An Introduction to GraphQL
Tutorial at ISWC 2019, October 27, 2019

4. Fundamental Properties

Olaf Hartig?, Ruben Taelman®

(a) Dept. of Computer and Information Science, Linkdping University, Sweden
(b) Ghent University —imec — IDLab, Belgium

Joint work with Jorge Pérez
from the Universidad de Chile

LINKOPING
UNIVERSITY

Track: Web Content Analysis, Semantics and Knowledge

WWW 2018, April 23-27, 2018, Lyon, France

Semantics and Complexity of GraphQL

Olaf Hartig
Dept. of Computer and Information Science (IDA),
Linkdping University
olafhartig@liu se

ABSTRACT
Graph(QL is a recently proposed, and increasingly adopted, concep-
tual framework for providing a new type of data access interface
an the Web. The framewaork includes a new graph query language
whose semantics has been specified informally anly. This has pre-
vented the formal study of the main properties of the language.
We embark on the formalization and study of GraphQL. To this
end, we first formalize the semantics of GraphQL querics based on a
labeled-graph data model. Thereafter, we analyze the language and
show that it admits really efficient evaluation methods. Inparticular,
we prove that the complexity of the GraphQL evahlation problem
is NL-complete. Morcover, we show that the emumeration problem
can be solved with constant delay. This implies that a server can
answer a GraphQ L query and send the response byte-by-byte while
spending just a constant amount of time between every byte sent.
Despite these positive results, we prove that the sizeof a GraphQL
response might be prohibitively large for an internet scenario. We
present experiments showing that current practical implementa-
tions suffer from this issue. We provide a solution to cope with this
problem by showing that the total size of a GraphQL response can
be computed in polynomial time. Our results on polynomial-time
size computation plus the constant-delay enumeration can help
developers to provide more mbust GraphQL interfaces on the Web.

ACM Reference Format:

Olaf Hartigand Jorge Pérez. 2015 Semantics and Complexity of GraphQL. In
WWW 2078: The 2008 Wik Conference, Aprd Z3-27, 2008, Lyor, France. ACM,
New York, NY, USA, 10 pages. https://dod org/10.1145/31 785763 186014

1 INTRODUCTION

After developing and using it internally for three years, in 2016,
Facehook released a specification [5] and a reference implemen-
tation of its GraphQL framework. This framework introduces a
new type of Web-based data access interfaces that presents an al-
ternative to the notion of REST-based interfaces [16]. One of its
main advantages is its ability to define precisely the data you want,
replacing multiple REST requests with a single call [3, 6]. Since
its release, Graph()L has gained significant momentum and has
been adopted by an increasing number of users including Coursera,
Github, Neod], and Pinterest [4]. A core component of the GraphQL
framework is a query language for expressing the data retrieval
requests issued to GraphQL-aware Web servers. While there al-
meady exist a mumber of implementations of this language, a more

This paper is published under the Creative Commans Attribution 4.0 Infernational
{OC BY 4.0) bcense. Authars reserve their rights to dissemimate the work an their
persanal and corporate Web sites with the appropriste attribution

WWW 2018, April 58-27. 2018, Lyon. France

& 201% IWAC2 (Internatio nal World Wide Web Conference Commitiee). published
under Creative Commons O BY 4.8 License.

ACMISEN 974 1-4303-3635-8/1804.

it/ e arg/ 101145/ 31 TAE 3186014

Jorge Pérez
Department of Computer Science, Universidad de Chile
Mill enium Institute for Foundational Research on Data
jperezid@dee. uchile.cl

fundamental understanding of the properties of the language is
missing. The goal of this paper is to close this gap, which isa fun-
damental step to clarify intrinsic imitations and, more importantly,
to identify optimization opportunities of possible implement ations.

