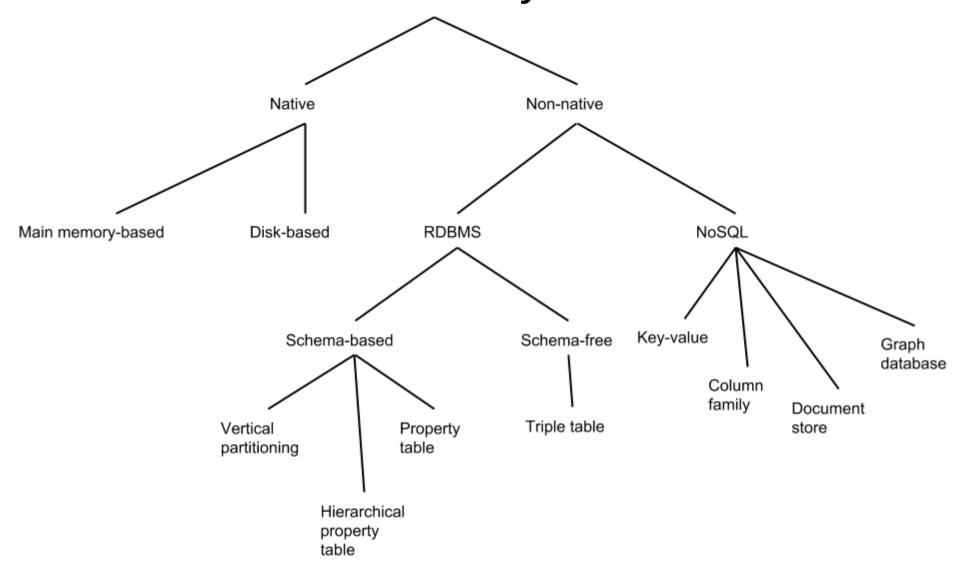
@oliviercure

Goals

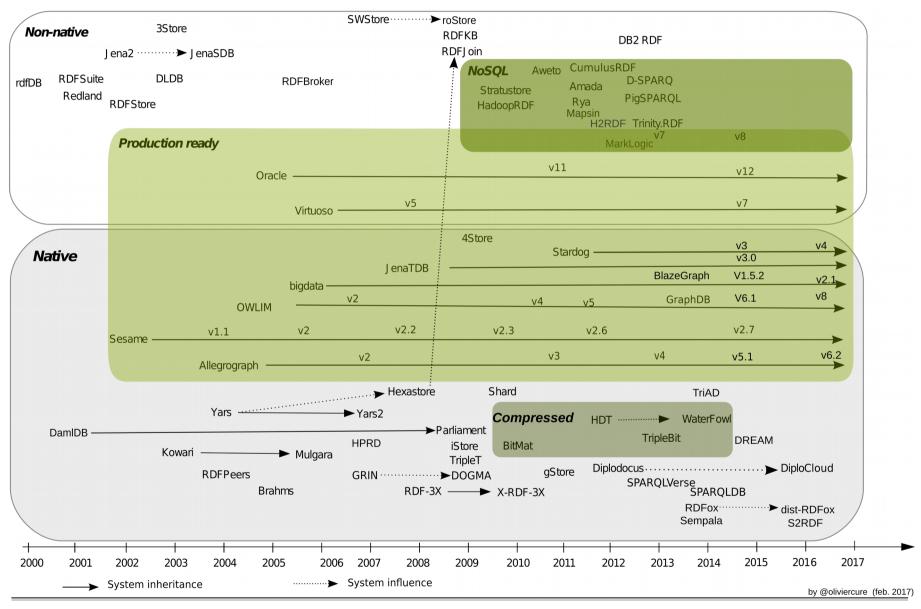
- Achieve an initial understanding of the RDF database management ecosystem
- Understand differences between 7 identified production-ready stores

- RDF storage
- Seven production-ready RDF stores
- Ontology Based Data Access
- Demo
- APIs

RDF Storage

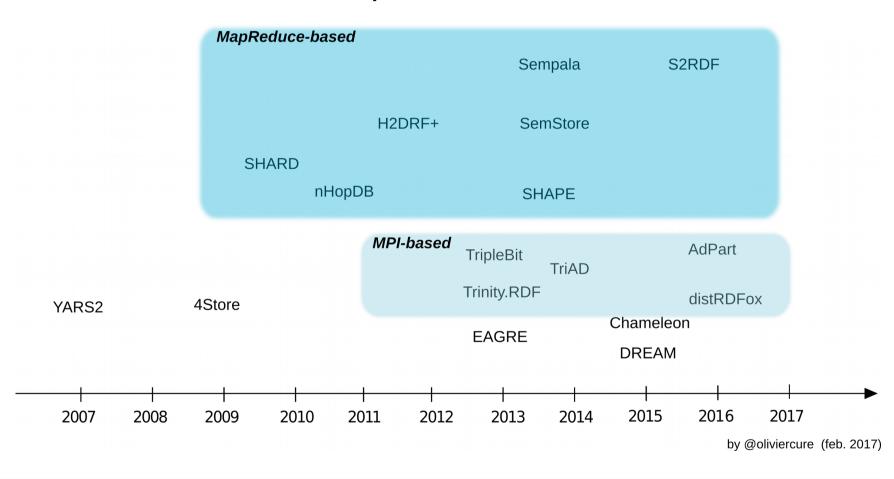

- Although most production-ready RDF stores support ACID properties, they are best considered as
 - OLAP (online analytical processing)
 - not OLTP (On line transaction processing)

- This implies that updates are performed in batch
 - Mainly due to reasoning (see Section 5)