To illustrate some of these limitations and optimization op-
portunities, consider the public GraphQL interface provided by
Github [6]. Figure 1{a) shows a query over this interface and Fig-
ure 1(b) illustrates the corresponding query result.! This query
retrieves the login names of the owners of the first two Github
repositories that are listed for the user with login “danbri” {which
happens to be “danbri” himself in both cases?). Asour experiments
with this public GraphQL interface show, there is an intrigning issue
with the size of a query result when we begin nesting queries. As-
sume that we extend our example into some kind of path expresions
that discover repasitory owners by traversing the relationships be-
tween Github repositories and their cwners in increasing levels of
distance. Figure 1(a) represents the level-1 version of such a tra-
versal. The level-2 version, illustrated in Figure 1ic), retrieves the
owners of the (first two) repositories that are listed for each reposi-
tory owner in the result of the level-1 version, and so on. Figure 1{d)
shows that there is an exponential increase of the result sizes for
Jevels 1-7. Wi note that this issue is somehow acknowledged by the
Github GraphQL interface and, as a safety measure to avoid queries
that might turn out to be too resource-intensive, it introduces a few
syntactic restrictions [7] As one such restriction, Githubimposes a
maximum level of nesting for queries that it accepts for execution.

However, even with this restriction (and other syntactic restric-
tions imposed by the Github GraphQL interface [7]), Github fails
to avoid all queries that hit some resource limits when executed.
For instance, when we replace first:2 by first:5 in the queries
of our experiment, we observe not only exponential behavior of
mesult size growth and query execution times (cf. Figure 1(e)), but
we also receive timeout errors for the level-6 and level-T versions
af the queries. The response messages with these timeout errors
arrive from the server a bit more than 10 seconds after issuing
the requests. Hence, Github's GraphQ)L processor clearly tries to
execute these queries before their execution times exceed a thresh-
old. Developers have already embarked trying to cope with this
and similar issues [1, 20] defining ad hoc notions of “complexity™
ar “cost” of GraphQL queries. As we explain in this paper these
approaches fall short on providing a robust solution for the problem
as they can fail in both directions: discarding requests in which an
efficient evaluation is possible, and allowing requests in which a
complete evaluation is too resouree intensive.

Instead of trying to tackle these and other issues by ad hoc so-
lutions, we propose to study them from a formal peint of view

! Al the query executions an which we reporthave been perfarmed on Oct. 3, 2017.
“When inareasing the mumber o f repo sitories to be considered, by changing first:2
4, 5y, First:19, we also find repasitories with other awners

1155

An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language

II LINKOPING
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

Our Contributions in a Nutshell

Formal definition of the language

Study of computational complexity
(the language admits really
efficient evaluation methods)

Solution to the problem of large results

II LIN KOP| NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

How is the language defined in the spec?

2.4 Selection Sets

SelectionSet :
{ Selection., }

Selection :
Field
FragmentSpread
InlineFragment

An operation selects the set of information it needs, and will receive exactly that information and
nothing more, avoiding over-fetching and under-fetching data.

id
firstName

lastName

In this query, the id, firstName, and lastName fields form a selection set. Selection sets may also

contain fragment references.

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

How is the language defined in the spec?

2.4 Selection Sets

SelectionSet : 6.3 Executing Selection Sets

{ Selection,., }

Selection :
Field
FragmentSpread
InlineFragment

An operation selects the)
nothing more, avoiding

id
firstName

lastName

In this query, the id, fi

contain fragment refere

To execute a selection set, the object value being evaluated and the object type need to be known, as

well as whether it must be executed serially, or may be executed in parallel.

First, the selection set is turned into a grouped field set; then, each represented field in the grouped

field set pr::-r:luces an entry into a response map.

ExecuteSelectionSet(selectionSet, object Type, object Value, variableValues) :

1. Let groupedFieldSet be the result of CollectFields(object Type, selectionSet, variableValues).

2. Initialize resultMap to an empty ordered map.

3. For each groupedFieldSet as responseKey and fields:

a. Let fieldName be the name of the first entry in fields. Note: This value is unaffected if an

alias is used.

b. Let fieldType be the return type defined for the field field Name of object Type.

c. If field Type is null:

i. Continue to the next iteration of groupedFieldSet.

d. Let responseValue be

ExecuteField

(objectType, object Value, fields, fieldType, variableValues).

e. Set responseValue as the value for responseKey in resultMap.

4. Return resultMap.

II LINKOPING
[) UNIVERSITY

An Introduction to GraphQL

4. Fundamental Properties of the GraphQL Query Language

Tutorial at ISWC 2019, October 27, 2019

Olaf Hartig 5

HOW |S the 6.4 Executing Fields

Each field requested in the grouped field set that is defined on the selected objectType will rest

entry in the response map. Field execution first coerces any provided argument values, then re

2.4 Selection Sets

value for the field, and finally completes that value either by recursively executing another sele

or coercing a scalar value.

SelectionSet : 6.3 Ex

{ Selection;, } ExecuteFieId(oErjfctTypf; object Value, fieldType, fields, variableValues) :
To

Selection : wel Let field be the first entry in fields.
Field 2. Net argumentValues be the result of CoerceﬂrgumentValues(objectType, field, variableV
FragmentSpread Firs 3. L&\ resolved Value be ResolveField Value(object Type, object Value, fieldName, argument Va
InlineFragment fiels 4. Retirn the result of CompleteValue(field Type, ficlds, resolved Value, variableValues).

An operation selects the)

nothing more, avoiding

1. Let groupedFieldSX be the result of CollectFields(object Type, selectionSet, variableValues).

{ 2. Initialize resultMap Yo an empty ordered map.
id 3. For each groupedFieldXet as responseKey and fields:
firstName a. Let fieldName be t\e name of the first entry in fields. Note: This value is unaffected if an
lastName alias is used.

} b. Let fieldType be the refurn type defined for the field field Name of object Type.

c. If field Type is null:

i. Continue to the nex\ iteration of groupedFieldSet.

In this query, the id, fi

contain fragment refere d. Let responseValue be ExecuteField(nErjectType, objectValue, fields, fieldType, variableValues).

e. Set responseValue as the value for responseKey in resultMap.

4. Return resultMap.

II LINKOPING An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 6

How is the

2.4 Selection Sets

SelectionSet
{ Selection,., }

Selection :
Field
FragmentSpread
InlineFragment

6.3 Ex

To e

wel

Firsg
field

6.4 Executing Fields

Each field requested in the grouped field set that is defined on the selected objectType will rest
entry in the response map. Field execution first coerces any provided argument values, then re
value for the field, and finally completes that value either by recursively executing another sele
or coercing a scalar value.

ExecuteFieId(oErjfctTypf; object Value, fieldType, fields, variableValues) :

1. Let field be the first entry in fields.

2. Let argumentValues be the result of EoerceArgumentValues(objeatType, field, variableV
3. Let resolved Value be ResolveField Value(object Type, object Value, fieldName, argument Va
4. Return the result of Complg#eValuel(field Type, fields, resolved Value, variableValues).

An operation selects th
nothing more, avoidin

id
firstName

lastName

In this query, the id, f

contain fragment refex

II LINKOP
[) UNIVER

6.4.2 Value Resolution

While nearly all of GraphQL executi
exposing the GraphQL interface

produces a value for a given fi

As an example, this mig

representing John Le

ResolveF ieldValue(objfctTypf, objectValue, fieldName, argumentValues) :

NOTE It is common for resolver to be asynchronous due to relying on reading an underlying

can be described generically, ultimately the internal system
st provide values. This is exposed via ResolveField Value, which

on a type for a real value.

ccept the objectType Person, the field "soulMate", and the object Value
on. It would be expected to yield the value representing Yoko Ono.

1. Let resolver be the internal function provided by object Type for determining the resolved
value of a field named field Name.

2. Return the result of calling resolver, providing object Value and argument Values.

database or networked service to produce a value. This necessitates the rest of a GraphQL
executor to handle an asynchronous execution flow.

HOW |S the 6.4 Executing Fields

Each field reguested in the erouped field set that is

24 3" 1. Let resolver be the internal function provide

value of a field named field Name.

2. Return the result of calling resolver, providir

defined on the selected objectType will rest
Fces any prnvided argument values, then re
either by recursively executing another sele

iclds, variableValues) :

TICTIT s el m‘gmﬂi’ﬂ! VTS De e result O Coerc

cArg umentValues(aErjedType, field, variableV

FragmentSKread Firs 3. Let resolved Value be ResolveField Value(object Type, object Value, fieldName, argument Va
InlineFragmet fiels 4. Return the result of ComplgteValue(field Type, fields, resolved Value, variableValues).