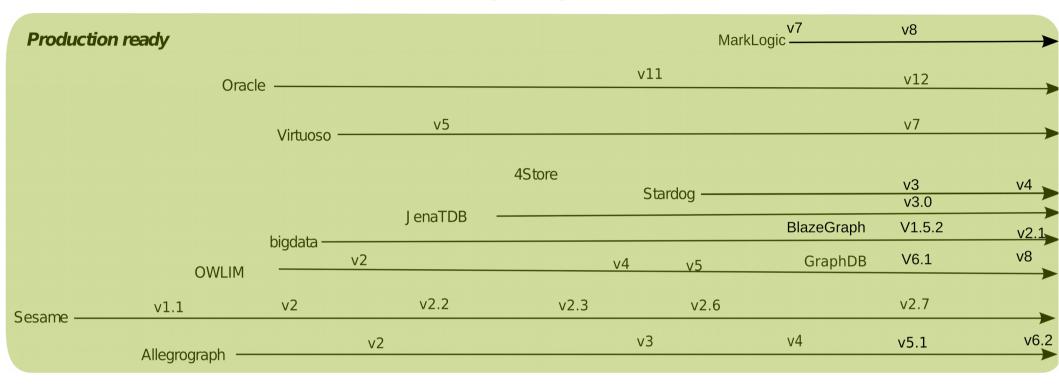

RDF Storage

- RDF is a logical data model and thus does not impose any physical storage solution
- Existing RDF stores are either
 - based on an existing DataBase Management System,
 - relational model, e.g., PostgreSQL
 - NoSQL, e.g., Cassandra
 - Designed from scratch, e.g., as a Graph store

RDF Stores Taxonomy

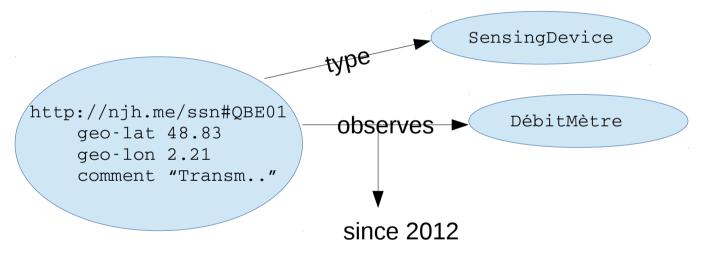


RDF Store Ecosystem


RDF Distributed data management

- RDF storage is part of Big data
- Distribution of RDF triples over a cluster of machines

- RDF storage
- Seven production-ready RDF stores
- Ontology Based Data Access
- Demo
- APIs


7 Production-Ready Systems

- They all guarantee
 - ACID transactions
 - Replication (mostly Master-Slave, some Master-Master)
 - Partition (Range, Hashing)

Data Models and Querying

- Some of these systems support other data models
 - XML for MarkLogic and Virtuoso
 - Property graph for GraphDB, BlazeGraph and Stardog

Data Models and Querying

- Some of these systems support other data models
 - XML for MarkLogic and Virtuoso
 - Property graph for GraphDB, BlazeGraph and Stardog
 - Relational for Virtuoso and Oracle
 - Document for MarkLogic
- Hence other query languages than SPARQL (v1.1) can be supported
 - Gremlin for property graph, Xquery for XML, SQL for relational, Prolog

License

- Some of these systems have free editions but with some feature or use limitations:
 - MarkLogic's dev license is free for up to 1TB and 10 months max
 - Stardog: community (10DB max with 25M triples/DB, 4 users), dev (no limits but 30 day trial)
 - Allegrograph: free and dev have restrictions of 5M and 50M respectively
 - Virtuoso and GraphDB: free but no clustering and no replication
 - Blazegraph: free for a single machine
- All systems have commercial editions (Oracle is commercial only)

Summary of production-ready systems

Triple store	Full-text search	Cloud- ready	Extra features
Allegrograph	Integrated + solr	AMI	
Blazegraph	Integrated + solr	AMI	Reification done right
GraphDB	Integrated + solr + elacticsearch (ent.)	AMI	RDF ranking
MarkLogic	Integrated	AMI	With Xquery, Javascript
Oracle	Integrated		Inline in SQL
Stardog	Integrated + Lucene	AMI	Integrity constraints, Explanations
Virtuoso	Integrated	AMI	Inline in SQL

- RDF storage
- Seven production-ready RDF stores
- Ontology Based Data Access
- Demo
- APIs

OBDA (Ontology Based Data Access) Alternative

- Relevant when you have an existing (relational) database and want to reason over it using an ontology
- The ontology models the domain, hides the structure of the data sources and enriches incomplete data
- The ontology is connected to the data sources via mappings that relate concepts and properties to SQL views over the sources
- Queries, expressed in SPARQL, are translated into the sources query language (usually SQL)
- State of the art is Ontop

- RDF storage
- Seven production-ready RDF stores
- Ontology Based Data Access
- Demo
- APIs

Demo

- With Blazegraph (v2.1.4)
 - Website: https://www.blazegraph.com/
 - Download:
 https://sourceforge.net/projects/bigdata/files/bigdat
 a/2.1.4/blazegraph.jar/download
 - Start: java -server -Xmx4g -jar blazegraph.jar
 - http://localhost:9999/blazegraph
- And an extract of our sensor database instantiating the Semantic Sensor Network ontology

- RDF storage
- Seven production-ready RDF stores
- Ontology Based Data Access
- Demo
- APIs

Available APIs

- Two popular Java APIs to process and handle RDF data and SPARQL queries are:
 - RDF4J (formerly Sesame)
 - Apache Jena
- They both
 - provide a JDBC-like API and REST-like API
 - storing, querying and reasoning capabilities