An operation selects th 4.2 Value Resolution

nothing more, avoidin
While nearly all of GraphQL executi

exposing the GraphQL interface st provide values. This is

{
id roduces a value for a given fighd on a type for a real value.
B Asan example, this mighyfaccept the objectType Person, the field "soulMate", and the object Value
Lasthame reprgsenting John Lenpfon. It would be expected to yield the value representing Yoko Ono.

}

In this query, the id, f

contain fragment refex

value of a field named field Name.

II. LINKOP executor to handle an asynchronous execution flow.

UNIVER

can be described generically, ultimately the internal system

ReolveF ieldValue(nbjfctTypf, objectValue, fieldName, argumentValues) :

1. Let resolver be the internal function provided by object Type for determining the resolved

2. Return the result of calling resolver, providing object Value and argument Values.

NOTE It is common for resolver to be asynchronous due to relying on reading an underlying

database or networked service to produce a value. This necessitates the rest of a GraphQL

exposed via ResolveField Value, which

Formalization of GraphQL

LINKOPING
II.“ UNIVERSITY

GraphQL Graphs (Our Formalization)

search[text:L]

id: 3000
name:Falcon

1d: 1000
length:34.37

"] name: Luke
- search[text:L] by

Query) Human

friends

hero[episode:EMPIRE]

Nen friends
CYéqf starships
So
(o7
6’4$%& friends
Op
€
7 5 Z{d friends }1w;\>
roi uman
1d: 2001 1d: 1002
name:R2-D2 name : Han

primaryFunction:Astromech

II LIN KOP| NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 10

GraphQL Graphs (Our Formalization)

search[text:L]

id: 3000
name:Falcon

length:34.37

1d: 1000
name: Luke

friends

friends

friends

id: 2001
name:R2-D2

1d: 1002
. name :Han
primaryFunction:Astromech

[Typed nodes]

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 11

GraphQL Graphs (Our Formalization)

search[text:L]

) id: 3000
1d: 1000 name:Falcon
name: Luke length:34.37

search[text:L]
r | u
uer Human friends
Query hero[episode:EMPIRE]
Nen friends
o/)
S > starships
s
Og,
o, friends
6%@
Opé:]
v friends w
Droid Human
id: 2001 id: 1002
name:R2-D2 name :Han
p N\ primaryFunction:Astromech
One special node
Typed nodes
II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 12

GraphQL Graphs (Our Formalization)

search[text:L]

id: 3000
name:Falcon

~a| length:34.37

1d: 1000
name: Luke

frieids

friends

friends w
Human

1d: 2001

. id:1002
Node properties name : R2-D? name : Han J

primaryFunction:Astromech

One special node

Typed nodes

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 13

GraphQL Graphs (Our Formalization)

search[text:L]

1d: 1000
name: Luke

friends

id: 3000
name:Falcon
length:34.37

friends

. . w
Edge properties friends Humg

e | id:2001 id:1002
Node properties | name: R2-D2 name : Han]

primaryFunction:Astromech

One special node

Typed nodes

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 14

GraphQL Graphs (Our Formalization)

search[text:L]

1d: 3000

1d: 1000 name:Falcon
name: Luke length:34.37
search[text:L]
r) u
uer Human friends
Query hero[episode:EMPIRE]
Nen friends
o/ :
S > starships
JSQU
Q :
4@%%6 friends
7S
N\ é:]
Edge properties i friends W
g= RIop) Droid Human
N id: 2001 id:1002
Node propertles name:R2-D2 name : Han]
< primaryFunction:Astromech

One special node

Typed nodes

We also formalize the notions of GraphQL schema
and schema satisfaction based on this data model

LINKOPING
UNIVERSITY

An Introduction to GraphQL
Tutorial at ISWC 2019, October 27, 2019

4. Fundamental Properties of the GraphQL Query Language

Olaf Hartig 15

Formalization of Query Evaluation Function

search[text:L]

id: 3000
name:Falcon

1d: 1000
length:34.37

"] name: Luke
, search[text:L] by

Query) Human

friends

hero[episode:EMPIRE]

Nen friends
CYéqf starships
So
(o7
6’4$%& friends
Op
€
7 5 Z{d friends }1w;\>
roi uman
1d: 2001 1d: 1002
name:R2-D2 name : Han

primaryFunction:Astromech

II LIN KOP| NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 16

Formalization of Query Evaluation Function

search[text:L]

id: 3000
1d: 1000 <W name:Falcon
length:34.37

name: Luke

‘'riends

friends

friends

1d: 2001
name:R2-D2
primaryFunction:Astromech

id: 1002
name : Han

[friends { name }]J“

4. Fundamental Properties of the GraphQL Query Language
Olaf Hartig 17

II |_|NKOD|NG An Introduction to GraphQL
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019

Formalization of Query Evaluation Function

search[text:L]

id: 3000
name:Falcon

1d: 1000 W
length:34.37

name: Luke

‘'riends

friends

friends

1d: 2001
name:R2-D2
primaryFunction:Astromech

id: 1002
name : Han

[friends {name }]¥ = friends: []

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 18

Formalization of Query Evaluation Function

search[text:L]

id: 3000
name:Falcon

1d: 1000
length:34.37

name: Luke

friends

friends

friends

1d: 2001
name:R2-[2
primarvfunction:Astromech

id: 1002
name : Han

[friends { name }]¥ = friends:[{[name]'} {[name]"}]

/

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 19

Formalization of Query Evaluation Function

search[text:L]

1d:3000
id: 1000 name:Falcon
name: Luke length:34.37

friends

friends
friends

1d: 2001
name:R2-[2
primarvfunction:Astromech

id: 1002
name : Han

[friends { name }]¥ = friends: [{name:R2-D2} {name:Han}]

/

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 20

Formalization of Query Evaluation Function

search[text:L]

) id: 3000
1d: 1000 name:Falcon
length:34.37

"] name: Luke
- search[text:L] by

Query) Human

friends

hero[episode:EMPIRE]

6QQ; friends
Zéqf starships
So
(o7
o /l/@}l/ friends
6/0'05]
5 Z{d friends }1w;\>

roi uman
1d: 2001 1d: 1002
name:R2-D2 name :Han
primaryFunction:Astromech

[hero[episode:EMPIRE] { friends {name}} 1

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 21

Formalization of Query Evaluation Function

search[text:L]

1d: 1000
name: Luke

- search[text:L] by

Query)

id: 3000
name:Falcon
length:34.37

friends

“lero[episode:EMPIRE]

friends

friends w
Human

id: 1002
name : Han

1d: 2001
name:R2-D2
primaryFunction:Astromech

[hero[episode:EMPIRE] { friends {name} } V

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 22

Formalization of Query Evaluation Function

search[text:L]

: id: 3000
1d: 1000 name:Falcon
name : Luky

length:34.37

friends

friends

friends

id: 2001
name:R2-D2

id: 1002
name : Han

primaryFunction:Astromech

[hero[episode:EMPIRE] { friends {name} } | = hero: { [friends {name} [“ }

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 23

Formalization of Query Evaluation Function

search[text:L]

_ id: 3000
1d: 1000 name:Falcon
length:34.37

" . name: Luke
, search[text:L] by

Query) Human

friends

hero[episode:EMPIRE]

bqu friends
Zéqf starships
So
(o
B /l/@/y friends
’90,06:]
5 Z{d friends }1w;\>

roi uman
1d: 2001 1d: 1002
name:R2-D2 name:Han
primaryFunction:Astromech

[hero[episode:EMPIRE] { friends {name} } | = hero: { [friends {name}]“ }
= hero: { friends: [{name:R2-D2} {name:Han}]}

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 24

Complexity Analysis

Evaluation Problem

LINKOPING
II.“ UNIVERSITY

Evaluation Problem of GraphQL

GraphQL graph G
data value d

GraphQL query q
Does d occur in the
result of g over G?

yes no

II “ LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

26

Complexity Classes

PSPACE

NP

a8

LINKOPING
UNIVERSITY

An Introduction to GraphQL
Tutorial at ISWC 2019, October 27, 2019

4. Fundamental Properties of the GraphQL Query Language
Olaf Hartig

27

Complexity of Evaluation Problems

Relational Algebra

SFARQL Conjunctive Queries

BGPs (SPARQL)
L
<
& o
o B pd o B
II “ L|NKOP|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 28

Complexity of Evaluation Problems

Relational Algebra

SFARQL Conjunctive Queries

BGPs (SPARQL)

®

< @ GraphQL
o

2] Q. -

o pd a8 2z

II “ L|NKOP|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 29

Complexity Analysis

Enumeration Problem

LINKOPING
II.“ UNIVERSITY

Non-Redundancy

Valid query Invalid result
hero(episode: EMPIRE) { hero {
name name: Luke
friends { friends: |
name { name: R2-D2}
} { name: Han}
Id]
name id: 1000
friends { name: Luke
id friends: [
} {id: 2001}
} {id: 1002}
]
}

II L|NKOD|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

Non-Redundancy

Valid query Correct result
hero(episode: EMPIRE) { hero {

name name: Luke
friends { friends: |

name { name: R2-D2
} |d: 2001 }
Id { name: Han
name |d: 1002 }
friends {]

id id: 1000
} }

Fields are collected
before answering

II LIN KOD|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

Non-Redundancy

Non-redundant query

hero(episode: EMPIRE) {
name
friends {
name

Id

Correct result

hero {
name: Luke
friends: |
{ name: R2-D2
|d: 2001 }
{ name: Han
|d: 1002 }
]
id: 1000
}

Fields are collected
before answering

II “ |_|NKOD|NG An Introduction to GraphQL
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019

4. Fundamental Properties of the GraphQL Query Language
Olaf Hartig

33

Another Complication: Type Restrictions

Valid query

hero(episode: EMPIRE) {
name
friends {
on Droid { name }
on Human {id }
name

Invalid result
hero {
name: Luke
friends: |
{ name: R2-D2
name: R2-D2 }
{id: 1002
name: Han }
]

II “ |_|NKOD|NG An Introduction to GraphQL
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019

4. Fundamental Properties of the GraphQL Query Language
Olaf Hartig

34

Another Complication: Type Restrictions

Valid query Correct result
hero(episode: EMPIRE) { hero {
name name: Luke
friends { friends: |
on Droid { name } { name: R2-D2 }
on Human {id } {id: 1002
name name: Han }
}]
} }

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

Another Complication: Type Restrictions

Valid query Correct result
hero(episode: EMPIRE) { hero {
name name: Luke
friends { friends: |
on Droid { name } { name: R2-D2 }
on Human { id name } {id: 1002
} name: Han }
}]
}

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

Ground-Typed Normal Form

Ground-typed query Correct result
hero(episode: EMPIRE) { hero {
name name: Luke
friends { friends: |
on Droid { name } { name: R2-D2 }
on Human { id name } {id: 1002
} name: Han }
}]
}

II LIN KOD|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

Eliminating Redundancies

Rewriting rules for queries

Every GraphQL query g can be rewritten
Into a query g’ that is i) non-redundant and
1) In ground-typed normal form, such that

qg=q

Advantage: field collection is not needed
for non-redundant queries in ground-typed NF

II LIN KOP| NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 38

Now to the Enumeration Problem

Let g be i) non-redundant and
Il) In ground-typed normal form

Result of g can be produced symbol by symbol
with only constant time between symbols

hero { friends: [{ name:R2-D2}] }
Time to produce the complete query result
depends linearly on the size of this result
II LINKOPING An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 39

Complexity Analysis

Result Size

LINKOPING
II.“ UNIVERSITY

Results of GraphQL queries can be huge

oe—()
start knows
@ name : o knows
Alice \d
knows @

start { knows {knows { ... { know§ {name}}... } }}

2N times

Alice appears 2N times in the result

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

41

Huge results in practice: Github’s GraphQL API

Owners of first five repos that user “danbri” contributes to,
and the owners of first five repos that they contribute to,
and so on...

120,000

104959
(6]

1 result size

100,000 ' execution time I |

80,000
60,000
40,000

22608

result size in bytes

0.52
10.56
10.69

20,000

timeout after ca. 10 secs
timeout after ca. 10 secs
N
execution time in seconds

N
| 4753
1.33
4.45

o

QA
D
—

1970

0

1 2 3 4 5
levels

(@)}
~

II LIN KOD|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 42

Result sizes can be computed efficiently!!!

Let g be 1) non-redundant and
1) In ground-typed normal form

Time to compute the size of the result
of g over a graph G depends linearly on
the product

(size of g) X (size of G)

We provide an algorithm that
achieves this complexity bound

II LIN KOP| NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

43

Proposal for GraphQL Servers

First, compute the size of the result.
If too big, reject query.
Else, inform the size to the client, and

Send the result byte by byte.

(or use the size as basis of a billing model)

II LIN KOP| NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

44

Summary

LINKOPING
II.“ UNIVERSITY

Our Results in a Nutshell

Formal definition of the language
* Property Graph-like data model
* Formal query semantics

Study of computational complexity
(the language admits really
efficient evaluation methods)

* Evaluation problem is NL-complete
* Enumeration of results is linear

Solution to the problem of large results
* Efficient algorithm to compute result size

Olaf Hartig and Jorge Pérez: Semantics and Complexity of GraphQL. In The Web Conference 2018.

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 46

www.liu.se

LINKOPING
II." UNIVERSITY

Backup Slides

LINKOPING
II.“ UNIVERSITY

Result-Size Computation

advisor
start univ
() : (1 anesucy
friend

start { | advisor { univ { name } }/’ friend { univ{name }} }

Result:

start: { }

size(q, r) = 4 + size(q,,u) + size(q,,u)

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 49

Result-Size Computation

advisor
start univ
() : (1 anesucy
friend

start { | advisor { univ { name } }/’ friend { univ{name }} }

~

g, oR

size(q, ,U) = size(q,,U) =

size(q, r) = 4 + size(q,,u) + size(q,,u)

II LIN KOD|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 50

Result-Size Computation

advisor
start univ
() : (1 anesucy
friend
q,

start { advisor { univ {Hame} } friend { univ{name}} }

q,

q,

size(q,,u) = 4 + size(q,,V)

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 51

Result-Size Computation

advisor

@ start . univ
friend
9

start { advisor { univ {name} } friend {univ{name}} }

05 q,

\
4. size(q,,v) = 4 + size(q. ,w)
size(q,,u) = 4 + size(q,,Vv)

II LIN KOD|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 52

Result-Size Computation

advisor

<::> start
r '

friend

s

start { advisor { univ {name} } friend {univ{name}} }

. J

\ Ve
v

05 q,

| size(q.,w) = 3
4. size(q,,v) =4 + size(qg.,w)
size(q,,u) = 4 + size(q,,Vv)

II L|NKOD|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

53

Result-Size Computation

size(q,) =7

advisor

size(q) = 3

start univ
r U

friend

o

start { advisor { univ {ﬁame} } friend {univ{name}} }

9 q.

size(qs,w) = 3

9. size(q,,v) =4 + size(q.,w)=4+3=7

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig

54

Result-Size Computation

size(q,) =7

advisor size(qS) =3
O start univ
r v
Size(qz) =11 friend
o)

start { advisor { univ {Hame} } friend {univ{name}} }

9 .

4. size(qg,,v) =4 + size(q.,W) =4+ 3=7
size(q,,u) = 4 + size(q,,v) = 11

II LIN KOD|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 55

Result-Size Computation

size(q,) =7

size(q) = 3

advisor

start univ
r U

Size(qz) =11 friend
4 LR
start { advisor { univ{name}} friend { univ{name}} }

Ve

s q.

size(q,,u)= 4 + size(q,,Vv)

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 56

Result-Size Computation

size(q,) =7

advisor size(qS) =3
O start univ
r v
Size(qz) =11 friend
size(q,) = 11 q, = > 4,

start { advisor { univ {name} 1 friend { univ { name }} }

N\
v

size(q,,u)=4 + size(q,,v)
=4+7=11

II LIN KOD|NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 57

Result-Size Computation

size(q,) =7

advisor size(q5) =3
O start univ
r v
Size(qz) =11 friend
size(q,) = 11 q, = > 4,

start { advisor { univ {’hame\} } friend { univ { name } } o}

aq,

size(q, r) =4 + siz U) + size(gu) = 26
}éelz/ll /(Efﬁ

II LIN KODI NG An Introduction to GraphQL 4. Fundamental Properties of the GraphQL Query Language
o UNIVERSITY Tutorial at ISWC 2019, October 27, 2019 Olaf Hartig 58

